
Unisys
Agile Business Suite

Developer User Guide
Copyright © 2016 Unisys Corporation.
All Rights Reserved.

Release 6.1

December 2016 3826 5823-008

NO WARRANTIES OF ANY NATURE ARE EXTENDED BY THIS DOCUMENT. Any product or related information described
herein is only furnished pursuant and subject to the terms and conditions of a duly executed agreement to purchase or
lease equipment or to license software. The only warranties made by Unisys, if any, with respect to the products described
in this document are set forth in such agreement. Unisys cannot accept any financial or other responsibility that may be
the result of your use of the information in this document or software material, including direct, special, or consequential
damages.

You should be very careful to ensure that the use of this information and/or software material complies with the laws, rules,
and regulations of the jurisdictions with respect to which it is used.

The information contained herein is subject to change without notice. Revisions may be issued to advise of such changes
and/or additions.

Notice to U.S. Government End Users: This software and any accompanying documentation are commercial items which
have been developed entirely at private expense. They are delivered and licensed as commercial computer software and
commercial computer software documentation within the meaning of the applicable acquisition regulations. Use,
reproduction, or disclosure by the Government is subject to the terms of Unisys' standard commercial license for the
products, and where applicable, the restricted/limited rights provisions of the contract data rights clauses.
Unisys and other Unisys product and service names mentioned herein, as well as their respective logos, are trademarks
or registered trademarks of Unisys Corporation.

Contents
Section 1. Introduction ..1–1

About This Guide ..1–1
Audience ..1–1
Documentation Update ..1–1

Section 2. Getting Started...2–1

Overview and Features ..2–1
Development Environment ...2–3
Application Building ...2–7
Runtime Environment ...2–7

Exploring the Agile Business Suite Elements ..2–10
Objects ..2–10
Stereotypes ...2–11

Using the Model ...2–12
Getting Around System Modeler ..2–12
Model Entities ...2–53
General System Modeler Settings ..2–85

Summary ..2–86

Section 3. Developing Applications... 3–1

Creating System Modeler Projects ..3–1
Adding Projects ...3–3
Adding System Modeler Items ..3–6
Grouping Elements ...3–12
Setting Properties ..3–13
Model Structure Validation Rules ..3–73
Element Reservation ...3–80
Generating Client Framework Projects3–82
Using the Client Framework Classes ..3–86
Performing Backup of AB Suite Solutions3–87
Restoring the AB Suite Solutions ..3–88
Converting the AB Suite Model ..3–89
Developing AB Suite Applications in Mixed Mode3–93
Processing XML Messages ..3–94

Introducing the Runtime Cycle ...3–104
Transaction Processing ..3–104
Runtime Limits ..3–121

Defining User Interfaces ..3–131
PresentationType Property ..3–132
Adding a Form ...3–133
Adding Graphical Objects ..3–136
3826 5823-008 iii

Contents
Graphical Objects and Attributes .. 3–170
Creating Fixed Screens ... 3–175
Creating Teach Screens ... 3–178
Designing User Interfaces for Client Framework Applications 3–178
Creating Reports .. 3–180

Using the Windows Communication Foundation (WCF) Gateway 3–185
FileStoreGateway Service ... 3–186
Running the WCF Gateway .. 3–186
Custom Gateway .. 3–188

Debugging Applications ... 3–190
Accessing an Existing Runtime Database to
Debug an AB Suite Application ... 3–192
Debugger Configuration Properties .. 3–193
Running a Debug Session ... 3–198
Testing Dynamic Attributes with Component Enabler 3–206
Using a Test Database on a Host Machine 3–207
Restrictions ... 3–209
Performance and Resource Usage ... 3–209
Debugger Administration .. 3–210
Debugging through EBCDIC Tool .. 3–210

Building Applications .. 3–218
Builder Overview .. 3–218
Builder Functions .. 3–252
Builder Architectural Elements ... 3–253
Building Applications .. 3–255
Automating the MCP Build using Host Responder 3–262
Deploying Applications in Windows® Runtime 3–266
Deploying an Application in MCP Runtime 3–278
Build and Deployment Configuration Properties 3–278
Build Settings .. 3–357

Exporting and Importing Model Elements ... 3–360
Export and Import Wizards ... 3–360
Export Wizard .. 3–361
Import Wizard ... 3–363
Addressing Import/Export Issues ... 3–371
Exporting and Importing from the Command Line 3–373
Unresolved Elements ... 3–378
Resolving Elements .. 3–379

Migrating System Modeler Database .. 3–381
Settings Page .. 3–381
Overview Page ... 3–382
Migration Page .. 3–382
Summary Page ... 3–382

Section 4. Managing Applications..4–1

Version Management ... 4–1
Viewing Specifications, Differences, and Merging 4–2
Source Control Services in Visual Studio 4–8
Source Control in System Modeler ... 4–8
Source Control Utilities ... 4–9
Setting Version Files ... 4–9
iv 3826 5823-008

Contents
Setting User Options ...4–10
Versionable Objects Control Status ..4–12
Setting up the Source Control Bank in an
AB Suite Environment ...4–13
Using Source Control with TFS ...4–24
Source Control Operations ..4–26
Creating AB Suite Environment ..4–27

Release Management ...4–34
Building a Product Release by Labels4–34

Integrity Management ..4–37
Working with Integrity Management ..4–37

Automated Test Tool ...4–38
Recording Test Cases ..4–38
Configuring and Playing Back Test Cases4–41
Migrating Test Case Recordings ...4–47
References ..4–47
Transaction Types ..4–54

Appendix A. References ...A–1

Sample AB Suite Applications ... A–1
Creating a Project with a Sample AB Suite Application A–1
Creating a Project with a Sample
AB Suite Client Framework Application A–2

Describing AB Suite Icons ... A–3
System Modeler .. A–13

Searching an Element .. A–13
Search Dialog Box .. A–13
Wildcards .. A–15
Regular Expressions .. A–15
Search Results List Window .. A–17
Building Comment Pages ... A–18
Using Class Diagram Editor .. A–20
Using Enterprise Output Manager Reports A–28

Logic Editor ... A–46
Entering Logic ... A–46
Editing Logic .. A–48
Validating Logic ... A–54
Logic Validation Errors ... A–57

Microsoft Build Engine .. A–58
Building Applications Using Command Line A–58
Building Applications by Using TFS .. A–66

ReElDor Utility ... A–70
Minimize Insertable Substitution Strings A–70
Pretty Print .. A–71
Change Insert Attribute to Class .. A–73
Examples for using ReElDor Utility .. A–74

Access Layer API—Logging Information ... A–80
Error Messages ... A–82

--- A --- Error Messages .. A–82
--- B --- Error Messages .. A–82
--- C --- Error Messages .. A–82
3826 5823-008 v

Contents
--- D --- Error Messages ...A–84
--- E --- Error Messages ...A–85
--- F --- Error Messages ...A–85
--- G --- Error Messages ...A–85
--- H --- Error Messages ...A–85
--- I --- Error Messages ..A–85
--- J --- Error Messages ..A–87
--- K --- Error Messages ...A–87
--- L --- Error Messages ...A–88
--- M --- Error Messages ..A–88
--- N --- Error Messages ...A–89
--- O --- Error Messages ...A–89
--- P --- Error Messages ...A–92
--- Q --- Error Messages ...A–92
--- R --- Error Messages ...A–92
--- S --- Error Messages ...A–93
--- T --- Error Messages ...A–94
--- U --- Error Messages ...A–95
--- V --- Error Messages ...A–95
--- W --- Error Messages ..A–96
--- X --- Error Messages ...A–96
--- Y --- Error Messages ...A–96
--- Z --- Error Messages ...A–96

Glossary ...A–97
Terminology Changes ...A–97

Appendix B. Related Product Information...B–1

Index..Index–1
vi 3826 5823-008

Section 1
Introduction

About This Guide
This document provides overview and description of AB Suite Developer 6.1 and its
various components, such as System Modeler, Painter, Windows Presentation
Foundation (WPF) Designer, Debugger, Builder, and so on. It also covers detail of
Automated Test Tool (ATT) menu within System Modeler included in AB Suite Developer
6.1 and provides the functions to record test cases, play back the recorded test cases,
and view the results of a playback operation for AB Suite transactions.

Audience
This document is primarily for those who use AB Suite Developer 6.1 to create model-
driven applications, implement object oriented concepts in their applications, and test the
functionality of their applications.

Documentation Update
This document contains all the information that was available at the time of publication.
Changes identified after release of this document are included in problem list entry (PLE)
19158047. To obtain a copy of the PLE, contact your Unisys representative or access the
current PLE from the Unisys Product Support website:

http://www.support.unisys.com/all/ple/19158047

Note: If you are not logged into the Product Support site, you are asked to do so.
3826 5823-008 1–1

Introduction
1–2 3826 5823-008

Section 2
Getting Started

Agile Business Suite is a complete set of development tool for building ASP.NET Web
applications, XML Web Services, desktop applications, mobile applications, and service
based applications. It has a set of tools for the development, deployment, and runtime
management of information systems. It provides the technology to create and maintain
applications that are responsive to business change, whether small or very high volume.
It is capable of generating complete software applications that can be run in a very large-
scale mission critical environment.

AB Suite is a complete rapid application development and deployment environment. It:

• Defines, generates, and manages complete, highly-scalable, real-world composite
applications that are easily adapted in changing business rules and processes, and
can be deployed across multiple operating environments.

• Has model-based and model-driven development capabilities that allow users to
define and modify applications at a higher level of abstraction.

• Enables enterprises to quickly implement new processes and encapsulate business
knowledge as reusable components in a Service-Oriented Architecture (SOA)
environment.

Agile Business Suite is integrated into the Microsoft Visual Studio environment and
leverages the features of Visual Studio to provide a highly productive development
environment. It is based on high-level specification of the business model, capability to
deploy complete applications, and the flexibility to easily adapt the model. It helps in
evolving business needs and changes in user environments. Agile Business Suite allows
you to build business solutions that include both Agile Business Suite and other .NET
components thus optimizing resource usage. An Agile Business Suite solution may, for
example, comprise Agile Business Suite components, C#, Visual Basic .NET, and C++
components, or any type of project that Visual Studio is capable of generating. Through
the use of standards such as SOAP, UDDI and WSDL, these solutions may work with
other clients and services generated by other IDEs such as Web Sphere Application
Developer (WSAD) or Visual Studio.

Overview and Features
AB Suite supports object oriented (OO) Fourth Generation Language (4GL) environment.
It provides model-based and model-driven development capabilities. It integrates
development, testing, versioning, and application deployment functions within the Visual
Studio.NET IDE framework. It develops and builds applications in the Windows Visual
Studio environment, and deploys them to supported Runtime System Environment.
3826 5823-008 2–1

Getting Started
For example, by building standard elements as classes and encapsulating them in a clean
interface, you can customize standard applications to suit specific requirements. Classes
can be included in a number of different components to allow for separate distribution
thus minimizing development time. Specializing standard framework classes facilitates
adding data or overriding behavior and classes generated as components can be
specialized.

Agile Business Suite is comprised of two major components

• AB Suite Developer (Development Environment), which lets you define and then
generate components for the Microsoft.Net Framework and ClearPath operating
environments.

• AB Suite Runtime for each of the supported platforms.

Development Environment

AB Suite Developer or Development Environment is implemented within the Visual
Studio Integrated Development Environment (IDE) framework. It includes tools for
designing, developing, testing, generating, and deploying applications.

The AB Suite Development Environment includes the following:

• System Modeler – for modeling information systems

• Debugger – for testing systems modeled in System Modeler

• Builder – for generating and deploying these systems

• Version Control tools, a third-party software – for version management of models and
model elements

AB Suite Runtime

AB Suite Runtime supports

• Windows® operating system

• ClearPath MCP operating system

AB Suite Runtime is installed on the target runtime platform, and provides an
infrastructure to run the deployed AB Suite components. The runtime environment is
different for each of the target platforms supported by AB Suite – Windows .NET and
ClearPath MCP.

Features of Agile Business Suite

Agile Business Suite provides

• A higher level of definition

• Platform independence

• Ability to mask complexity

• Capturing the what without worrying about the how
2–2 3826 5823-008

Getting Started
It offers the following capabilities

• Stability and ease of migration to follow-on releases of the product.

• Builds and manages composite applications easily.

• Is able to use the concepts of component-based development.

• Provides the granularity for version control in the new architecture.

• Ability to deploy individual components of a single application to multiple platforms.

• Standards-based structures to provide both development and runtime interoperability

• Able to consistently and reliably generate very large and business-critical systems
that can be used to run entire business operation.

• Deploy and manage components built with other component-based development
tools and those built with the Developer.

• Provides an automatic mechanism to migrate data from existing systems. Migration
scenarios that would require database reorganization must be kept to a minimum.

• Optionally provides a mechanism to take an existing system and transform it into a
component-based application.

• Provides unprecedented flexibility, modern, and innovative development capabilities.

• Provides a thoroughly modern development environment with features that boost
productivity and deliver high-quality applications faster.

• Allows reuse of existing EAE application assets in new ways to further maximize the
value in the current systems.

• Built-in diagramming tool to enable you to visualize your application, or parts of it
using the UML class diagram.

Development Environment

Development Environment is integrated within Visual Studio Integrated Development
Environment (IDE) framework and includes the following:

System Modeler

System Modeler in AB Suite Developer functions as a ‘plug-in’ to Visual Studio and is a
project in Visual Studio. It provides a model-based and OO development environment. As
a model driven development environment, System Modeler allows you to focus on the
logical requirements of a system without worrying about platform-specific
implementation details. Because the models created in System Modeler are platform
independent.

System Modeler enables you to model and build an application from the ground up,
including the end-user presentation, classes, and objects that represent business logic,
and automatic generation of the associated database tables.
3826 5823-008 2–3

Getting Started
In System Modeler, you define classes to represent logical entities. You define data by
adding elements to a class. These elements can be simple data types, like numbers or
text strings, or complex classes with members of their own. There are several ways to
define the runtime behavior of a class. These include:

• Adding logic to the class

• Setting class properties

• Defining relationships between the class and other elements in the model

System Modeler also provides a set of stereotypes that you can apply to classes to
implement processing behavior. A stereotype is a concept from Unified Modeling
Language (UML). It indicates to the model how an element should behave. For example,
ispecs and segments are both classes, but they have different stereotypes.

As an OO and model driven development environment, System Modeler enables you to
extend and reuse the logical elements in your models, and to integrate these elements
with components developed in other environments. In System Modeler, you can define a
logical representation of your business using OO development techniques such as
encapsulation, composition, inheritance, and polymorphism.

The System Modeler consists of the following screen panes:

• The Solution Explorer displays files of versionable elements of a project and
project files of the AB Suite Client Framework applications such as, the DataModels
project for all the client technologies, DataViewModels, Data Sources, and Views
project for the WPF Client technology. Each versionable element in the Solution
Explorer can be manipulated by source control in standard ways such as addition to a
version control bank, checking in, and checking out.

• The Class View, displays the hierarchy of classes and their members, and can be
used to add new elements to the model, move and rename them. Its main function,
however, is to select elements to be displayed in the Properties window of the
Developer System Modeler.

• The Properties window displays properties that are common to all the elements
selected in the Class View or Solution Explorer. The properties in table format lists the
property names and values. Changes in property values are applied to all selected
elements.

The class view also shows a node for the project and each of the Segments it contains,
but it shows all the elements in each of the classes in the project. As you select one or
more elements in the class view or solution explorer, those properties that are common
to those element types are displayed in the Properties window.

When you double-click any of the elements in the solution explorer or class view, the
Developer System Modeler designer opens, with the tabbed pages appropriate to that
kind of element. The Visual Studio searching mechanism is used to search the Agile
Business Suite model too, as though the model is made up of files.

In addition to this, Developer System Modeler includes a Designer Window, which shows
a number of views of an element in the model on a series of tabbed pages.
2–4 3826 5823-008

Getting Started
The Designer page includes the following:

• Properties page – It shows a summary of the information displayed in the Properties
Window.

• Documentation page – It shows a WYSIWYG text editor (based on the standard
RichEdit control) for text or embedded OLE objects describing the element.

• Members page – It shows the members visible to a namespace element. The list of
parameters can be ordered to represent the order of parameters.

• Logic Status page – It shows the logic for a method, profile or SQL script.

• Dependencies page – It shows the relationships between this element and others.
These relationships are actual (reflecting a dependency between this element and
another).

• Class diagram page – It shows a UML class diagram of the element and its member
classes.

• Painter page – It shows the design of the user interface, printed image, and teach
screen for designing AB Suite applications.

Note: The Painter page is not available for Client Framework models. You must
design the user interface separately from the Client Framework model by using
the development tool of your chosen technology. For example, WPF Designer can
be used for WPF/Extensible Application Markup Language (XAML) desktop
applications. However, both the AB Suite and WPF projects can exist in the same
solution to impart an integrated development experience.

Debugger

Debugger runs within the Visual Studio IDE. It emulates the host runtime environment on
the development workstation and enables to test the screens and logic before deploying
the runtime system.

It performs Just-in-time (JIT) compilation of selected components that are debugged and
does not require a full generate of the application. The reason a full generate is not
required is because most of the components are never generated – they are interpreted.

It does not compile the LDL+ logic in the model. Instead, when logic is encountered in a
debug session, it interprets it. So that, you can modify the logic during a debug session.
For example, if you notice that a line of logic is incorrect, you can correct it and step
through the logic again to test your changes, without closing the debug session.

The interpreted instance differs from the generated application only in that objects are
constructed dynamically during interpretation and the LDL+ statements are executed by
traversing the abstract syntax tree rather than the compiled code. However, the
dynamically constructed objects inherit the standard behavior and elements from the
same framework classes, use the same persistence implementation, and use the same
classes representing the Agile Business Suite data types for their attributes, and the
interpreted LDL+ executes the same methods of the class to implement the logic.
3826 5823-008 2–5

Getting Started
Builder

The Builder generates the database definition language, the program source code, and
other files necessary to deploy the system represented by the model.

After you define a project using System Modeler, you can build and deploy it using the
Builder. Builder provides a number of unique capabilities, including the ability to:

• Deploy to multiple operating environments from a single model.

• Generate the complete application code – including user interfaces, transaction
control, and more.

• Automatically define a complete and enterprise-class database from the model.

You can generate or deploy an application in two ways:

• Using the Build commands within Visual Studio.

• Using the MSBuild.exe, a separate Builder application executable.

When you build an application, Builder Cache folder is created. This folder retains the
generated files in an internal format and allows multiple users to share the generated
output.

Version Control

In Agile Business Suite, multiple developers in a work group can share the same model,
and multiple workgroups can share a common version repository, from which they check
out model elements to modify them and then check them back in to publish the changes
to other workgroups.

The Visual Studio framework provides an interface to external source control products,
implemented as the SCC Manager component. The standard product comes with support
for tools that support SCCAPI, and could be extended with implementations tailored for
other products. Developer works with any supported source control system such as Clear
Case, Borland StarTeam, SURE, StarTeam, Microsoft Visual SourceSafe, or Microsoft
Team Foundation Server (TFS). Developer supports different versions of TFS, such as TFS
2012, TFS 2013, and TFS 2015 as source control system. Elements in the model are
automatically protected by source control when it is active.

The standard source control infrastructure revolves around files. When a versionable
element is added to source control its parent containers and its members are also added
(if not already present) to define its position within the model hierarchy. For example, a
segment can be added to the Source Control Bank along with its members such as
Ispecs, reports, and attributes. When an Agile Business Suite Element is checked into
source control, the XML export file is created and passed to the SCC Manager. The name
of this file is recorded in the model. When an element is checked out, the XML file
representing it is checked out. Where the project has been added to source control,
elements must be checked out before they are modified.

Comparing and merging different versions of an element is implemented as a separate
application, which can also be invoked directly from the source control system.
2–6 3826 5823-008

Getting Started
Access Control

Agile Business Suite is multi user environment. Access control for Developer and the
generated application is implemented using the standard COM+ role based access
control infrastructure for runtime. Individual users or user groups are added to these roles
using Component Services in the Windows management console. By default, the
‘Authenticated Users’ group is member of the Developer and Generator roles, and the
‘Administrators’ user group is member of the ‘Administrator’ role.

Configurations

Configurations are a concept from Visual Studio. They are named as sets of compilation
and deployment options. An element’s configuration properties are inherited from those
of its owner. Values for these properties are only stored if they are different from those
inherited from the element’s owner and different from the default.

Configuration Builder

Each project requires a Configuration Builder to manage the compilation of its various
parts. In the case of Developer this includes the generation of intermediate source code,
and the generation of multiple artifacts for elements in the model. The Visual Studio .NET
Framework invokes the Configuration Builders for each project in the solution.

Application Building

In Agile Business Suite, after developing the application model, you can deploy it to one
of the supported server platforms.

The Agile Business Suite Builder translates design information stored in the developer
model into a running database application and clients to access that application. During
this process, Builder uses input from the model, in the form of structural information,
configuration information (properties), and logic.

The Builder stores the most recently generated files for each configuration. If the
application has been generated previously, these files are retrieved from the Builder
cache folder instead of regenerating them. The builder also has the capability to build
changes that you have made since the last time you built the application.

The generated C# files, which make up a C# project, are compiled and linked using the
pre-compiled libraries and input to the deployment project. Following compilation and
linking of the C# project, the output files are stored in the model for each configuration, to
be retained for future build/change analysis of the application.

Runtime Environment

Agile Business Suite enables flexible and rapid development of runtime solutions by
supporting deployment of both its own components and those developed with other
tools together with the capability of multiple platform deployment.
3826 5823-008 2–7

Getting Started
Agile Business Suite Runtime provides an infrastructure to run the deployed Agile
Business Suite components. Your application is generated as a collection of C# files,
which are compiled. The compiled results, together with database and other deployment
information, is linked and assembled into a deployment package (MSI) for transfer to the
deployment server and deployment on that server.

Windows® Runtime

Windows® Runtime consists of the following components:

• Runtime

• Protocol Adapters

• Database Server (Remote DB Server)

• GUI Server

• Client Container

• Administration Tool

Windows® Runtime supports deployment of components developed in Agile Business
Suite and other tools and enables optimum, flexible, and rapid development of runtime
solutions.

Windows® Runtime runs on .NET Framework Enterprise Services environment and
includes a Microsoft Management Console (MMC) snap-in to administer the Runtime.
The Administration Tool snap-in to MMC enables you to configure the Runtime
environment. Using the Administration Tool, you can deploy systems and perform
administration tasks required for deployed systems.

You can use the Runtime Administration Tool to create a test database to test your
application using Debugger before you deploy it to a runtime host. It also enables you to
configure and manage the runtime environment and deployed AB Suite applications for
the Windows® operating system.

You can use the Runtime Administration Tool to perform the following tasks:

• Add a Runtime Database Server

• Add a Database Server Registration

• Add a New Database

• Prepare an Existing Database

Agile Business Suite Windows® runtime supports different protocols and transport layers
as follows:

• SOAP over HTTP (Web Services)

Simple Object Access Protocol (SOAP) is a protocol that has a predominant role in
XML development and Web Services.
2–8 3826 5823-008

Getting Started
• SOAP over MSMQ

This protocol adapter provides SOAP over Microsoft Message Queuing (MSMQ).

• HUB

HUB is a proprietary protocol that allows Agile Business Suite systems to talk to each
other.

• NOF/OFF/USER/GLI

All of these are proprietary protocols that are mainly used to migrate applications from
mainframe hosts (where these protocols were used more heavily) to Windows
operating system hosts.

• RATL over TCP/IP

A protocol that is used by Component Enabler.

• RATL over MSMQ

A feature of Component Enabler.

MCP Runtime

AB Suite Runtime for MCP consists of the following components:

• Runtime environment – provides a runtime environment to deploy AB Suite
applications.

• Enterprise Database Server (DMS II) – used as the database management
system. AB Suite uses features of the standard DMSII product, with the facility to
use DMS II Extended Edition features. Ispecs with persistent attributes are
implemented as DATASETs. Event sets are also implemented as DATASETs. Profiles
are implemented as SETs. Conditional profiles are implemented as SUBSETs.

• Runtime Control and management utilities – consists of two utility programs:

– Database Management Utility (DMU) – used to provide direct support to be a
Runtime database system — executing database garbage collection, upgrading
DMS II release levels for a database and providing emergency database support
for production systems such as fixing population limits.

– System Management Utility (SMU) – used to reconfigure a Runtime system. For
example, changing database and system names and family or pack settings.
3826 5823-008 2–9

Getting Started
Exploring the Agile Business Suite Elements
This section describes the elements of the Agile Business Suite model. A model is a
container for all the elements in the information system. The following elements are
available in System Modeler:

• Folder – is a container for all the elements in a model and is used to classify the
model elements into logical groups. Folders are also used to group elements for
deployment. The configuration properties of folders define deployment options for
the deployable elements they contain. Folders have no effect on the generated
system.

• Dictionary – is a special kind of folder that contains a collection of element
definitions. Elements in your model can inherit the properties of dictionary items,
maintaining uniformity of related elements.

• Objects – An object is the UML way of representing an entity. Agile Business Suite
objects comprises of classes, instances (variables, attributes, and parameters), and
methods.

• Profile – is an index to your information. Using a profile, you get a functional view of
your data — you only see records relevant to the function you are performing. For
example, when you look at product information from a sales function, you need
different information than you would from an inventory management function.

• UML Diagram – Uses standard Unified Modeling Language notation to represent
the relationships between model elements. Like folders, UML diagrams do not own
their members — an element can be a member of more than one UML diagram.

Objects

Objects are the basic building blocks for building software using object-oriented
methodologies. Objects may contain data (attributes) and logic (methods). In System
Modeler, many object characteristics are specified as properties on the object. AB Suite
framework objects consist of built-in:

• Classes – Is the blueprint of an object. It is an abstract definition for creating other
identical objects. Classes are abstract descriptions of objects. An object can inherit its
definition from a class. Each element in a Class can be defined to be visible:

– Only within its Class (private).

– Within its Class and any class inheriting from it (protected).

– Outside its Class (public).

• Methods – A method is a sequence of logic statements that apply to an object. It
specifies the algorithm or procedure that affects the outcome of an operation. That is,
it defines a behavior of the object to which it belongs. The model allows you to define
the logic in a range of different languages. In Agile Business Suite this can be LDL+ or
a dialect of SQL (as used in SQL scripts). The Agile Business Suite framework
includes some built-in methods that form part of its processing cycles.
2–10 3826 5823-008

Getting Started
• Attribute – Is a member of an object that holds the state of a class. It is a
specification that defines a property of an object, element, or a file. An attribute of an
object usually consists of name and value of an element, type or class name of a file,
and name and extension. Data used by an ispec, or other class, are called attributes.
Attributes are specialized variables and can be persistent. The characteristics of an
attribute are; it becomes ‘output’ by virtue of being persistent, and ‘input’ by virtue of
appearing in a user interface, or the combination of the two.

The properties of an attribute describe its role and the type of data that it needs to
store. An attribute has properties such as Name, Caption, Description, and Direction.
Direction property Indicate the direction that values can be passed between the
attribute in memory and its presentation, that is input or output type.

• Variable – Is a temporary storage for information that is required during the lifespan
of the application. Variables are a specialization of a Type, and they can be used
anywhere a Type is used. This implements the ‘same as’ relationship, where another
Variable acts as a Type.

Variables can act as:

– Local variables in a Method.

– Attributes of a Class.

– Parameters to a Method.

An object can have member variables added to it. The members of a class are
ordered, like the parameters of a Method.

• Parameter – Is a special variable used to pass data into and/or out of a method call.

Stereotypes

Stereotype indicates special behavior of a class. It indicates how an object or class fits
into the AB Suite processing framework. The stereotype determines the class’s behavior.
It can define a number of built-in or framework methods, which are automatically
executed at runtime. A stereotyped class or object inherits a set of built-in attributes and
methods.

The following stereotypes are available in AB Suite:

• Segment

• Ispec

• Report

• Frame

• Group

• Insertable

• Event

• CopyIspec

• CopyEvent
3826 5823-008 2–11

Getting Started
• SQL Script

• Messenger

The stereotype that you apply to a class determines the properties that is displayed for
the class. For example, a class with the Ispec or Event stereotype contains an
AutoEntryCapable property while a class with the Report stereotype includes a
DefaultDevice property.

Segment

Applications and application components are modeled using the segment stereotype. A
segment is used at the top level in the model to contain all the elements that make up
each application. A class with the Segment stereotype automatically includes the
behavior and characteristics of a segment. For example, the built-in attributes and
methods inherited by a segment class includes; an attribute called GLB and a built-in
method called Startup().

Ispecs

Ispecs (interface specifications) are one of the basic stereotyped classes that make up a
System Modeler model. An ispec is a definition of a business resource, such as a
customer or product, and defines the user interface and methods for your user
application. The graphical user interface formats, the data, and the logic defined for ispecs
enable Builder to generate the runtime database structure and a major part of the runtime
system. Ispec classes can contain methods. Presentation ispecs contain built-in
framework methods (Construct, Prepare, and Main) that are automatically invoked during
Ispec processing.

An ispec class can have a graphical user interface, or presentation. To create a
presentation, set the PresentationType property to a value other than None. Once this is
set, you can access the Painter window to design the appearance and layout of the
interface.

Insertable, copyispec, copyevent, and SQL script are more specialized stereotypes.

All the elements within System Modeler, with the exception of the model itself, belong to
another element that owns them. For example, a segment is owned by the model, an
Ispec is owned by the segment in which it is contained. Elements are identified within
their owner by name, and for this reason, their owner is called a ‘namespace’.

Using the Model

Getting Around System Modeler

System Modeler in Agile Business Suite Developer takes advantage of the Visual Studio
functionality and interfaces to enable you to work with your application. It uses a
combination of common Visual Studio and Developer specific windows and views.
System Modeler models an application at the logical level.
2–12 3826 5823-008

Getting Started
It enables you to

• Focus efforts on describing the application behavior rather than details of
implementation.

• Bring applications forward from one generation of technology to another, or from one
platform to another, over the life of your application.

With this model System Modeler merges the best of the mainstream object and
component concepts, including COM and UML, to provide a powerful development
environment.

For users with existing applications this provides many benefits, without the need to
perform extensive rework

• Greater modularity

– Definitions can be more localized.

– Definitions can be protected by encapsulation within well-defined interfaces.

• Improved simplicity

– Uniform patterns applied to everything.

– Fewer special cases and rules to remember.

New users benefit from System Modeler‘s high level model and business constructs to
create more robust business components more quickly.

The model allows users to describe a change to the model as directly as possible,
requiring the model to make whatever other consequential changes are required. For
example, an ispec becomes output or IO if it has persistent attributes, rather than having
to specify its kind and that of its attributes separately, and making sure they are
compatible.

The model is stored in a transactional database, so that its integrity is protected and it can
safely be shared between developers. Unlike 3GLs whose models are captured in text
files, errors are actively prevented rather than having to be identified later.

Visual Studio Interfaces

This topic describes the common Visual Studio tool windows used by System Modeler.
Refer to the Visual Studio Online Help for more information on the development
environment.

Use the View menu to display these windows in your Visual Studio environment.

Solution Explorer

Solution Explorer displays a tree structure view of all the versionable files in your model
and project files of the AB Suite Client Framework applications such as, the DataModels
project for all the client technologies, DataViewModels, Data Sources, and Views project
for the WPF Client technology.
3826 5823-008 2–13

Getting Started
When an element is versionable, it means that it can be stored under Source Control in
the Source Control Bank.

Versionable elements are model elements that can be added to a Source Control Bank,
and be maintained under source control. To use the Visual Studio Source Control
Services, you must install a version control tool or use Team Foundation Server (TFS).

From Solution Explorer you can rename a version file and elements. Use the refresh
button to refresh the state of the items in the selected project or solution.

Class View

Class View displays the elements in the application you are developing. You can open
Class View from the View menu. There are two panes in the Class View; an upper
Objects pane and a lower Members pane.

Objects pane: It contains an expandable tree of classes whose top-level node
represents the model database. The Classes, Folders, Diagrams, Primitive Classes, and
Dictionaries are displayed in the Objects Pane. To expand a node selected in the tree,
click the plus (+) sign or press the plus (+) key on the keypad.

Members pane: It displays the other elements, Attributes, Profiles, Methods, on
selection of the owner from the Objects pane.

Although Attributes appear in the Members pane, they can appear in the Object pane (as
a Class), which have the Primitive property set as Class and when any of the following
conditions are met:

• Attribute does not inherit from another class.

• Attribute inherits from another class and extends the definition.

The elements in the class view are sorted or grouped based on Name, Kind, and Visibility
using the right-click shortcut menu options, Sort Alphabetically, Sort By Object
Type, Sort By Object Access. The members of the classes can also be organized
based on Name, Kind, or Visibility properties.

You can use Class View to add, delete, and open the elements in the editor and
navigate to them directly.

Class View Toolbar Options

The Class View toolbar allows you to navigate within the Objects and Members panes.
You can select a particular view of hierarchy tree and specify the elements that you want
to display in Class View using Class View Settings menu. The following options are
available in Class View Toolbar:

Refresh

This option ensures that the latest details of an element are retrieved from the model
database.
2–14 3826 5823-008

Getting Started
New Folder

This option creates a new folder or subfolder into which you can drag other elements for
easy access. It is useful for organizing frequently used elements. Refer to Exploring the
Agile Business Suite Elements for more information on working with folders.

Back

This option allows you to navigate to the previously selected element. Keep clicking this
button to navigate through previously selected elements until you reach the first element
browsed. The Back button moves through a history list of previously browsed elements in
Class View.

Forward

This option is activated when you click Back. It allows you to navigate to the next
element selected. Keep clicking this button to return to the most recent element
selected. The Forward button moves through a history list of previously browsed
elements in Class View.

Class View Settings

The Class View Settings option on the Class View toolbar displays a menu from
where you can choose a particular view of the hierarchy tree for the model database, and
specify which of the available elements are displayed. Following options are available in
Class View Settings. Some of these options are also available from shortcut menus in the
Objects and Members panes.

• Show Base Types

This option toggles the display of base classes in the Objects pane.

• Show Derived Types

This option toggles the display of derived classes in the Objects pane.

• Show Hidden Types and Members

This option toggles the display of hidden classes in the Objects pane and hidden
members in the Members pane.

• Show Public Members

This option displays the Members that are public for users who are using the classes.

Note: The visibility property of an element determines if the element is public,
protected, or private.

• Show Protected Members

This option displays the Members that are public or protected for users who are
extending the classes.

Note: The visibility property of an element determines if the element is public,
protected, or private.
3826 5823-008 2–15

Getting Started
• Show Private Members

This option displays the Members of all visibility levels for users who are
implementing and using the classes.

• Show Other Members

This option displays the Members that do not belong to public, protected, private, or
inherited category.

Note: The visibility property of an element determines if the element is public,
protected, or private.

• Show Inherited Members

This option toggles the display of inherited members in the Members pane.

Class View Panes

The members of the class view are organized across two panes:

• Objects Pane

• Members Pane

Objects Pane

The Objects pane displays an expandable tree of classes whose top-level nodes
represent the model database. If you select an element in the Objects pane, its members
are displayed in the Members pane, and details of the element appear in the Description
pane. Refer to Object Browser for more information on Description pane. Expanding a
class node lists the classes that are defined within it.

The elements that are displayed in Objects pane are:

• Classes/Types

• Folders

• Dictionary

• Primitive Types

• Diagram

Objects Pane Shortcut Menu

If you right-click an element in the Class View, the Objects pane shortcut menu is
displayed. In addition to the System Modeler options, the following options can appear on
this menu, depending upon the element selected.

• Sort Alphabetically – Elements are listed alphabetically by their names in
ascending order (a - z).

• Sort By Object Type – Elements are listed alphabetically by their names in
ascending order (a - z).
2–16 3826 5823-008

Getting Started
• Sort By Object Access – Elements are listed in the order of their visibility, such as
public, protected, or private.

• Group By Object Type – Elements are sorted into groups by kind.

Members Pane

Members Pane displays the members of the element selected in the Objects pane. The
details of the elements selected in the Members pane appear in the Description pane.
The elements that are displayed in the Members Pane are:

• Attribute

• Method

• Profile

• Teach

• Location

Members Pane Shortcut Menu

If you right-click a member in the Members pane, its shortcut menu is displayed. This
menu allows you to search, sort, and copy members independently from their parent
elements. Following are some of the options available in this shortcut menu.

• Sort Alphabetically – Members are listed alphabetically by their names in
ascending order (a to z).

• Sort by Member Type – Members are listed in order of their kind, such as
methods of base classes, followed by interface methods, and so forth.

• Sort by Member Access – Members are listed in order of their visibility, such as
public or private.

• Group By Member Type – You can group methods, variables, and attributes within
your project. Groups are displayed in the Members pane as an expandable list.
Members can be organized by their kind in predefined folders, such as Methods,
Variables, and Fields folder. This option is only available in the Members pane.

Working with Class View

All elements in the Class View are represented by an icon indicating its kind and visibility.
To expand an element and display its members, click the plus (+) sign next to the icon.
The elements, when selected display their properties in the Properties window. You
can view or edit these properties.

Note: To select multiple elements simultaneously with the Class View, press the
SHIFT or CTRL keys as you click on them. This allows you to drag-and-drop groups of
elements.

Synchronizing an Element with the Class View

The Class View updates its contents automatically to reflect the changes. This enables
you to select any element in the editor and locate it instantly in the Class View hierarchy.
3826 5823-008 2–17

Getting Started
The Class View is synchronized with a selected element in another view such as the
Members list, Search result List, and Diagrams, which displays elements.

To synchronize a selected element, perform the following:

1. Right-click the selected element in the editor.

2. Select Synchronize Class View option.

The element is selected in the Class View.

You can also select Synchronize Class View option from the Edit menu.

Notes:

• The Synchronize Class View option is also available in the Quick Navigator
window when you right-click an element.

• If an element exists in multiple Folders or Dictionaries, then the instance of the
element is highlighted in the folder in which it appears.

Finding all Eeferences of an Element

The Find All References option enables you to find a list of the selected element that is
used. You can also enable this option by using shift+F12. You can use this option for any
elements, such as Ispec, Method, and other System Modeler elements. This option is
also enabled from the Members pane, Class Diagram pane, and Logic Editor.

To find all references of a selected element, perform the following:

1. Right-click the selected element in the class view.

2. Select the Find All References option.

The list of the possible result is displayed in the Find Symbol Results window.

3. From the Find Symbol Results window, you can view the following results:

• Dependencies – Displays the elements that are dependent on the selected
element.

• Inheritance – Displays all the elements that are inherited from the selected
element.

• Logic Reference – Displays all the logic referenced to the selected element.

When you click the item in the displayed list, it navigates to the desired location. For
example:

• Dependencies – Navigates to the dependencies tab of the selected element.
Simultaneously the selected element is synchronized in the class view.

• Inheritance – Navigates to default tab of the inherited element. The inherited
element is simultaneously synchronized in the class view.

• Logic Reference – Navigates to the logic editor and highlights the selected
element.
2–18 3826 5823-008

Getting Started
Note: The following restriction applies to the use of this feature:

When you search for all the references of an instantiated class by selecting it in the
Class View or logic editor, the number of records (result) displayed in the Find Symbol
Results window is less than the actual number of occurrences that an instantiated
class member is used in the logic editor. For example, if Segment1 contains Group2
with Multiplicity = 1, Group3 with Multiplicity =1, and has a method, Method1 added to
it, the Find Symbol Results window displays one record when you include the
following logic statements in Method1 and try to use the feature by selecting Group2:

Move Group2.Attribute1 Group2.Attribute2
Move Group2.Attribute1 Group3.Attribute1

But, if you select the instantiated class member, Attribute1 in the Class View or
Group2.Attribute1 in the logic editor and then use the feature, the Find Symbol Results
window displays both the records.

Searching an Element by Name

The Class View enables you to search an element by name.

To search by name, perform the following:

1. Select a previous search string or type full or part of the search string in the Search
String field of the Class View toolbar (or Object Browser toolbar).

2. Click Search.

The search result displays the elements whose names match the Search String. The
search string is highlighted in each name where the name has matched.

3. Click Clear Search to clear the search or delete the string from the Search String
field.

This synchronizes the Class View with the selected string.

Displaying Inheritance Structure

Inheritance structure helps you to view, explore, and analyze the class and its
generalization relationship. This feature is available through Class View and the Object
Browser. It enables you to view the superclass and its derived classes of the currently
selected class in the Class View tree or Object Browser. It also enables you to view
the inherited members of the currently selected superclass.

To display superclass (base class), perform either of the following:

1. Open your model database in the integrated development environment (IDE).

2. In Class View, click the Class View Settings menu.

3. Select Show Base Types.
3826 5823-008 2–19

Getting Started
Or

1. Open your model database in the integrated development environment (IDE).

2. In the Object Browser, click the Object Browser Settings menu.

3. Select Show Base Types.

For each node in the tree that is a class, a Base Types sub node appears that contains a
list of all its base classes.

A derived class inherits the members from the base class. To display derived classes,
perform either of the following:

1. Open your model database in the IDE.

2. In Class View, click the Class View Settings menu.

3. Select Show Derived Types.

Or

1. Open your model database in the IDE.

2. In the Object Browser, click the Object Browser Settings menu.

3. Select Show Derived Types.

To display inherited members, perform either of the following:

1. Open your model database in the IDE.

2. In Class View, click the Class View Settings menu.

3. Select Show Inherited Members.

Or

1. Open your model database in the IDE.

2. In the Object Browser, click the Object Browser Settings menu.

3. Select Show Inherited Members.

When you select a class in the tree, the inherited members are displayed in the members
pane along with the members defined within that class.

Displaying Inheritance Graphs

This feature is available through Class View and the Object Browser. It enables you to
view the base types and derived types of the current type that is selected in the Class
View tree or Object Browser. It also enables you to view inherited members of the
currently selected type.
2–20 3826 5823-008

Getting Started
To display base types, perform the either of the following:

1. In Class View, click the Class View Settings menu.

2. Select Show Base Types.

Or

1. In the Object Browser, click the Object Browser Settings menu.

2. Select Show Base Types.

For each node in the tree that is a type, a Base Types sub node, that appears, contains a
list of all the base types of a type.

To display derived types, perform the either of the following:

1. In Class View, click the Class View Grouping menu.

2. Select Show Derived Types.

Or

1. In the Object Browser, click the Object Browser Settings menu.

2. Select Show Derived Types.

For each node in the tree that is a type, a Derived Types sub node, that appears, contains
a list of all the derived types of a type.

To display inherited members, perform the either of the following:

1. In Class View, click the Class View Grouping menu.

2. Select Show Inherited Members.

Or

1. In the Object Browser, click the Object Browser Settings menu.

2. Select Show Inherited Members.

When you select a type in the tree, inherited members are displayed in the members
pane along with the members defined within that type.

Note: The entries Show Project References and Show Hidden Types and Members
are not applicable for an AB Suite project.
3826 5823-008 2–21

Getting Started
Object Browser

Like Class View, the Object Browser enables you to view all the elements in your model.
However, you cannot perform any updates. This browser has three panes:

• The Objects pane displays the container elements as a tree view.

• The Members pane displays certain contained members of a container element
selected in the Objects pane.

• The Description pane displays details about an element selected in either of the other
panes.

Properties Window

The Properties window displays the properties of a selected element and enables you to
modify those properties, unless they are read-only. It also enables you to select multiple
elements and displays the common properties. Refer to Setting Properties for more
information on specific element properties.

Document Window

The document window hosts the various designers that make up the Developer specific
interfaces. A document window is displayed for each open element. The available
designers for the System Modeler specific interfaces change according to the kind of
element that is opened, and its properties.

When you double-click an element in Class View, Object Browser, or the Members tab a
Visual Studio document window is displayed for that element. At the bottom of this
window is a number of tabs, which differ according to the kind of element selected. You
can also display the window by right-clicking the element in the Class View or Members
tab and then clicking Open. Both these methods open the element in the window which
is set as the default for the particular type of element.

Alternatively you can right-click the element and click Open With to choose an available
window in which to open the selected element.

To change the default window for a type of element, perform the following:

1. Right-click the element in Class View, or Members tab.

2. Select Open With and click Set Default....

3. Select the required window from the list of windows in the dialog box and click Set
as Default.

All subsequently opened elements are displayed in the chosen default window. The
list contains only windows that are appropriate for the selected element type. For a
list of these windows, refer to the topic Document Windows in Developer.

Note: In case of methods, the Logic Editor opens as a separate Microsoft Visual
Studio document window and other tabs such as, Properties, Members, Translations,
Dependencies, and Documentation open in another document window. You can open
both these windows at the same time.
2–22 3826 5823-008

Getting Started
The following are the various document windows in system modeller:

Logic Editor Window

The Logic Editor is used to create, edit, save, and validate logic for all methods within
System Modeler.

Common Tabs

When you open an element, a document window is displayed for that element. At the
bottom of this window are a number of tabs as listed below, which differ according to the
kind of element selected.

Dependencies

This displays the dependencies of the selected element.

Documentation

The Documentation tab is common to all System Modeler elements. It is a rich text editor
that enables you to document the elements in your system. It supports all the common
text formatting and functions.

Member

The Member tab is displayed for those elements that contain child elements that are
accessible from their owner. This tab displays all the children of the selected element. You
can open the member elements, add new items, add existing items to folders, and delete
member elements from this tab.

Properties

The Properties tab is common for all System Modeler elements. It displays the name,
author, description, and in some cases the inheritance of the element.

Element Specific Tabs

Conditions

The Conditions tab is specific to profiles. It is a text editor used to edit, save, and validate
conditions that determine the records selected by the profile.

Keys

The Keys tab is specific to profiles. It displays attributes that have been defined as keys
for the selected profile.

Overrides

The Overrides tab is specific to classes. It displays the methods of the selected class that
overrides methods in its super class (including framework methods).
3826 5823-008 2–23

Getting Started
Painter

The Painter tab is available for those elements whose PresentationType property is set to
any value other than None. This tab enables you to design the user interface of an AB
Suite application.

Note: You cannot access the Painter tab when you are creating an AB Suite Client
Framework model. You must design the user interface separately from the Client
Framework model by using the development tool of your chosen technology. For
example, you can use the WPF Designer for WPF/XAML desktop applications.
However, both the AB Suite and WPF projects can exist in the same solution to impart
an integrated development experience.

Reservations

The Reservations tab displays a list of all the elements within the model that are reserved,
and their corresponding users.

Translations

The Translations tab displays a split window. One view shows all the captions and string
that are capable of being translated into other languages. The other view displays all the
defined languages available, and allows you to add other languages.

Class Diagram

The Class Diagram tab is specific to diagrams. It allows you to view and manipulate the
existence and nature of static relationships between member classes.

Value-Checking

The Value-Checking tab is specific to all primitive objects (attributes, variables and
parameters) and classes. It is a text editor used to edit, save, and validate constraints that
restrict the values that an attribute or type can have.

Conditions Tab

The Conditions tab is used to create, edit, save, and validate profile conditions. Profile
conditions specify the criteria used to select a subset of the database records associated
with a persistent class of which the profile is a member.

To open the Conditions tab for a profile, either:

• Double-click the profile in the Class View, Object Browser, or Members tab and then
select the Conditions tab.

• Right-click the profile in the Class View or Object Browser, click Go to Definition,
and then select the Conditions tab.

To set display, general, and tab options, refer to Setting Fonts and Colors.
2–24 3826 5823-008

Getting Started
Class Diagram Tab

The Class Diagram tab is specific to diagrams. It allows you to view and manipulate the
existence and nature of static relationships between member classes. Any changes made
to the corresponding fields in the Properties window are reflected on the Class Diagram
tab, and vice versa.

Refer to Using Class Diagram Editor for more information on the Class Diagrams.

Dependencies Tab

The Dependencies tab displays the relationships of the selected element to other
elements in the model. Dependencies can be created implicitly, for example, by referring
to an element in logic. Alternatively, Lookup type dependencies can be created by adding
elements directly to this tab.

Dependency relationships are described in terms of a client, the element defining the
dependency, and a supplier, the element the client depends on.

Depends on

This list displays the elements on which the selected element depends.

The following table shows the dependency relationships that may be displayed for
selected elements:

Dependency Type Client Supplier Description

Key Profile
Parameter

Attribute Defines the ascending or descending
order of persistent attributes that act as
keys to a profile. Key dependencies
become members of their client.

Auto Lookup Ispec Attribute Ispec classes can be defined to
automatically look up other classes
based on the values of one or more of
their attributes.

This dependency can be added
manually on the Dependencies tab.

Auto Persist Event Attribute The client persistent attributes are
made to persist in an attribute of
another class.

The dependency is valid when all
persistent attributes of the client are
keyed to persistent attributes of the
supplier.

A client can have only one Auto Persist
dependency.

Specifying the Auto Persist property for
the selected event sets this
dependency.
3826 5823-008 2–25

Getting Started
Lookup Dependencies

Lookup dependencies for ispecs are the only dependencies that can be manually added
to this list:

1. Right-click anywhere in the list and select Add Lookup.

2. Select the required attribute in the Dependency Picker.

3. Click OK.

The unresolved keys are also displayed in the list for the Lookup dependencies.

To rectify the unresolved keys, perform the following:

1. Select the unresolved attribute in the Depends on list.

2. Select the required client attribute using the Element Picker in the Properties
window.

3. Click OK.

AutoLookUp Properties

The table below lists all properties for the LookUp dependency:

Use Method Object Identifies the usage of an object within
a logic statement. A Use dependency
becomes invalid when the supplier is
modified after the dependency is
created.

Property Function

Client Read-only. Identifies the dependent element. Reflected as the ‘Source’
column on the Dependencies tab. The following elements can only be defined
as Client and the elements must have their ‘PresentationType’ property set to
a value other than None:

• Ispec

• CopyIspec

• Event

• CopyEvent

Description Specifies a short description of the selected element.

IfPresent Specifies whether to look up the object if the value for the key is defined.

If set to True, the profile becomes conditional and returns a view instead of an
index.

Note: This property becomes visible only when a key is selected.

Kind Read-only. Identifies the kind of element selected.

Dependency Type Client Supplier Description
2–26 3826 5823-008

Getting Started
Depended on by

This list displays the elements that are dependent on the selected element. It is for
display purposes only. Elements cannot be added or deleted from this list.

Dependency Picker

The Dependency Picker enables you to define dependency relationships with selected
elements.

The tree structure displays the elements defined in your model. All elements in the model
are included, although only those that satisfies the requirements of the selected
dependency relationship can be selected. Refer to Dependencies Tab for more
information on dependency requirements.

Documentation Tab

The Documentation tab enables you to add text to any element in your application. You
can use this tab to document the design and intent of your application, to list details
specific to an element, or include any information relevant to your application.

The Documentation tab is a rich-text editor that supports all common text formatting and
functions, including hyperlinks. The Rich Text toolbar is displayed above the window
when the Documentation tab is opened. This toolbar contains all the formatting options
for your text or OLE objects.

The Insert menu enables you to add page breaks also the date and time to your text.

You can also select the font options for text displayed in this window.

To set the default font options for this window, perform the following:

1. From the Tools menu, select Options.

2. In the Options dialog box, navigate to the Environment, Fonts and Colors folder.

3. From the Show Settings for list, select System Modeler Documentation
Editor.

Supplier Read-only. Identifies the element that satisfies the dependency. Reflected as
the ‘Target’ column on the Dependencies tab. The following elements can only
be defined as Supplier and the elements must contain attributes that are
defined as keys:

• Ispec

• CopyIspec

• Class

Note: The ‘Event’ and ‘CopyEvent’ elements cannot be defined as
Supplier as these elements cannot contain a keyed attribute.

Status Specifies whether the dependency is valid.

Property Function
3826 5823-008 2–27

Getting Started
4. From the Display Items list, select Documentation.

5. Select the font type, size, and foreground color.

Note: You cannot select the background color. The system adopts the Windows
default color.

Date and Time Dialog Box

The Date And Time dialog box enables you to select the format of the current date and
time to be inserted in your text. To insert date and time:

1. In your text, click the position you want the date and time inserted.

2. From the Insert menu, select Date and Time.

3. Select a format from the list.

4. Click OK.

The date and time is inserted at the cursor position.

Inheritance Tab

The Inheritance tab is specific to the model. It displays the relationships of all classes in a
tree structure. Superclasses are expandable, containing the defined subclasses.

Note: Pasting and dropping to the Inheritance tab sets new subclass relationships,
not ownerships.

Keys Tab

The Keys tab is specific to profiles.

A key is an attribute of an ispec or event that acts as the unique identifier of one record
from another. It is the access path to individual ispec or profile records.

To define an attribute as a key, perform the following:

1. Right-click in the tab and select Add Key. The Select new key dialog box contains
the attributes of the element to which the profile belongs.

2. Select an attribute, and then click OK.

3. The attribute is added to the key list as the last in the sequence.

You may delete, replace or validate any key in the list, by right-clicking the key and
selecting the appropriate action from the menu.
2–28 3826 5823-008

Getting Started
Logic Status Tab

The Logic Status tab is specific to elements that can contain methods. It displays a list of
methods both directly and indirectly contained in the element, and their respective logic
validation status.

Note: Empty methods (those that do not contain any logic text) are not listed.

To validate methods, perform the following:

1. Select the desired method(s) in the Logic Status tab.

2. From the Build menu, select Validate.

Note: Methods can also be validated from the Logic Editor.

Refer to Click Show potential fixes link. for more information on validation.

Filters

The Logic Status tab contains a Filter toolbar from which you can specify the members to
be displayed. The Logic Status List filter is the default used for the Logic Status tab.

Note: When the Logic Status List filter is applied, method members of insertable
classes are not displayed, as they generally cannot be successfully validated in
isolation from their inserted context. Refer to Validating Insertable Classes in
Isolation for more information.

Click the Customize Filters toolbar button to display the Filter Definitions dialog box
and create customized filters.

Members Tab

The Members tab is displayed for those elements that contain child elements (or
members), which are accessible from their owner. It displays all the children of the
selected element. Using the Members tab, you can:

• Open member elements

• Add new elements

• Add existing elements to folders

• Delete member elements

• View a filtered list of members and their properties

The Members tab also displays the method members and their parameters. This enables
you to view the structure of the method.
3826 5823-008 2–29

Getting Started
If you right-click anywhere on this tab you can add new items or add existing items to
folders. You can also open, delete, and edit attributes of member items.

Note: On selecting any element in the Members tab, ensure to highlight that element
and then invoke the relevant online help for more information.

Inherited Members

You can choose to show, or hide members that are inherited from other members. To
change this option, from the Filter Definitions dialog box. When inherited, members are
displayed in a different color to distinguish them from normal members.

Objects

Objects are displayed in the Members pane as an expandable list. Members of objects
cannot be sorted, but can be rearranged by dragging and dropping, or by changing the
sequence numbers in the property window.

To add an element to an object without opening it, right-click the element and select Add
New Item to <selected item name>.

Filters

The Members tab contains a Filter toolbar from which you can specify the members to be
displayed. The Default filter displays all members.

Click the Customize Filters toolbar button to display the Filter Definitions dialog box
and create customized filters.

You can select the text foreground colors for the Members tab window.

To set the text color options for this window, perform the following:

1. From the Tools menu, select Options.

2. Navigate to the Environment, Fonts and Colors folder in the Options dialog box.

3. From the Show Settings for drop-down list box select Members Pane.

4. From the Display Items list box select the text item for which you want to specify
color.

5. Select the foreground and back color of the selected item.

Filter Definitions Dialog Box

The Filter Definitions dialog box enables you to create and modify filters for the Members
tabs. Click Categorized or Alphabetic to change the display order.

Filters List

Displays the currently defined filters. A number of preselected filters are included for you
to use. These may be modified, deleted or added to.
2–30 3826 5823-008

Getting Started
Add Button

Adds a new filter to the Filters list with the default name Filter<x>. The name can be
changed immediately in the list or later using either the Rename button or the Filter Name
parameter. If the default name is not changed, <x> increments by one for each new filter
added.

Make a Copy Button

Creates a copy of the selected filter’s parameter settings. The new filter is added to the
Filter list with the name of the original filter appended by a number, which is incremented
as required to ensure uniqueness. You can enter a different name for the newly created
filter.

Rename Button

Enables you to modify the name of the selected filter in the Filters list.

Delete Button

Deletes the selected filter.

Default Filter

Enables you to set the filter that the Members tab uses by default.

Parameters

To modify the values of a parameter, select the parameter and click the displayed button.
This displays either a list of options or a dialog box.

The following table describes the parameters you can set for a filter:

Parameter Description

Columns Specifies the columns displayed on the tab, using the Select
Columns Editor.

Filter Name Specifies the name of the filter.

MembersSelection Specifies the elements to be displayed in the tab, using the Select
Members Editor.

PropertySelection Specifies which elements are included in the filter based upon the
properties selected.

Direction Specifies which elements with the specified Direction property are
included in the filter. Select None, In, Out or IO.

HasPresentation Specifies elements with a PresentationType property other than
'None' are included in the filter.

Select True to display elements which have a presentation.

IsKey Specifies which elements with the specified Is Key property are
included in the filter. Select No, Descending or Ascending.
3826 5823-008 2–31

Getting Started
Select Members Editor

Use the Select Members Editor to specify the elements to be displayed in the Members
tab.

The dialog contains a list of all the available System Modeler element kinds and
stereotypes.

Select the check box for each element to be displayed in the Members tab when the filter
is used.

Select Columns Editor

Use the Select Columns Editor to select and order the columns displayed on the tab.

To add a column, perform the following:

1. Select the required column from the Available Columns list.

2. Click Add.

IsPersistent Specifies which elements with the specified Is Persistent property
are included in the filter. Select No, Yes or From Owner.

Type Specifies which elements with the specified Type property are
included in the filter. Select Class, Number, Signed Number, String,
Boolean, Date, Mixed String or Wide String.

Visibility Specifies which elements with the specified Visibility property are
included in the filter. Select Private, Protected or Public.

ShowInherited Specifies whether the elements to be displayed should include
elements inherited from other elements. Select True to display
inherited elements.

ShowWithinFolders Specifies whether elements contained in folders are displayed.

Select True to display elements contained in folders.

InitialSortOrder Displays the default sort order of the tab, which is defined using the
Column and Direction sub-parameters.

Column Specifies the default column on which to sort the tab.

Direction Specifies the default direction sort order of the tab.

SecondarySortOrder Displays the secondary sort order of the tab, which is defined using
the Column and Direction sub-parameters.

Column Specifies the default column on which to sort the tab.

Direction Specifies the default direction sort order of the tab.

Parameter Description
2–32 3826 5823-008

Getting Started
3. Use the Move Up and Move Down buttons to position the column in the required
position in the Selected Columns list.

If a column is added that is not appropriate for the selected members displayed in the
window, a blank column is added.

Overrides Tab

The Overrides tab is specific to classes. You can use this tab to override methods
inherited from the superclass of the selected element.

When a class is defined as a subclass it automatically inherits the methods of its
superclass. By overriding a method you are providing a new implementation of the base
method with the same name and parameters as the overridden one.

The Add New Override list displays the methods that are available to be overridden.
Selecting a method adds it to the list window, to the Members tab, and to the Class View.

Note: Cut, copy, paste, and drag and drop have not been implemented in this tab.

Painter Tab

Painter is used to design and construct screen interfaces, with which your user interacts
with your deployed application. It allows you to add simple graphical objects, such as lines
and images ,and add graphical objects, such as edit boxes and radio buttons, which are
bound to an attribute as its data source.

Any named element can have a form created for it when its ‘PresentationType’ property is
set to a value other than None, with the exception of a model or folder.

A form grid provides horizontal and vertical guidelines to help you align objects on your
form.

To select the default form grid settings, perform the following:

1. From the Tools Menu, select Options.

2. Navigate to the Windows Forms Designer, General folder in the Options dialog box.

3. If it is not already expanded, click the plus (+) symbol next to the Grid Setting.

4. If it is not already expanded, click the plus (+) symbol next to the Grid Size enter the
appropriate values.

• Width – Sets the distance between horizontal grid lines. The default value is 8
pixels with a setting in the range of 2 to 200.

• Height – Sets the distance between vertical grid lines. The default value is 8
pixels with a setting in the range of 2 to 200.
3826 5823-008 2–33

Getting Started
5. Set Showgrid to True, so that by default when a form is opened the grid is
displayed, unless the form has been saved with a different setting.

6. Set Snap to grid to True so that snap to grid is enabled by default when a form is
opened, unless the form has been saved with a different setting.

Or

WPF Designer

WPF Designer is used to design user interfaces for the WPF Client applications by using
the AB Suite Access Layer. It allows you to add attributes and graphical objects, such as
text boxes, combo boxes, and list boxes from the Data Source window and WPF toolbox
onto the WPF Designer. An automatic binding is established between the control and the
attribute in the ViewModel. The binding mechanism in WPF allows data to be exchanged
automatically between a control in the user interface and the corresponding attribute in
the ViewModel.

You can also modify the generated XAML code manually in the XAML view to manipulate
the behavior of the graphical controls according to your requirements.

Reports and Teach Screens

The painter is also used to create teach screens or reports. In these cases there are
limitations on the type of graphical objects and fonts types, which can be used on these
types of forms.

To set the default font for reports, perform the following:

1. From the Tools menu, select Options.

2. Navigate to the Environment, Fonts and Colors folder in the Options dialog box.

3. From the Show Settings for drop-down list box select System Modeler Report
Painter.

4. From the Display Items list box select Text.

5. Select the Font type, size, and foreground color.

Note: The font type in reports is restricted to fixed width, if any other font is
selected a warning is given so that you can select the correct type, otherwise the last
valid selection is retained.

A similar restriction exists for the font foreground color which can only be
Black(Automatic), White, Blue, Yellow, Red, Cyan, Green or Magenta. If you select any
other color a warning is given and the last valid color selection is retained.

Refer to the Agile Business Suite Developer Online Help for more information.

Profile Data Tab

The Profile Data tab is specific to profiles. A Profile Data element is one which is
physically stored in a Profile and its associated Ispec Class.
2–34 3826 5823-008

Getting Started
Through this tab you can create or maintain Profile Data elements.

To add a profile Attribute, perform the following:

1. Right-click in the Profile Data tab and select Add Data. The Select new data
dialog box contains the attributes of the element to which the profile belongs.

2. Select an attribute, and then click OK.

3. The attribute is added to the data list as the last in the sequence.

You may delete, replace or validate any attribute in the list, by right-clicking the item
and selecting the appropriate action from the menu.

Properties Tab

Each model entity has a Properties tab. For all entities this tab displays a Name and
Description field, and in some cases an Author field. Any changes made to the
corresponding fields in the Properties window are reflected on the Properties tab, and
vice versa.

For classes, the Properties tab also displays the following fields:

• Superclass

• Subclass

Refer to Setting Properties for more information on these fields.

Subclasses

The Subclasses list displays the classes that inherit from the selected class. It also
displays nested subclasses.

Add new or existing classes directly to this list by:

• Right-clicking and selecting Add New Item or Add Existing Item as appropriate.

• From the File menu, selecting Add New Item or Add Existing Item as appropriate.

To add a subclass to a class displayed in the list, select a class and use one of the above
processes.

Displaying Superclasses and Subclasses

Subclasses display their superclasses in Class View and the Object Browser as part of the
tree hierarchy, as shown in the following examples:

Class1 expands to identify that it has a superclass defined.
3826 5823-008 2–35

Getting Started
Quick Navigator Window

The Quick Navigator tool window is an editor in which you can type in a qualified element
name and navigate to this element.

The qualified element name is relative to the scope of the currently selected element in
the Class View, or the Designer Editor, whichever has focus, within the Quick Navigator
Window.

In the case of multiple selected items, the scope element defaults to the last item
selected. The scope element can only be one element.

You can open the Quick Navigator Window either by the View Menu > Other
Windows > Quick Navigator Window, or using the Alt+G keys.

To perform a quick navigation, perform the following:

1. Type the qualified name of the required element in the Quick Navigator Window
(Quick Navigator supports autocomplete).

2. Right-click the qualified name of the element and select Go To.

This opens the Designer Editor on the default tab for the element. The scope name is
displayed in the window title to easily identify the scope of the element.

The window supports auto-completion. Auto completion and navigation use the scope
element to retrieve the required information. Auto-completion is initiated when a ‘.’
(period) is entered or the Ctrl+Space key combination is used.

You can also supply the name or a parameter to open the element in a specific tab. For
this you must enter a ‘/ ‘ (forward slash) followed by a two letter identifier as shown in the
table below. If there is no parameter supplied, the element is opened in its default tab.

Further expansion shows that Class2 is defined as a superclass
to Class1.

Identifier Parameter

pr Properties

me Members

in Inheritance

de Dependencies

la Language

lo Locks
2–36 3826 5823-008

Getting Started
Auto-completion is also available to assist in entering the parameters. When the forward
slash is typed, the auto-completion list opens with the list of parameters. The list includes
the name of the tab that is displayed.

Within the window, there is a context menu, which contains the following items:

• Go to – execute the current line.

• Set Scope to – change the scope for the selected item.

• Synchronize class view – synchronizes the selected item with the class view.

• Cut, Copy, Paste – standard clipboard operations.

• Select All – select all the text in the window.

The window saves its contents to the .suo file when the window is closed and the
contents restored when it is reopened.

Reservations Tab

To allow an Administrator or a user, to see which elements are reserved and by whom, a
Reserved List is available when a Model is selected. This list shows elements that have
been reserved within the model, the type of element, and the name of the user (or the
system) that has reserved it.

By selecting an element in this list, you can unreserve or remove the reservation on the
element. The Unreserve operation is performed on elements that are not under source
control and the Remove Reservation operation is performed on elements that are under
source control.

lg Logic

Is Logic Status

mp Parameters

mo Overrides

uml Class Diagram

pa Painter

pc ProfileConditions

pk ProfileKeys

vl ValueChecking

do Documentation

un Unresolved

Identifier Parameter
3826 5823-008 2–37

Getting Started
The unreserve operation can be carried out by the current user who has reserved the
element, or by an Administrator who can unreserve elements reserved by any user. The
remove reservation operation can be performed by the administrators only.

To display the Reservations tab, perform the following:

1. From the Class View window, select a Model.

2. From the right-click context menu, select the Open menu item and select
Reservations, or select Open.

3. Click the Reservations tab, which is now displayed at the bottom of the document
window to display the list of reserved elements.

Note: If you reserve an element while the Reservations list is displayed, you must
select the View, Refresh menu item to update the list.

To unreserve an element that is not under source control, perform the following:

1. Select an element, or multiple elements, in the list.

2. Right-click the selection to display the context menu.

3. Select Unreserve or Unreserve Selections as appropriate, to unreserve the
selection.

To remove reservation on an element that is under source control, perform the following:

1. Ensure that the TFS Administrator has performed an undo operation on the
element that has been checked out by another user in the Source Control Explorer.
Refer to Checking Out an Element for more information.

2. Open an AB Suite project and ensure that the user has the database db_owner
privilege.

3. Double-click the Model node.

The document window appears.

4. Click Reservations tab, at the bottom of the documentation window.

A list of locked element appears in the documentation window.

5. Right-click the element and select Remove Reservation… from the context menu.

Refer to Reservations Tab and Element Reservation for more information on element
reservation.

Translations Tab

The Translations tab is available for all namespaces from the Model level down to an
attribute and displays a split window of two panes.
2–38 3826 5823-008

Getting Started
Upper Pane

The upper pane shows all the captions and strings that can be translated into other
languages, and a column for each language defined by you. The columns can be re-
ordered, hidden, or added. To translate a value for a language, simply click in the
appropriate column for a language and enter the translation in the entry field.

To remove a translation for all elements for a given language, select any element, right-
click in the column for the language to be removed, and then select Clear Translations
for <language> from the context menu.

Lower Pane

The lower pane displays all the defined languages available and the inheritance relations
between languages. In this panel, languages can be added, deleted, or renamed and their
relation to another language can be changed. When a language has an inheritance relation
with another language (a Derived Language), it means that any value that is not translated
for that language inherits the value from the primary language in the tree. The model
creates and defines a default primary language that cannot be deleted, though it can be
renamed.

To add a derived language, perform the following:

1. Right-click the primary language in the lower pane, and then select Add Language
from the context menu.

The Add Language dialog box appears.

2. From the Name list, select a language.

The corresponding locale code and name appears in the Locale list.

This list includes all the languages installed in the system. Note that this list includes
languages that are additional to the ones available in the Windows Regional Options.

3. Click OK.

The new language is added under the primary language.

You can double-click the resources.<LocaleName>.resx file to view the labels and the
translated value of the label that would appear in the user interface.

Session Language

You can set a Session Language through the combo box Language on the toolbar.
The session language is used by all views that display language depended information,
such as values and captions.

The Painter window uses the session language to display the presentation for that
language, and ‘remembers’ this language. When the language changes, the Painter
prompts you to save any changes. Painter remembers the language. You can select
different language for different Painters for elements.

When a window becomes active, it updates the Language combo box with either the
language remembered by the window (in the case of the Painter window) or it sets it to
the session language.
3826 5823-008 2–39

Getting Started
Unresolved Tab

The Unresolved tab is displayed in the model whenever there is an element in the model
with its IsResolved property set to False. Refer to Unresolved Elements for more
information.

All Unresolved elements are listed in the window. To resolve elements, right-click a single
element or multiple elements and choose Resolve. Once an element is resolved it is no
longer displayed on this tab, and cannot be made unresolved again.

You can select the text foreground colors for the Members tab window.

To set the text color options for this window, perform the following:

1. From the Tools menu, select Options.

2. Navigate to the Environment, Fonts and Colors folder in the Options dialog box.

3. From the Show Settings for drop-down list box, select Unresolved Pane.

4. From the Display Items list box, select the text item to specify color.

5. Select the foreground and background color of the selected item.

Value-Checking Tab

The Value-checking tab is used to create, edit, save, and validate value-checking logic.
Value-checking logic is used to constrain the value that an attribute (or type) can have.
Although it is available for all attributes and types, it only applies to input from the user
interface – attributes with their Direction property set to In or IO, and correspondingly,
their owning classes must also have their PresentationType property set a value other
than None.

Value-checking logic is evaluated as part of the automatic validation stage of the segment
cycle, and an error is returned to the application client if the input value of the attribute is
not validated successfully.

Value-checking logic is defined as conditional expressions evaluating the current value of
the attribute (dynamically qualified as ‘this’) against another value, which can be a set
expression.

To open the Value-checking tab for an attribute or type, either:

• Double-click the attribute or type in the Class View, Object Browser, or Members tab
and then select the Value-checking tab.

• Right-click the attribute or type in the Class View or Object Browser, click Go to
Definition, and then select the Value-checking tab.

To set display, general, and tab options, refer to Setting Fonts and Colors. However, the
only settings that affect the Value-checking tab are:

• Line number color

• Line number display
2–40 3826 5823-008

Getting Started
• Tab size

• Insert spaces and Keep tabs

Value-checking logic examples:

Example 1

This value-checking logic specifies that the value of the attribute must not be equal to 45,
nor can it be greater than 90 (its value multiplied by 2 must be less than 180).

this NOT= 45 && this * 2 < 180

Example 2

This value-checking logic specifies that the value of the attribute must be greater than 0.

this > 0

Example 3

This value-checking logic specifies that the value of the attribute must be one of 'A', 'C',
or 'Z'.

this in {"A", "C", "Z"}

Example 4

This value-checking logic specifies that the value of the attribute must not be one of 'A' or
'B'.

this NOT in {"A","B"}

Example 5

This value-checking logic specifies that the value of the attribute must be in the range 'A'
to 'Z', but not one of 'M', 'N', or 'O'.

this in {"A" .. "Z"}-{"M" .. "O"}

Example 6

This value-checking logic specifies that the value of the attribute must be in the combined
range of 'A' to 'Z' and 0 to 9.

this in {"A" .. "Z"} + {0 .. 9}

Customizing Document Windows

Document windows that display their contents in a list such as the Members, Keys, and
Dependencies windows can be customized to sort and display their contents selectively.
3826 5823-008 2–41

Getting Started
To customize the window display, right-click a column heading to display a context menu.
The following table identifies the display options on the menu. Any display option is
restricted to the column that you selected.

Filter Bar

The Filter Bar allows the entry of text in one or more columns for which the entries in the
columns are matched. Click the button adjacent to each text box to display a menu which
allows the filter for that column to be cleared, or allows to specify if the selection should
match the case of the text entered. The following operands !, <>, <, <=, >, >=, =
precedes the text that we need to filter on in the Filter Bar.

Further customization of the window contents can be achieved using the Filter Definitions
dialog box.

Setting Fonts and Colors

The following options control the look and feel of all LDL+ logic editors including Profile
conditional logic, Value-checking logic, and Method logic.

To set the font and color for display items, perform the following:

1. From the Tools menu, choose Options.

The Options dialog box appears.

2. In the left pane, expand Environment and select Fonts and Colors.

Menu Description

Best Fit Sets the width of the column to the widest text displayed.

Column Chooser Displays the Selected Columns dialog box in the Members window
only.

Customize Current View Displays the Filter Definitions dialog box.

Filtered Displays the Filter Bar.

Member Chooser Displays the Selected Members dialog box in the Members window
only.

Remove This Column Removes the selected column header.

Sort Ascending Sorts the selected column in Ascending. (Select this + holding the
Ctrl-Key, performs multiple sorting).

Sort Descending Sorts the selected column in Descending. (Select this + holding the
Ctrl-Key, performs multiple sorting).
2–42 3826 5823-008

Getting Started
3. From the Show settings for list, select Text Editor.

4. From the Display items list, select a logic element type. The following table lists
some of the logic element types:

Logic Element Description

LDL+ Commands Logic commands.
For example, Move, Lookup

LDL+ Commands Options Options for logic commands.
For example, Giving.

LDL+ Comment Phrases in the text that are not part of the LDL+ logic.
For example, logic preceded by colon (:).

LDL+ Keyword LDL+ logic keywords.
For example, If, End, Loop.

LDL+ Number LDL+ number literals.
For example, 123.45.

LDL+ Operator LDL+ logic operators.
For example, (), +, :=.

LDL+ Read Only Region Read only region in the editor

LDL+ String/Literal String literals.
For example, ”First Name”
3826 5823-008 2–43

Getting Started
5. Select the Font, Size, Bold, and the Item foreground, and Item background colors for
the selected display item.

Setting LDL+ Editor Options

The following diagram illustrates the options applicable to LDL+ logic:

Setting General Options

To set general options, perform the following:

1. From the Tools menu, choose Options.

The Options dialog box appears.

2. In the Left pane, expand Text Editor and expand LDL+.

LDL+ System Items Built-in segment, ispec, and event attributes.
For example, MAINT, ISPEC, GLB.

Text Names of AB Suite modeled elements.
For example, variables (myCustomer) and methods(GetName()).

Logic Element Description
2–44 3826 5823-008

Getting Started
3. Select General to display options listed in the following table:

Note: Refer to the Microsoft Visual Studio Online Help for more information on setting
General editor options.

Setting Advanced LDL+ Options

To set advanced options, perform the following:

1. From the Tools menu, select Options.

The Options dialog box appears.

2. In the Left pane, expand Text Editor and expand LDL+.

3. Select Advanced to display options listed in the following table:

Display Options Description

Statement Completion

Auto List Members When this option is selected, the logic editor displays a list of
context-sensitive member items when a valid element is
appended with a period (.).

Parameter information When this option is selected, the logic editor displays information
about the number, names, and types of parameters required by a
method.

Settings

Automatic brace completion When this option is selected, the logic editor automatically
inserts a closing bracket [], parenthesis (), or brace {}.

Display Options Description

Highlighting

Highlight references to
symbol under cursor

When this option is selected, the logic editor highlights
references to all instances of the element under the cursor.

Highlight related keywords
under cursor

When this option is selected, the logic editor highlights the
matching keyword to that under the cursor.

For example, Positioning the cursor on a BeginCase will highlight
EndCase.

Tool Tips

Show tooltips on commands When this option is selected, the logic editor displays information
about the command the cursor is positioned over.

Navigation

Open editor on goto
definition.

When this option is selected, opens the logic editor of the target
element on a goto definition operation.
3826 5823-008 2–45

Getting Started
Setting Formatting Options

To set formatting options, perform the following:

1. From the Tools menu, select Options.

The Options dialog box appears.

2. In the Left pane, expand Text Editor and expand LDL+.

Statement Completion

Automatic quote completion When this option is selected, the logic editor automatically
inserts a closing quote.

Automatic block command
completion

When this option is selected, the logic editor automatically
inserts the terminating command when you start a block
statement.

For example, When you enter If, foreach, or Determine
command, an end is automatically inserted.

Quick Action

Quick Actions for ‘Item not
found errors’

When this option is selected, the logic editor displays a light bulb
icon when there are potential fixes available to resolve logic
errors.

Name matching sensitivity This option allows you to define the range of elements
considered as potential fixes for errors in a misspelled element
name.

If you set the slider closer to totally different, range of
elements suggested as a possible match will be high.
Conversely, if u set the slider closer to perfect match, range of
elements suggested will be less.

This option is enabled only when Quick Actions for ‘Item
Not Found Errors’ option is selected.

Editor Compatibility

Set logic editor options to
provide an EAE like
experience

When you click Set, the LDL+ logic editor will have default
settings to provide an experience similar to EAE.
A dialog box notifying the settings change appears.

• Automatic brace completion

• Automatic quote completion

• Automatically formatting on enter

• Show completion list after a character is typed

• Member List Commit Aggressive

Click Yes to apply settings change.

Display Options Description
2–46 3826 5823-008

Getting Started
3. Select Formatting to display options listed in the following table:

Setting IntelliSense Options

To set IntelliSense options, perform the following:

1. From the Tools menu, select Options.

The Options dialog box appears.

2. In the left pane, expand Text Editor and expand LDL+.

Display Options Description

General

Automatically format on
enter

When this option is selected, the logic block is automatically
formatted when you press enter.

The logic is formatted according to the format defined in the
Command Style options.

Automatically format on
paste

When this option is selected, logic is automatically formatted
when pasted into the logic editor.

The logic is formatted according to the format defined in the
Command Style option.

Command Style

Command Format Allows you to define the auto-format style for LDL+ commands.
The available forms are:

• Standard (Uppercase or Lower case).
For example, LOOKUP, lookup

• Mixed (Camel case)
For example, LookUp

• Abbreviated (Uppercase or Lower case)
For example, LU, or lu

Command Case Allows you to define the auto-format command case style to
Lower case (lookup) or Upper case (LOOKUP).

Do When Command

Use DoWhen instead of If Replaces the If command with DoWhen command.

Blank Lines

Remove Multiple Blank Lines When this option is selected, multiple blank lines are removed
when the logic is auto-formatted.
3826 5823-008 2–47

Getting Started
3. Select IntelliSense to display options listed in the following table.

Note: Refer to the Microsoft Visual Studio Online Help for more information on Using
IntelliSense.

System Modeler Documentation Editor

To set the font and color for system modeler documentation editor items, perform the
following:

1. From the Tools menu, choose Options.

The Options dialog box appears.

2. In the left pane, expand Environment and select Fonts and Colors.

3. From the Show Settings for list, select System Modeler Documentation
Editor.

4. From the Display items list, select Documentation.

5. Select the Font, Size, Bold, and the Item foreground, and Item background colors for
the selected display item.

Display Options Description

Completion Lists

Show completion list after a
character is typed

When this option is selected, the logic editor automatically
suggests a list of commands, keywords and elements based on
the characters entered.

Show keywords When this option is selected, the auto list includes commands
and keywords based on the characters you type in the Logic
Editor.

Include Abbreviated
Keywords

When this option is selected, the auto list includes abbreviated
commands and keywords based on the characters you type in
the logic editor.

Note: This option is enabled only if the show keywords
checkbox is selected.

Member list commit
aggressive

When this option is selected, the logic editor commits the
selection from the auto list when you press a commit character.
For example, period(.), comma(,), bracket((), <space> in addition
to the <tab> and <enter>.

IntelliSense

Dynamic Validation When this option is selected, the Logic Editor automatically
validates logic as it is entered. Any invalid logic statement is
underlined with a red squiggle and the associated error shown in
the errors list.
2–48 3826 5823-008

Getting Started
System Modeler Member Editor

To set the font and color for system modeler member editor display items, perform the
following:

1. From the Tools menu, choose Options.

The Options dialog box appears.

2. In the left pane, expand Environment and select Fonts and Colors.

3. From the Show Settings for list, select System Modeler Member Editor to
display options listed in the following table:

4. Select the Font, Size, Bold, and the Item foreground, and Item background colors for
the selected display item.

Setting Validation Options

To set validation options, perform the following:

1. From the Tools menu, select Options.

The Options dialog box appears.

2. In the left pane, expand Environment and expand Projects and Solutions.

3. Select from the Build and Run options as listed in the following table:

In multi-processor machines, logic validation can perform faster if multiple threads are
used.

Logic Element Description

System Members Built-In Attributes, Classes and Methods.
For example, ACTMTH, Clear()

Inherited Members Members inherited from user-defined super classes.

Members Local Members of the owner.
For example, Variables, Attributes, Profiles, Methods.

Display Option Description

Save all changes Saves and validates all modified documents.

Save changes to open
documents only

Save and validates all modified documents.

Prompt to save changes to
open documents

Validates all modified documents, and displays a list, to allow
specification of which documents are to be saved.

Don’t save changes to open
document

Note: This option is not supported by System Modeler.
3826 5823-008 2–49

Getting Started
To set multi-thread validation options, perform the following:

1. From the Tools menu, select Options.

2. Navigate to System Modeler > General category.

3. Select the appropriate values for the Number of Threads for validation.

4. Click OK.

Validating Model Structure

The model validation feature enables you to capture validation errors of a model structure
during the development phase and resolve them before building the model. Therefore,
this feature provides real time error or warnings for the currently active configuration. The
error representation process includes the following:

1. Model structure errors – Any changes in the model causes the error to be revalidated.
If model structure errors exist, you can see the error in the Error List window during
development phase. You are prompted to fix the errors before validating logic and
starting the build. Refer to Model Structure Validation Rules for more information
on different rules for specific platforms.

Note: The description of the warnings and errors appears in the dependency
window.

2. Language validation errors – You can use the Logic Status tab to validate logic for all
methods within System Modeler through the Build menu. Refer to Click Show
potential fixes link. for more information.

Following are the System Modeler functionalities available with this feature:

• Synchronous errors or warnings in the current session – The model structure errors
are displayed instantly during development phase if you violate any validation rules.
Refer to Model Structure Validation Rules for more information on different rules
for specific platforms.

• Refresh and Multi-session – The model structure errors of a session are automatically
displayed in another session after a refresh. For example, if you fix an error in a
particular session, clicking Error from the Error list window for the same model in a
different session displays a message box that the error no longer exists and is already
fixed in another session.

• Auto-receive errors after import – The model structure errors are displayed
automatically when you import a model through Model Importer.

• Model structure errors also available in Validation output – All model structure errors
are also included in the Validation output window, which is also available during build.

System Modeler Policies

System Modeler Policies allows you to define various policy settings such as, Ask, Don't
Ask, and Ignore. Depending on these settings, System Modeler prompts for a
confirmation if the Owner property of an element is changed. And depending on these
settings, when a new element is created, System Modeler prompts for a change of
VersionFile property value.
2–50 3826 5823-008

Getting Started
To access System Modeler Policies page, perform the following:

1. From the Tools menu, select Options.

2. In the Options dialog box, navigate to System Modeler, and then click the
Policies folder. This displays the Policies list with the following names:

3. From the Settings list, you can select either of the following for different policy
settings:

4. From the Additional Settings list, you can further select either of the following
elements to allow the VersionFile property of those elements to be set on creation.

• All Containers

• Model or Segment Owned Container

Property Function

Confirm move on
Owner change

This option prompts you to confirm when an element is moved to a
new owner.

The default setting is Ask.

Set the VersionFile
Property on creation

This option enables you to set the VersionFile property for newly
created Classes, Folders, Dictionaries, or Diagrams. The default
policy setting is Don’t Ask and default value of Additional Setting
is All Classes owned by the Model or a Segment.

Confirm property
change impacting
build

This option prompts you to confirm when some of the reserved
properties of the elements are modified that requires an application
rebuilt for a specific platform. These properties include:

• Model or Segment properties

• Segment configuration properties

• Top level deployment folder properties

• Top level deployment folder configuration properties

For example, AllowedCore, DataSetBuffers reserved properties require
an application rebuilt in an MCP environment.

The default policy setting is Ask, which prompts a confirmation dialog
box. You can select, ‘No’ to cancel the changes in the reserved
properties.

The Don’t Ask policy setting does not prompt a confirmation dialog
box but the policy is executed.

The Ignore policy setting neither prompts a confirmation dialog nor
executes the policy. This setting cancels the changes in the reserved
properties of a Model or Segment.

Settings Function

Ask Prompts you whether to assign a value before executing the policy.

Don’t Ask Executes the policy.

Ignore Does not execute the policy.
3826 5823-008 2–51

Getting Started
This list is available only for the policy, Set the VersionFile Property on creation.

The policy settings are displayed in the Policies list.

Printing

System Modeler allows you to print the contents of a selected tab, or definition of
selected element/s.

Note: If a printer is not configured, all printing menu options are disabled.

To print in System Modeler, perform the following:

1. Select a tab, or an element.

2. From the File menu, select Page Setup and customize the print output using the
Page Setup dialog box.

3. From the File menu, select Print Preview to preview your print output.

4. From the File menu, select Print.

Note: The Print and Print Preview functions are also available from the toolbar.

Restrictions

The following restrictions apply to the following tabs:

• Members tab – Printing a selected element does not print its definition, rather it
prints the selected line's content. System Modeler allows you to select and print
multiple lines.

• Painter tab – Prints either Painter's content, or selected controls.

• Documentation tab – Prints the entire contents of the tab.

Page Setup Dialog Box

Use the Page Setup Dialog Box to customize the page setup of your print output. When
you have completed the fields described below, click OK.

Size – Select an appropriate paper size (options may vary between different printers).

Source – Select an appropriate paper source (options may vary between different
printers).

Orientation – Select either a Portrait or Landscape orientation layout.

Margins – Enter the left, right, top, and bottom measurements for your page margins.
2–52 3826 5823-008

Getting Started
Header and Footer – Customize the header and footer text that appears at the top and
bottom of the page. To print specific information as part of the header or footer, type the
following characters as part of the text:

Buttons

Ok – Applies the preferences you have chosen.

Cancel – Cancels any changes made, and closes the dialog box.

Printer – Displays the Microsoft Windows Print dialog box.

Help – Displays the online help.

Model Entities

System Modeler allows you to create 4GL object-oriented applications. In addition to the
inherent benefits of using standard object-oriented elements, System Modeler provides
access to a host of stereotyped model entities that possess specific properties and roles
within the Agile Business Suite processing cycles.

• Classes

• Methods

• Variables

• Profiles

• Teach Screens

• Dictionary

• Class Diagrams

• Groups

• Locations

Characters To include in the header or footer

&P Product Name/Version

&n Item Name

&e Editor tab name

&t Time in the format specified by the Regional Settings in the Control Panel

&T Time in 24-hour format

&d Date in short format (as specified by the Regional Settings in the Control Panel)

&D Date in long format (as specified by the Regional Settings in the Control Panel)

&p Current page number

&& A single ampersand (&)
3826 5823-008 2–53

Getting Started
Namespaces and Ownership

Namespaces uniquely identify a set of entities from other entities that may have the
same name. Specifically, the distinct name of an entity (or qualifier) consists of its
namespace and its local name (or identifier).

The namespace of an entity corresponds directly with the qualifier of its owning entity. As
all member entities of a specific owning entity are constrained to have distinct identifiers,
this ensures that no ambiguity can occur when referring to entities.

When referring to namespace relationships between entities, the following terms are
used:

• This – refers to the current entity.

• Owner – refers to the owning entity of the current entity. The current entity is
referred to as a ‘member’ of the owning entity.

• Component – refers to the owning segment of the current entity. This can be defined
recursively as the successive owner of each owning entity, until the top-most level of
the owner hierarchy is reached.

• Super – refers to the super (or base) class of the current class.

Kind

The Kind property of an entity determines the kinds of entities it can own. For example, a
method cannot own another method.

The following kinds are available:

Owning Kind Valid Member Kinds

Attribute Class diagrams, folders and variables.

Class Attributes, classes, class diagrams, externals, folders, methods, profiles,
teach screens, and primitive classes.

Class diagram Attributes, classes, class diagrams, externals, folders, methods, profiles,
teach screens, and primitive classes as determined by the owner of the
diagram.

External Methods and attributes.

Folder Attributes, classes, class diagrams, externals, folders, methods, profiles,
teach screens, and primitive classes as determined by the owner of the folder.

Method Classes, parameters, types, and variables.

Parameter Attributes, classes, class diagrams, externals, folders, methods, profiles,
teach screens, and primitive classes.

Profile (None)
2–54 3826 5823-008

Getting Started
Visibility

The Visibility property of an entity determines its scope, which is its accessibility to other
entities, in relation to inheritance and external to this namespace. For example, a method
cannot refer to an attribute that is not within scope.

The following visibilities are available:

To remove a column select it in the Selected Columns list and click Remove.

Classes

An object is a set of data combined with the logic to manipulate that data. A class
describes an object. It is abstract in that it does not appear in the generated application,
but it can be used to create objects which do. You should consult an object-oriented
reference for details if you are unsure of its meaning. The following discussion is confined
to aspects of classes that are specific to Agile Business Suite.

The following classes are available:

• Copy Events

• Copy Ispecs

• Enterprise Output Manager Reports

• Events

• Frames

• Insertables

• Ispecs

• Reports

• Segments

Teach (None)

Variable Attributes, classes, class diagrams, externals, folders, methods, profiles,
teach screens, and primitive classes

Visibility Scope

Private Accessible only to entities within its namespace.

Protected Accessible to entities within its namespace, and entities inheriting from its
namespace.

Public Accessible to all entities.

Owning Kind Valid Member Kinds
3826 5823-008 2–55

Getting Started
• SQL Scripts

• Messenger

Refer to Model Entities for more information on namespace and ownership, valid
member kinds, and visibility of classes.

Stereotyping

The term ‘stereotype’ is a UML (Unified Modeling Language) concept that applies special
meaning to a model element. In Agile Business Suite, classes can be stereotyped.

A class's stereotype determines and distinguishes the manner in which it is interpreted
during the processing cycles. For example, all ispec-stereotyped classes (ispecs) have
built-in methods such as Process and Construct that are automatically called at
appropriate points of the ispec processing cycle.

The term ‘vanilla’ refers to classes that are not stereotyped. Vanilla classes do not
possess any inherent behavior.

Inheritance

A class that inherits from another class has access to public and protected definitions in
its superclass. Additionally, the inherited class forms a new type if the class definition is
extended either by adding a member or by changing the semantic property of the class.

There are two types of properties relevant to a class namely, Descriptive and Semantic,
which are explained as follows:

• Descriptive Properties

These properties are either used for design or as a default. They do not affect the
runtime behavior of the class, but are either descriptive such as Description property
or influence the semantics of other entities such as MemberPersistence property.

• Semantic Properties

These properties define the class behavior and may force the inclusion of framework
members. These properties define the type and may be optional such as the
AutomaticEntryCapable property. Some examples of semantic properties are Length,
Primitive, PresentationType, and Stereotype. Once a semantic property has been
specified it cannot be modified by an inheriting object (length).

Note: Agile Business Suite supports single-inheritance. Multiple-inheritance is not
supported.
2–56 3826 5823-008

Getting Started
Inheritance is manifested in the Inherits property of a class.

Additional restrictions may come from how the inheritance relationship is represented in
the database. Where the superclass and subclasses are stored in the same table, the limit
on the total number of attributes (4095 for MCP) is applied to the superclass and all its
subclasses.

When referring to inheritance relationships between classes, the following terms are
used:

• This – refers to the current class.

• Super – refers to the super (or base) class of the current class.

Refer to Class Properties for properties applicable to base Classes.

Copy Events

Copy events (copy-stereotyped event classes) are events that participate in the copy
cycle. They behave similarly to copy ispecs, with the additional characteristics of events.

Only attributes that have graphical presentations can be copied. Copied attributes are
those with their corresponding graphical object's Is Copied presentation property of set
to true.

Cautions
Inheritance cannot be used if:

1. It would create a cycle in the inheritance hierarchy because the superclass
is the same as the subclass or is one of its subclasses.

2. It is an external class (IsExternal is True and Multiplicity is 0).

3. The class or object is a member of the proposed superclass (either directly
or through inheritance).

4. The proposed superclass is an inner class and its outer class is contained
by the class.

5. The class and its proposed superclass are both inner classes, and the outer
class is not the same as, or a subclass of the proposed superclass’s outer
class.

6. The class is a member of a group and the proposed superclass is either not
primitive or is a not group.

7. The class or the proposed superclass is a Group, Segment or Report class.

8. The class is an Insertable class.

9. The class has a different stereotype to the proposed superclass (except
where the superclass has NoStereotype).
3826 5823-008 2–57

Getting Started
Copy events have a built-in Edit method as an inherent characteristic, in addition to
those of events.

Refer to Copy Cycle for more information on the processing of copy events.

The default window is Members. Refer to Copy Event Properties for properties
applicable to copy events.

Copy Ispecs

Copy ispecs (copy-stereotyped ispec classes) are ispecs that participate in the copy cycle.

Only attributes that have graphical presentations can be copied. Copied attributes are
those with their corresponding graphical object's Is Copied presentation property of set
to true.

Copy ispecs have inherent behavior related to:

• Initializing non-interface and non-persistent variables before the Construct and Main
methods are invoked.

• Iteration through the Construct method (when invoked) for the number of times
specified by the Max Copies property, incrementing the Glb.Copy segment
attribute on each iteration. On each iteration, one set of the copied attributes are
available to method logic.

• Iteration through automatic look-up, the Prepare method (when invoked), automatic
validation, and the Edit method (when invoked) for the number of times specified by
the Max Copies property, incrementing the Glb.Copy segment attribute on each
iteration. On each iteration, one set of the copied attributes are available to method
logic. If Glb.Error is not set to ‘*****’, any automatic updates occur at the end of
each iteration.

Copy ispecs have a built-in Edit method as an inherent characteristic, in addition to
those of ispecs:

Refer to Copy Cycle for more information on the processing of copy ispecs.

Refer to Copy Ispec Properties for properties applicable to copy ispecs.

The default window is Members.

Enterprise Output Manager Reports

Enterprise Output Manager reports are specially formatted reports designed to be used
with the Enterprise Output Manager print management application. The report is in a
simple tag and value format, with the tag at the beginning of the line followed by the
value. There are several tags used as commands that are interpreted by Enterprise
Output Manager. The remainder are field names derived from the form file that is used to
create the report in the Enterprise Output Manager wizard. The Output Report Generation
Wizard is opened by default.
2–58 3826 5823-008

Getting Started
Enterprise Output Manager reports can be added in any situation where a standard report
is valid. Refer to Wizard Output for more information on objects contained in a report
once it is created using the Enterprise Output Manager wizard.

Refer to Using Enterprise Output Manager Reports for more information on creating a
Enterprise Output Manager report

Events

Events (event-stereotyped classes) represent business transactions in your application,
such as a payment. They affect the modification of data related to one of more ispecs.

Events have the following inherent characteristics, in addition to those of ispecs:

• Persistent attributes of an event automatically become the same as an equivalent
attribute in either the event set structure or the segment. This is displayed in the
Classifier property of the attribute

The default window is Members. Refer to Event Properties for properties applicable to
Events.

The default window is Members.

External Classes

External classes provide an interface for AB Suite to call external programs and read
external data sources.

External programs provide specific functionality to applications that are generated and
deployed with AB Suite. For example:

• A dynamic link library (.dll or MCP library) created to handle domain authentication for
user names and passwords.

• An executable or MCP library used to perform file cleanup operations.

• A C# program used to call web services that provide data from external sources.

Note: External programs must reside on the same machine as the AB Suite system.
Refer to Calling External Components for more information on how to call external
programs.

External data sources are EAE OS 2200 database tables, EAE RDML schema files and
OLTP view files. An external data source may not reside on the same machine as the AB
Suite system. External classes with persistent members are used to read data from
external data sources. Refer to Importing External Data Sources for more information
on working with external EAE RDML schema files and OLTP view files.

External classes are defined when the IsExternal property is set to True. These classes
can contain attributes, profiles, variables, methods, and parameters that provide an
interface to the external resource. External classes do not have a stereotype and cannot
3826 5823-008 2–59

Getting Started
be extended. Doing so generates a model validation error. For example, if MyCust with
multiplicity = 1, inherits from the external class, Cust, and has a method Method1 added
to it, a model validation error appears.

External resources are components outside your application. For example, they may
represent a .NET or COM component, a library, application, an EAE OS 2200 external
database, an EAE RDML schema file, or an OLTP view file.

External classes support Latin 1 languages (Afrikaans, Basque, Catalan, Danish, Dutch,
English, Faroese, Finnish, French, Galician, German, Icelandic, Indonesian, Italian, Malay,
Norwegian, Portuguese, Spanish, Swahili, Swedish) and Japanese. Refer to the Agile
Business Suite Installation and Configuration Guide for more information on adding the
required libraries to support External persistent classes targeting Kanji data on OS 2200.

Methods

Methods of external classes can be used to access routines or programs such as:

• Methods of COM, COM+ or .NET components.

• Subroutines in libraries, such as .dll.

• Windows external programs, such as batch files (.bat) or other executable files that
are not bound into the runtime application.

Refer to External Class Properties for properties applicable to External Classes.

For MCP-based Libraries, Agile Business Suite supports the following data types for
external classes:

• Boolean

• Real
2–60 3826 5823-008

Getting Started
• Integer

• Ebcdic array

Multi dimension Ebcdic arrays are passed as single dimension ebcdic arrays whose size is
item length multiplied by multiplicity (that is, item length *multiplicity). Where the array is
defined as numeric its contents are held as packed decimal.

Calling External Components

External classes are used to connect AB Suite methods with functions contained in
external components to call subroutines in dynamic link libraries, external batch files, or
executable files.

An ExternalClassHost32 COM+ application allows AB Suite 64-bit runtime to call 32-bit
external programs, such as Dlls, .NET assemblies, COM components, and EXEs. Refer to
the Agile Business Suite Installation and Configuration Guide for more information on
ExternalClassHost32.

An AB Suite system on a MCP platform uses the COMTI and J2EE Connector interfaces
for programs existing in .NET or J2EE environments. This is achieved by processing
external classes or public segment methods defined in the AB Suite system on a MCP
platform.

You can map external classes to MCP Libraries and co-routines.

• MCP Libraries are programs that are compiled externally and that execute on the
caller’s process stack. These can be called by title or by function.

MCP Libraries now support an extended range of library parameters (integer, real,
Boolean, ebcdic array, file, and string for type procedures). Accessing libraries from
AB Suite is no longer restricted to untyped, single ebcdic array exported procedures.

Access to multiple Connection Libraries (CLs) residing within a single codefile is
supported by including the interface name in the Library Name, for example,
MyMultilib\Interface1

• Co-routines are C85/Algol/EAE/AB Suite modules that are separately compiled and
that execute on their own stack. Calls to such modules are synchronous. Co-routines
support the same simple method signature as EAE (glb.param).

Public Segment Methods support a true parameter interface and can be called from a
variety of sources (MCP, CE, .NET, and J2EE).

The legacy interfaces of NOF, HUB, Business Integrator, OLTP, GLI, OFFLINE, RAS, and
USER are also supported.

To call an external component from AB Suite, perform the following:

1. Create a class and set its IsExternal property to True.

2. Add a method for each function to be invoked from the external component.
Parameters and return variables are limited to the AB Suite Primitive Types and must
match those in the external component.
3826 5823-008 2–61

Getting Started
3. Right-click the external class and select Properties to set the configuration
properties of the external class.

4. In the ExternalClass Property Pages window, set the Component Type property to
the type of component you want the class to represent.

Note: You must specify the component type because AB Suite generates
different external class wrappers for different component types.

5. Set the External properties for the selected component type.

Notes:

• Refer to External Configuration Properties of the Builder for more
information on setting the connection information for external components.

• Refer to General Configuration Configuration Properties of the Builder for
more information on setting the connection information to call external MCP
Libraries and co-routines.

6. Invoke the external component.

Refer to the following example:

returnVariable := Warehouse.GetCarrier(Carrier, PostCode, ProductId)

This returns an integer that is tested with the If command.

Notes:

For .NET components

• A strong name key should be created for the assembly as part of the external
component's project to make it visible to AB Suite's external class wrappers.
This key (snKey.snk) is created with the snKey utility and is built with the
external project.

• After building a .Net component assembly, you must deploy it for Runtime. In
most cases, the runtime server is a different machine to the one used to develop
the .Net assembly. So you must copy the built assembly to the runtime server
and sometimes even register the built assembly. You can copy the built assembly
manually, or use Visual Studio's built-in post-build events to automatically copy
the built assembly. After you have copied the assembly to the runtime server, for
AB Suite Runtime to locate the assembly, you can either add the path of the
copied assembly to the PATH environment variable on the machine or register
the assembly in the Global Assembly Cache (GAC) or Regasm.

• By default, during a call to an external 64-bit .NET assembly, a new instance is
created and the same instance is reused for subsequent calls to the .NET
assembly in the same transaction.
2–62 3826 5823-008

Getting Started
However, you can set the CreateExternalClassInstanceAlways registry key that
results in the following behavior; a new instance of the assembly is created
when an external method is called and a new instance is created for every
subsequent call.

The CreateExternalClassInstanceAlways is of type DWORD and you can set the
key at the following locations.

– The registry key for a particular system is stored under the following
registry key:

\HKEY_LOCAL_MACHINE
 \SOFTWARE
 \Unisys
 \AB Suite
 \6.1
 \SM Runtime
 \<System Name>

and

– The registry key for machine wide settings is stored under the following
registry key:

\HKEY_LOCAL_MACHINE
 \SOFTWARE
 \Unisys
 \AB Suite
 \6.1
 \SM Runtime

• Registering the assembly in the GAC or Regasm can make the assembly easily
accessible for other programs on the machine and requires simple utilities (such
as GACUtil.exe/Regasm.exe, available in the .NET Framework 2.0 SDK), without
needing to specifically configure your environment to locate the assembly.

Reading External Data Sources

An external class with persistent members provides an interface to connect to an external
data source and retrieve data. The schema of the external database or an OLTP view file
can be imported into AB Suite.

Note: Presently, external classes with persistent members are not supported on the
MCP platform. Hence, you cannot access a DMSII database using external classes.
However, you can access external MCP databases by using the existing MCP
AccessExternal feature.

Data is retrieved from the data source with a Determine or ForEach command over an
instance (variable, parameter, attribute) of the external class.
3826 5823-008 2–63

Getting Started
The following example illustrates how an external class with persistent members can be
instantiated. The Ispec ‘DemoIspec’ with Multiplicity = 1 has an attribute member
‘MyCustAttribute’ with Multiplicity = 1 that inherits from the external class Cust. The
method Main() reads the contents of the external class by using a Determine command
over MyCustAttribute.

External classes can be created manually or by using the External Class Wizard. Using the
wizard requires a schema file or an OLTP view file that is imported to automatically create
the external class and its members. Members typically consist of profiles and persistent
attributes. Refer to Importing External Data Sources for more information on using the
External Class Wizard.

Note: For an imported external class with persistent members, it is recommended
that you do not change the Profiles or Attributes because the changes are lost when
the class is synchronized with the source RDML file or OLTP view file.

To read an external database, perform the following:

1. Create a class and set the IsExternal property to True.

2. Add an attribute for every field in the record as defined in the external data
source.Attributes are limited to the AB Suite Primitive types and must match those in
the external data source.

Note: The sequence number is used to determine the order of the columns in an
external database table.

3. Add profiles to retrieve subsets of the records using the views or keys as defined in
the external data source.

4. Right-click the external class and select Properties to set the configuration
properties in the ExternalClass Property Pages window.

Refer to the External Configuration Properties of the Builder for more information
on setting the connection information for external data sources.

5. Use the Determine command variants to iterate over the external data source.

Refer to the Agile Business Suite Programming Reference Manual for more
information on using the Determine logic command variants to read external data.
2–64 3826 5823-008

Getting Started
Importing External Data Sources

You can create external classes with persistent members by importing the database
schema file or the OLTP view file that defines the tables within the external data source.
When the source file is imported, it is automatically copied to the project directory
(Resources folder in the Solution Explorer view). As the synchronization process uses this
file, it is recommended that you always update the source file in the project directory so
that the changes are automatically detected. This prevents duplicate source filenames
and is useful when you want to version control the solution files.

To import an external data source, perform the following:

1. Obtain access to the schema file of the external data source and save it on the AB
Suite developer machine.

2. Right-click the element that owns the external class, and select Add, Add New
Item….

3. Select External Class from the Wizards pane in the Add New Item dialog box.

4. Click Create.

The Select Data Source box appears.

5. On the Selection page, browse and select the external data source file.

For example, an RDML$EXT.txt file or an OLTP (Online Transaction Processing) view
file.

6. Select the tables to be imported from the external data source schema.

You can select the Select/Deselect All check box to clear all the selected tables
and select only those that must be imported.

Note: You can only select tables but not table members. All the members of the
selected tables are imported except those data types that are not supported by
AB Suite.

Click Next.

7. Confirm the selection and click Finish to return to the model.

If you select the Display Result check box on the Confirmation page, the Results
page shows the progress and displays a message indicating the status of the import
process.

8. Click Close.

The Output window displays the progress and the status during the creation of
external classes. Errors appear in the Output window.

This imports the structure of the external database. The IsExternal property of the
classes is automatically set to True and the class members are persistent.

The SynchronizeState property of the imported external class is also set to
InSync.

9. Right-click the external class and select Properties to set the configuration
properties in the ExternalClass Property Pages window.
3826 5823-008 2–65

Getting Started
10. Select either Defined Locally or Location in Edit, from the Data Source
Location list.

The Defined Locally option can be used to set the properties within the class
configuration. Otherwise, you can select an existing location to specify the predefined
configuration information.

Refer to the Data Source properties in System Modeler Locations for more
information on setting the properties for the Defined Locally option.

11. Use the Determine command variants to iterate over the external data source.

Refer to the Agile Business Suite Programming Reference Manual for more
information on using the Determine logic command variants to read external data.

Synchronizing External Classes

You can synchronize an external class with its resource, as specified by the
SynchronizeFile property when the SynchronizeState property is set to
NeedsSync. If you change the properties of an external class, such as SourceName,
ViewName, ViewType, Length, Primitive, and Decimal, the SynchronizeState property
is set to NeedsSync. The SynchronizeState property is also set to NeedsSync if
you add or remove persistent members in an external class or change the member
properties as mentioned earlier. In addition, modifying the resource file also changes the
value of the SynchronizeState property to NeedsSync.

To synchronize an external class, perform the following:

1. Update the version of the Resource in the project directory.

2. Perform any one of the following:

• Select Synchronize on the resource file in the Solution Explorer view.

This synchronizes all the external classes that are associated with the selected
resource file.

• Select Synchronize on the external class.

• Select Synchronize on the owner of the external class.

This recursively synchronizes all the external classes within the namespace.

The value of the SynchronizeState class property changes to InSync after
completion.

Web Services for MCP

You can invoke a Web Service in your MCP application through the new Web Service
Wizard. The wizard creates an AB Suite class that encapsulates the Web Service
functionality ready for use by your Reports and Ispecs.
2–66 3826 5823-008

Getting Started
To create an MCP Web Service, perform the following:

1. Right-click the segment, and select Add > Add New Item….

2. In the Add New Item dialog box, select Web Service > Create.

The Web Service Wizard is displayed.

3. Enter a name for your Web Service, and click Finish.

The created class contains pre-loaded logic and attributes to exercise the Web Service
with the Unisys Weather Service. You can invoke the method from an Ispec or Report by
setting the WeatherStnCode to any valid ICAO code to test it. For example, "PHNL" - to
view the status of the weather in Hawaii.

Note: The added infrastructure to support the Web Service wizard includes the
following classes.

• Unisys_WebAppSupportLib
External class configured with all necessary entry points for the Web App Support
Service.

• Unisys_WebAppSupportHelper
Class to assist with the implementation of the Web Service. Consolidating the
common process for establishing and invoking a Web Service.

• WebAppSupportLibraryBuffers
Contains the specially configured buffers for invoking the Web App Support entry
points.

• Unisys_WebAppTypes
All types associated to the Web App Support library.
3826 5823-008 2–67

Getting Started
Pre-Requisites

The XML parser feature for Web App Support must be installed and configured on the
host for MCP Web Services. Refer to WebAppSupport (WEBAPPSUPPORT Application
Programming (http://www.support.unisys.com/aseries/docs/ClearPath-MCP-17.0/PDF/
38265286-006.pdf)) for more information.

Frames

A Frame is a class that implements the functionality of a frame. It may have an interface
and inherits a ‘Main’ method that is executed on a printframe LDL+ command. The Main
method may be overridden. The Class functions as a report frame by providing a main
2–68 3826 5823-008

Getting Started
method to override and restricting properties to those applicable to reports. When an
attribute of this class is invoked, the main method is executed before printing the
presentation. The default window is Members.

A Frame can be owned by any class, including another Frame and can be both, a class
definition and an instance.

Insertables

Insertables (insertable-stereotype classes) consist of logic and/or a user interface that can
be inserted (using the Insert logic command) in any number of ispecs, events, or reports.
A dependency is created between the inserting class and the insertable. Insertables are
migrated as attributes of the inserting class. The default window is Members.

Insertables without a user interface or any attributes can also be inserted in segment
methods.

Insertables have the following inherent characteristic:

A built-in Main method, which can be overridden using the Overrides tab.

Note: Insertables are not available for use in Messenger classes.

For properties applicable to Insertable, see Insertable Properties.

Ispecs

Ispecs (ispec-stereotyped classes) represent an entity in the business world, such as a
customer, product, or vendor.

Ispecs have inherent behavior related to:

• Control of the ispec processing cycle and error handling, which includes:

– Initializing non-interface and non-persistent variables.

– Performing appropriate validation of input variables, including automatic look-ups,
value-checking logic, numeric validation, date validation, and ascertaining the
presence of required variables.

– Invoking the Prepare method.

– Invoking the Main method.

• Assembling error and/or output messages for transmission to the application user.

• All ispecs have the following inherent members:

Built-in Construct, Prepare, and Main ispec methods.

Persistent ispecs with at least one attribute that has their Is Key property set to true also
have an inherent Maint built-in attribute.

The default window is Members.
3826 5823-008 2–69

Getting Started
Ispec Usage

Ispecs can belong to one of the following categories:

• Input

These ispecs have a user interface (PresentationType property set to a value other
than None), but no persistent attributes (Is Persistent property set to false).

Input ispecs do not perform an implicit automatic update of the database at the end of
their Main method.

• Output

These ispecs have no user interface (PresentationType property set to a value
other than None), but they do have persistent attributes (Is Persistent property set
to true).

Output usage ispecs do not have any inherent behavior, as they are used solely to
define database tables. However, they can have explicitly defined methods, which
can be invoked independently of the Agile Business Suite processing cycles.

Any attribute within the Segment class with IsPersistent=True, retains their value
across ispec transactions within one session.

Example with the SAMPLE application:

Declare the MENU class with multiplicity=1 and Ispersistent=True
In the “Construct Menu”

Me attention MENU.ACTION2
In the “Prepare Menu”

My ACTION2 MENU.ACTION2

With this construct, when we execute the MENU ispec for the first time, the value for
MENU.ACTION2 does not get displayed, but when the system displays the last value
entered in the ACTION2 field this value “MENU.ACTION2” is stored as session
attribute and each user can have a different value.

• I/O (input-output)

These ispecs have both a user interface (PresentationType property set to a value
other than None) and persistent attributes (Is Persistent property set to true).

Ispec perform an automatic update of the database, provided Glb.Error has not been
set to “*****”.

Depending upon usage type, ispecs may also have additional inherent characteristics.
These characteristics vary accordingly with the addition and removal of persistent
attributes and/or user interfaces.

Refer to Class Properties for properties applicable to Ispecs.
2–70 3826 5823-008

Getting Started
Persistence

Database Persistence

The typical usage of this property is to define columns in a database table. When you set
IsPersistent on one or more attributes within an Ispec or Vanilla class to True, it would
mean that a database table is created representing the class and that all IsPersistent
attributes become columns within that database table. For example,

Ispec: Customer

Customer_Id IsPersistent=True

Name IsPersistent=True

Address IsPersistent=True

This example results in a database table called “Customer” with columns
“Customer_Id”, “Name” and “Address” being created. Note that the Customer element
itself does NOT have IsPersistent=True.

Session Persistence

For attributes that are members of a Segment class, setting IsPersistent to True would
mean that they are session persistent. This means that these values are retained for the
duration of a user session. They arenot initialized during the ispec runtime cycle, but
retains any values assigned to them. These can be used to pass data from one ispec
transaction to another within a single user session.

This can apply to both primitive and non-primitive attributes. Typically, these attributes
retain the values for the duration of a single user session. When the user signs off and
later starts a new session these attributes is initialized at the start of the new session.
However, if you set the “Preserve Session Data” Windows configuration property, then
the value of these session persistent attributes carry over from one session to the next
(by the same user).

The table below gives the session persistence support information about MCP and
Windows® Runtime.

Session Attribute Type MCP Runtime Windows® Runtime

Primitive Supported Supported

<Group> Stereotyped Class Supported Supported

All Other Classes Unsupported Supported
3826 5823-008 2–71

Getting Started
Reports

Reports (report-stereotyped classes) present information from the database to the user,
or are used to perform specialized batch processing of the database information. They
also have a Main method. The default window is Members.

Refer to Report Properties for properties applicable to Reports.

Segments

Segments (segment-stereotyped classes) generally function as the top-level definition of
your application. They are sometimes referred to as a ‘component’, and own all the model
entities that the application consists of.

Segments have inherent behavior related to:

• Control of application user connection and disconnection.

• Control of database connection and disconnection.

• Persistence of session state for the Ispec cycle.

• Control of the segment cycle, which includes:

– Unpacking of input messages to sufficiently identify their source and the ispec to
be invoked

– Invoking the ispec and its Process method with indication as to which part of the
segment cycle the session is in

– Assembling and delivering the output message

– Enacting Recall and SwitchTo actions

– Invoking public methods

• Transactional integrity

Segments have the following inherent members:

• Built-in segment attributes, such as Glb.Status, Glb.Error, Glb.User, and so on.

• Built-in StartUp, CloseDown, and ProcessMsq segment methods:

– Startup is called on application start up

– CloseDown is called on application close down

– ProcessMsq is called to perform the segment cycle

A model can have multiple segment members.

Entities within a segment can be grouped using folders.

The default window is Members. Refer to Segment Properties for properties
applicable to Segments.
2–72 3826 5823-008

Getting Started
SQL Scripts

SQL scripts (SQL script-stereotype classes) act as embedded containers for SQL
statements. They can be used to optimize database queries and updates, by allowing
access to native interface of the database. The performance gain that can potentially be
achieved from the use of SQL scripts is dependent on the capabilities of the DBMS, the
nature of the specific query or update, and the tuning of the physical database itself. The
default window is Members.

Normal methods can also be in SQL. SQL Scripts have a processing cycle and are useful
for iterating through the results of an SQL select.

Valid SQL commands are:

• INSERT

• DELETE

• UPDATE

• SELECT … INTO

• DECLARE … CURSOR FOR

• OPEN

• FETCH … INTO

• CLOSE

You should consult a SQL command reference for details of these commands. You should
also consult your SQL Server documentation for details of their respective conformance
with the ANSI SQL-92 standard. Invalid SQL commands in SQL scripts cause compilation
errors.

SQL statements for SQL scripts are specified in the logic editor. Refer to the Agile
Business Suite Developer Online Help for more information on using the logic editor.

• SQL scripts have the following inherent characteristics:

• SQL script processing.

Built-in construct, main, and destruct SQL script methods, which can be overridden using
the Overrides Tab.

The built-in SQL script methods can only be invoked using the Determine Actual logic
command. All other SQL script methods can be invoked directly.

Construct

The construct method (script) opens the cursor in preparation for iterating through the
results of a SELECT statement.
3826 5823-008 2–73

Getting Started
To execute a set of SQL statements once only, they should be specified within the
construct method. Additionally, a Break logic command should be invoked within the
Determine Actual logic command loop. Refer to Break in SQL Script Variant for more
information.

Main

The main method (script) is executed for each iteration of the Determine Actual logic
command statement. It iterates through the retrieved records.

Destruct

The destruct method (script) releases any resources used by the SQL script.

Attributes

Attributes of the SQL script that are referenced by embedded SQL statements need to
be identified as such. They should be prefixed with a colon (':') when referenced in a SQL
statement. In the following example, MyA, MyB, MyC, and MyZ are attributes (instance
variables) of the SQL script:

SELECT A, B, C INTO :MyA, :MyB, :MyC FROM TAB WHERE Z = :MyZ

Debugger Restrictions

SQL script method calls are ignored during debug sessions. Debugger disregards any
invocations of SQL script methods it encounters, and continues execution at the logic
statement following the method invocation.

Examples

• Selective Data Retrieval with Join Example

• Selective Update Example

• Database Issues

Refer to The table below lists all properties for the particular element. Not all
properties may be visible when an element is added, or an existing element is selected.
Some properties only become visible when a dependent property is set to a specific
value. for properties applicable to SQL Scripts.

Multi-user Session Handling in SQL

AB Suite allows multiple users to access and update the AB Suite database. To reflect the
changes made by another user, you need to manually refresh the domain. A domain here
is the model element selected currently.

For example, when a user edits or deletes a model element, you have to manually refresh
that model element to see the updates. If you refresh a particular domain, only the
changes made within that domain is visible, whereas the changes made outside that
domain remains invisible. You can increase the domain scope by selecting its owner.
2–74 3826 5823-008

Getting Started
Messenger

A Messenger is a class Stereotype that is used to define a class that acts as a message
broker to process XML messages submitted as input to the AB Suite runtime system.

The Messenger class contains a built-in cycle for processing incoming messages.

In the Messenger processing cycle

1. An instance of the Messenger is created and the input message is parsed and
validated.

2. The Messenger instance is populated from the message.

3. User-defined logic is executed.

4. A response message is created and returned to the client that sent the input
message.

Methods

A method is a concept from object-oriented development. It is some logic that executes
in the context of an object. You should consult an object-oriented reference for details if
you are unsure of its meaning. The following discussion is confined to aspects of
methods that are specific to Agile Business Suite.

Method Invocation

Methods can be called explicitly by name in logic, or implicitly as part of a processing
cycle.

Built-in Methods

Agile Business Suite provides a number of built-in framework methods for certain model
entities. Some these methods occupy specific roles within the Agile Business Suite
processing cycles. Others are available as utility functions.

The following table lists a summary of some of the more significant built-in methods.
Refer to Built-In Methods and Method Reference for a comprehensive list of built-in
methods,.

Method Owner Description

StartUp Segment Called on segment start up.

CloseDown Segment Called on segment shut down.

ProcessMsg Segment Performs the segment cycle.

Construct Ispec or event Called before the class's user interface is
displayed.

Prepare Ispec or event Called before the class's Main method is
called.
3826 5823-008 2–75

Getting Started
Note: You can override some of the above built-in methods. The overridable built-in
methods can be identified by checking its IsFinal property. If this property is False you
can override the method and if it is True you cannot. You can also check which
methods are overridable by opening the Overrides tab for a class. Methods that can
be overridden are shown in the Add New Override list. You cannot change the
Visibility property of a built-in method or any method that overrides a built-in method.

Refer to the Agile Business Suite Developer Online Help for more information on
entering logic.

The default window is Logic. Refer to Method Properties for properties applicable to
Methods.

Variables

A variable is memory location that stores data and is identified by name. An attribute is a
variable that is a member of a class. A parameter is a variable that passes data in and/or
out of a method. A variable can also be local to a method. The default window is
Members.

Variables include the following:

• Attributes

• Parameters

• Reference

• Reference

Primitives

Variables can be of several types.

Edit Copy ispec Called during the validation phase of the
Copy processing cycle. The copy ispec's
Main method is not called during this
phase.

Main Ispec, event, or report frame
0, migrated as Main

Called after the class's Prepare method (if it
exists) is called.

Load Class with persistent
attributes

Called to load a class's persistent attributes.

Store Class with persistent
attributes

Called to store a class' persistent attributes.

Purge Class with persistent
attributes

Called to physically delete the most recently
accessed class record from the database.

Update Class with persistent
attributes

Called to update the current record (last
read into the instance).

Method Owner Description
2–76 3826 5823-008

Getting Started
Number

Number-primitive variables can only contain decimal digits.

Decimal point position is implied and specified separately using the Decimals property.

Length is calculated from the sum of the number of digits in the integer part and the
number of decimal places.

They are limited to a maximum length of 18 (maximum size of 2^18).

Signed Number

Signed number-primitive variables are the similar to number-primitive variables, except
that they are signed.

String

String-primitive variables can contain any sequence of the following:

• Printable characters from the ASCII character set

• Embedded escape sequences representing non-printable characters in @xx@
notation, where “xx” is a hexadecimal representation of the binary character value.

• Embedded escape sequences representing non-printable characters in \x, where '\x'
represents either a control-character equivalent such as '\n' for newline, or a
hexadecimal equivalent of the binary representation.

They are limited to a maximum length of 9999 characters.

Boolean

Boolean-primitive variables can be used in place of a logical expression in “If” (DoWhen)
statements.

The following assignments are valid:

bool := “Y”

bool := “N”

bool := “Yes”

bool := “No”

bool := true

bool := false

But only true and false may be used in DoWhen/If statements.
3826 5823-008 2–77

Getting Started
Date

Date-primitive variables can only contain decimal digits.

They are comprised of two digits each for the month, day, year, and optionally the
century. The Date Format property determines the order of these date units –
IN(ternational), UK, and US are represented as (CC)YYMMDD, DDMM(CC)YY, and
MMDD(CC)YY respectively.

The date format is only validated when the variable accepts input in a user interface, or
when it is used as the input date of a DateConvert logic command.

Date-primitive variables are of a fixed length of 6 characters, or 8 characters if the date
format includes the century.

Wide String

Wide string-primitive variables can contain any sequence of double-byte characters as a
Unicode string.

They are limited to a maximum length of 2047 characters.

Refer to Variable Properties for properties applicable to Variable.

User Defined Classes

User defined classes comprises the structure of the items to be stored in a list.

Attributes

Attributes are variables that are members of a class.

Refer to Attribute Properties for properties applicable to Attributes.

Parameters

Parameters are variables used to pass data into and/or out of a method.

Refer to Parameter Properties for properties applicable to Parameters.

Reference

A Reference is an attribute whose value is contained either in part or whole within
another attribute. The attribute being referenced must be within scope and not another
reference. The Reference can only be accessed through a presentation (not from logic). A
Reference attribute does however form a part of the owning class's structure.

The typical use of a Reference is to present a cell of an array. The association to another
object is contained in the expression Constraint. Under this situation the expression
represents a path to the referenced attribute.
2–78 3826 5823-008

Getting Started
The Inherits property is automatically set to the referenced attribute when the expression
in the Constraint property is validated and a Use dependency exists. The expression is
parsed on validation of the owner.

The value reference is initialized when the inherits property has been established. Only
then is the Direction property available for placing the object in the presentation of the
owner. To use a Reference in a presentation the owner must have its PresentationType
set to a value other than None.

Refer to Reference Properties for properties applicable to References.

Profiles

Profiles define a set of criteria for selecting database records for a persistent class.

Specify constraints that limit the records selected using the Conditions tab.

Profiles belong to the class to which they apply. This allows the selection criteria to
include private attributes without breaking encapsulation.

Note: A profile on an event which is not itself acting as an EventSet is ignored during
generation. That is, all profiles should be defined on the EventSet and not on
individual events. Conditions can be added to profiles to restrict their operation to
specific events.

The default window is Conditions. See “Profile Properties” for more information on
properties applicable to Profiles.

Teach Screens

Teach screens display help information in your applications. Teach screens can only be
added to classes. Refer to the Agile Business Suite Developer Online Help for more
information.

See “Teach Screen Properties” for properties applicable to Teach Screens.

Dictionary

A Dictionary is a form of Folder. It is however limited by the fact that it can only contain
Objects. These are mainly considered Classes, a Dictionary can be described as a Class
Dictionary. In the same way that Folders can be added to any Namespace, Dictionaries
can also be added. The default window is Members.

Global dictionaries (defined directly under a model) can be used to share dictionary
definitions across multiple applications. Local dictionaries (added to a segment) can be
used to define data types for use only in that segment. Each dictionary may contain
primitive and non-primitive classes.

By setting the EnforcePersistents segment property to True, you can specify that any
persistent attribute added to that segment must inherit its type from an item in a
dictionary. You can also specify, by setting EnforcePresentation to True, that any attribute
3826 5823-008 2–79

Getting Started
appearing in a presentation must inherit from a dictionary item. These properties are also
available on the model. Setting EnforcePersistents or EnforcePresentation at the model
level applies the dictionary enforcement rule to all segments in that model.

Items can be added to multiple Dictionaries, providing that the IsUnique property of the
Dictionary is set to False.

Folders

Folders act as a logical grouping of model entities.

A folder does not own its member entities. Entities contained in a folder continue to be
owned by the folder's parent entity. This effectively means that an entity can be a
member of more than one folder.

Adding a new entity to a folder is essentially the same as adding the entity to the folder's
parent.

Entities that are members of the folder's parent can be added as existing entities to the
folder.

Note: Agile Business Suite folders are not the same as the virtual folders that can
be added outside the model hierarchy using the New Folders button on the Class View
toolbar.

The default window is Members. Refer to Group Properties for properties applicable to
Folders.

If you delete a folder and it contains other elements, you can optionally delete the folder's
members at the same time. If you do not delete the folder's members, they are placed
under the model when the folder is deleted.

The IsUnique model property of Folders ensures all members do not exist in other
folders. This is a Boolean value where true applies the uniqueness constraint. A nested
Folder assumes the setting of the owning Folder. This property does not apply to
Diagrams.

For MCP, any folder with IsUnique property set to True must have a name that does not
exceed 18 characters in length.

MCP runtime applies a build rule to cluster all non-persistent, generic or primitive
attributes contained within the Segment Folder into a block. All persistent Segment
attributes are made as a part of a GLB-WORK block, and all other Segment attributes are
a part of a GLB-SDS block.

If the segment folder does not have the unique property set or the folder is not under the
segment, it is not treated as a GSD block.
2–80 3826 5823-008

Getting Started
Class Diagrams

Class diagrams use standard UML (Unified Modeling Language) notation for class
diagrams to represent the static relationships between model entities. You should consult
a UML reference for details on UML notation. The following discussion is confined to how
Agile Business Suite model entities are represented as class diagrams. The default
window is Class Diagrams.

The following types of relationship can be expressed on a class diagram:

• Aggregation

An aggregation is a relationship between a whole (the aggregating class) and its parts.
It is indicated by a solid line, with a filled diamond at the aggregating class.

An example aggregation is between a car (the aggregating class) and its parts, such
as steering wheel, engine, tires, and so on. Each of these parts exists in their own
right, but they are aggregated as a car.

• Dependency

A dependency is a relationship where changes to the supplier class may cause
changes in the client class. It is indicated by a dashed line, with an open arrowhead at
the supplier class.

An example dependency is between a encoder (the client class) and an encoding
algorithm (the supplier entity). Changes to the encoding algorithm may affect the
encoder.

• Inheritance

An inheritance relationship is between a super class and its sub classes. It is indicated
by a solid line, with a hollow arrowhead at the parent entity.

Class diagrams, like folders, do not own their member entities. Entities in a class diagram
continue to be owned by the class diagram's parent entity. This effectively means that an
entity can appear in more than one class diagram.

Adding a new entity to a class diagram is essentially the same as adding the entity to the
class diagram's parent.

Entities that are members of the class diagram's owner can be added as existing entities
to the class diagram.

Class diagrams are modified using the Class Diagram page of a diagram.

Refer to Class Diagram Properties for properties applicable to Class Diagrams.

Groups

Groups (group-stereotyped classes) are a way of representing structures in your
application. They can contain only attributes as members. Member attributes can be
primitives or instances of other groups. Member attributes of this class can be either all
persistent or all non-persistent. Members can also be presented.
3826 5823-008 2–81

Getting Started
Members of a group are treated just as members of any other class. The exception to this
case is with regards to persistency. Persistency of group members is group-defined and
not member-defined; hence the group would be persistent or non-persistent as a whole.

The class can be treated as a string, allowing one group to be assigned to another. In
addition to being a class, groups have special primitive string semantics. Assignment of a
string to a group preserves the original string until it is subsequently modified. A group
can act as a primitive. Here, the group behaves like a string with a string length equivalent
to the sum total of the group members.

Groups feature no methods, and inheritance is not supported.

Refer to Group Properties for properties applicable to Groups.

Locations

A Location element is used to store platform-dependent location information, for
example, file paths, database access, or Filegroup information. The Pack Type specifies a
valid Data Source, External Pack Details, Filegroup, or Path for the files of a generated
system on the target host computer.

A Location element can only be added at the Model level and cannot contain any
members. A Location object is a named element and can be added, removed or updated
as can any other element.

After adding a Location element to a model, you should configure the Location for a
particular target platform.

To set the configuration properties for a Location, perform the following:

1. Click Class View on the View menu to open the Class View window.

2. Select a Location element from the members of the model.

3. Right-click the Location and select Properties.

The Location Property Pages opens.

4. Select a configuration from the Configuration list.

5. Select a platform for deployment from the Platform list.

6. Specify the Pack Type (for Windows) or Pack Name (for MCP) properties depending
on the platform that you select:

Pack Type – Specifies a valid Data Source, External Pack Details, Filegroup, or Path.
Select either one of the options from the Pack Type list.

• Data Source – Specifies the connection information to connect to an external
database. An appropriate error message is displayed for entries that are invalid for
any of the data source configuration properties. The user needs to select either
one of the options from the data source type list.

– Data Source Type – Specifies the type of data source to connect from the
various data source types such as, EAE OS 2200 database tables,
<inherit from parent or default>, or OS 2200 Extract files.
2–82 3826 5823-008

Getting Started
Note: EAE OS 2200 and <inherit from parent or default> options refers to
the External Persistent Classes.

The following table specifies the configurations for EAE OS 2200 database
tables and <inherits from parents or default> options:

Configuration Property

Authentication Method Specifies the method used to authorize access to the external
database table.

• ByUserIdPasswd

Requires a user id and password to access an OS 2200
host.

• ByAuxiliaryInfo

Requires a user-defined string that is passed to an onsite
setup routine.

User Id Specifies the registered user id that can access the host server.

The user id can be

• Alphanumeric character

• Period (.)

• Hyphen (-)

• Of a length less than or equal to 12

The user id must not begin with an underscore or numeral.

Password Specifies the password required for the authorized user id on the
host server.

The password can be:

• Alphanumeric character

• Of a length less than or equal to 18

A password must not contain a comma (,) and slash (/).

The password is obfuscated.

External System Specifies the name of the deployed EAE system.

External Host Specifies the IP address or the name of the external host. For
example,

\\USTR-TIS2.UNISYS.COM

Notes: If “localhost” or the hostname is not provided, an
error message appears as Invalid name.
The external host name is case sensitive for OS 2200 data
source type. Hence the name supplied must correspond to the
name provided in ClearPathHosts.config file.

Port Number Specifies the TCIP port number to connect to the external HDBA
host server. The port number must be in between 1 and 65,535
inclusive.

Auxiliary Information Specifies a user-defined connection string if you have selected
the ByAuxiliaryInfo option from the Authentication
Method list.
3826 5823-008 2–83

Getting Started
The following table specifies the configurations for the OS 2200 Extract File Data
Source types:

• External Pack Details – Specifies the properties for physical host pack details to
identify the extract file placement.

The following table specifies the configurations for the External Pack Details pack
type:

Configuration Property

External Host Specifies the name of the host as configured in the Clear Path
Forward Application Integration Services (CPF AIS).

User Id Specifies the registered user id that can access the host server.

The user id can be

• Alphanumeric character

• Period (.)

• Hyphen (-)

• Of a length less than or equal to 12

The user id must not begin with an underscore or numeral.

Password Specifies the password required for the authorized user id on the
host server.

The password can be:

• Alphanumeric character

• Of a length less than or equal to 18

A password must not contain a comma (,) and slash (/).

The password is obfuscated.

Configuration Property

Access control record
name(ACR)

Specifies the file access permissions and also identifies your
access permission.

Contact your OS 2200 System

Administrator for more information.

Note: The length of this field cannot exceed 6 characters.

Fixed Storage Pack Specifies whether Fixed Mass Storage is used on OS 2200.

Note: If the property is set to ‘false’, you can customize the
Pack Id's information. By default, this property is set to
‘False’.

If the property is set to ‘true’, Fixed Mass Storage is used.
2–84 3826 5823-008

Getting Started
• Filegroup – Specifies the SQL Server database filegroup in the Database
Filegroup property.

• Path – Specifies the path in the Path Name property where the pack is stored
on the disk.

– Pack Name – Specifies a unique name to define a storage area on the host for
the system components.

7. Click Apply, and then click OK to save and close the Properties window.

The Properties window, if open, displays the properties of the selected location. Refer
to Location Properties for properties applicable to a location.

General System Modeler Settings

To edit System Modeler’s general settings, perform the following:

1. From the Tools menu, select Options.

2. From the Explorer (located on the left-hand side of the Options dialog box), select
System Modeler, then General.

The following properties can be configured:

OS2200 Pack Settings Specifies the disk equipment type and names for up to eight
removable Packs. Click the OS 2200 Pack settings and select
Edit to view the OS 2200 Pack Setting window. You can
manually enter the disk equipment type and Pack Ids in the
space provided.

Note: The length of the Pack Id should not exceed 6
characters.

Host connection information Specifies the connection information needed to connect to

OS 2200. Click the Host connection information and select Edit,
and then select the Location option. The Location Selection
window appears. You can manually select the location and click
Ok.

Property Function

Member Filter configuration file Specifies the location of the Members Filter
configuration. The default location is
‘%APPDATA%\Unisys\Agile Business
Suite\6.1\System Modeler.

Note: The ‘Members Filter configuration file’
stores information about the Members pane filters.

Configuration Property
3826 5823-008 2–85

Getting Started
Summary
Agile Business Suite is a robust software that uses new technologies and leverages the
functionalities of Visual Studio framework. Agile Business Suite is built on high
productivity environment and offers:

• High level specification of the business model.

• Generate the complete application from the business model.

• One button deployment of the application.

• Lifecycle management.

Another key Agile Business Suite feature is its simple deployment to the targeted runtime
platform. You do not need to select the target platform until application deployment. You
can move the application from one platform to another instance of the supported platform
with no changes to the application specification from which the application is generated.
The one-button deployment handles the application framework and logic and the changes
to the applications data model.

Logging Style Specifies the level of log details to be stored.

Max File Size Specifies the maximum size of the log file.

File Location Specifies the location of the log file.

Settings Clear Navigator on exit Specifies whether the content between sessions is
maintained or not.

Display Attribute name
for frame attributes

Specifies whether the name of an attribute in a frame
is displayed.

Number of Threads for
Validation

Specifies how many threads are used for validation.

Max Update-Items In
Multiple Selection

Specifies the max number of items that can be
updated in a multiple selection scenario.

Property Function
2–86 3826 5823-008

Section 3
Developing Applications

Developer is an Integrated Development Environment (IDE) for rapid application
development. It operates as a plug-in to Visual Studio, running on a Windows workstation
and enables designing, developing, debugging, and deploying applications. The
development environment includes:

• System Modeler – for modeling information systems

• Debugger – for testing systems modeled in System Modeler

• Builder – for generating and deploying these systems

Creating System Modeler Projects
In System Modeler, a project is used to store the location and details of a model. When
defining a project you can either create a new model or use an existing model.

Security

The model, and any of its elements can have security applied to it, to set security, the
AccessControlled property at the Model level must be set to True.

To set the AccessControlled property of a Model, perform the following:

1. Select the Model in Class View.

2. Display the Properties window.

3. Select the AccessControlled property of the model and set the value to True.

Then each element of the model, or the entire model itself, can have security privileges
applied to them.

When transferring the model database to another machine on a different domain always
set the AccessControlled property to False. This ensures that the security is turned off at
the Model. After transferring the database, you can set the required privileges for each
user. To turn on the security, set the AccessControlled property to True.

If the security is turned off and the model database is transferred, then the users get
insufficient privileges on the machine to which the database is transferred.
3826 5823-008 3–1

Developing Applications
To set security for any element of a Model, perform the following:

1. From the View menu, select Class View to open the Class View window.

2. Select an element in the Class View window.

3. From the View menu, select Properties window.

4. In the Properties window for the element select the Security property.

5. Click the ellipses button to the right of the window, to open the Windows Security
dialog.

The Windows security dialog box enables you to add or remove users. You can also set
the following privileges for each user or group:

• Full Control – Allows or denies the user to set the Security Information on an Element
and all the privileges that applies to Read and Write permission.

• Read Logic – Allows or denies access to the Logic of a Method.

• Build – Allows or denies the ability to perform a build and deploy for a Model.

• Write – Allows or denies the ability to modify any attributes of an Element and all the
privileges that applies to Read permission.

Allow and Deny Permissions

To explicitly allow or deny the permissions, select or clear the appropriate check box.

• Allow Permissions – If Allow is selected, then Permissions are allowed.

• Deny Permissions – If Deny is selected, then Permissions are denied.

Note: The Deny entries take precedence over the Allow entries. So, if you are a
member of both the groups, the Allow Permissions and Deny Permissions, then you
are denied permission for the element.

Explicit and Inherited Permissions

There are two types of permissions:

• Explicit Permissions – If you set the permissions on an element and select Allow or
Deny, then it is Explicit Permission.

• Inherited Permissions – If you inherit the permissions from the parent of an element
and do not select Allow or Deny, then it is Inherited Permission. If the check boxes
under Permissions are shaded, the permissions are inherited from the parent. For
example, an Element of a Model has the permissions inherited from a Model.

Note: The Explicit Permissions take precedence over Inherited Permissions. This
means, if you are a member of two groups, the Explicit Allow Permission and
Inherited Permission which denied the same permission, then you are allowed that
permission.
3–2 3826 5823-008

Developing Applications
Adding Projects

The following options present in the New Project dialog box of the System Modeler
enables you to create a project:

• New Application – A new project for creating an AB Suite application or an AB Suite
XML Framework application by using the built-in System Modeler Painter for user
interface design.

• New Application For Client Framework – A new project for creating an AB Suite
Client Framework application that allows you to design a user interface by using
standard technologies, such as WPF, Silverlight, and ASP.Net.

• New Application From A File – A new project for restoring the backup file created
using the AB Suite solution. Refer to Restoring the AB Suite Solutions for more
information.

• Convert An Existing Model – A new project for creating an AB Suite Client Framework
model or an AB Suite XML Framework model by converting an existing AB Suite
model. See Converting the AB Suite Model for more information.

• Attach To An Existing Model – A new project that is associated with an existing AB
Suite model or AB Suite Client Framework model.

Adding a Project to an Existing Model

To create a project by attaching to an existing AB Suite model or AB Suite Client
Framework model, perform the following:

1. On the File menu, point to New, and then click Project.

The New Project dialog box appears.

2. In the Project Types pane, expand Templates, expand Agile Business Suite, and
then click Applications.

3. In the Templates pane, select Attach To An Existing Model.

4. In the Name box, enter the project name.

5. In the Location box, enter the path or browse to the location where you want to
store the new project.

6. Click OK.

The Attach To An Existing Model wizard appears.

7. From the Server Name list, select the SQL server.

8. From the Database Name list, select the database name.

9. Click Next.

The project creation confirmation message appears in the wizard.

10. Click Finish.

A project file, with an .smproj extension, is created in the location specified. You can view
the project through Solution Explorer, Class View, or Object Browser.
3826 5823-008 3–3

Developing Applications
Adding a Project with an AB Suite Application

To create a project with an AB Suite application, perform the following:

1. On the File menu, point to New, and then click Project.

The New Project dialog box appears.

2. In the Project Types pane, expand Templates, expand Agile Business Suite, and
then click Applications.

3. In the Templates pane, select New Application.

4. In the Name box, enter the project name.

5. In the Location box, enter the path or browse to the location where you want to
store the new project.

6. Click OK.

The New Application Wizard appears.

7. From the Server Name list, select the SQL server. By default, this field displays the
system name.

8. In the Database Name box, enter the database name. By default, this field displays
the solution name.

9. In the Model Name box, enter the model name. By default, this field displays the
solution name.

10. Select Include XML Framework check box, to create an AB Suite XML
Framework model and enable the XML modelling extensions.

11. Click Next to specify the Configuration Settings. The configuration is set to
Windows.

Note: If you are creating an XML Framework you cannot set the configuration to
MCP as the XML functionality is not supported in an MCP model.

12. Click Next to specify the Language Settings.

13. Select a primary language from the Locale list. By default, the primary language is
set to 1033 - English (United States).

14. Click Next to specify the Presentation Settings. By default, the presentation type is
set to Graphical.

15. Click Next.

The project creation confirmation message appears in the wizard.

16. Click Finish.

A project file, with an .smproj extension, is created in the location specified. You can view
the project through Solution Explorer, Class View, or Object Browser.

Note: The features of an AB Suite model are fully enabled in an AB Suite XML
Framework model.
3–4 3826 5823-008

Developing Applications
Adding a Project with an AB Suite Client Framework
Application

To create a project with an AB Suite Client Framework application, perform the following:

1. On the File menu, point to New, and then click Project.

The New Project dialog box appears.

2. In the Project Types pane, expand Templates, expand Agile Business Suite, and
then click Applications.

3. In the Templates pane, select New Application For Client Framework.

4. In the Name box, enter the project name.

5. In the Location box, enter the path or browse to the location where you want to
store the new project.

6. Click OK.

The New Application Wizard appears.

7. From the Server Name list, select the SQL server. By default, this field displays the
system name.

8. In the Database Name box, enter the database name. By default, this field displays
the solution name.

9. In the Model Name box, enter the model name. By default, this field displays the
solution name.

Note: The Include XML Framework check box is selected by default as the
XML modelling extensions are fully enabled in a Client Framework model.

10. Click Next to specify the Configuration Settings. The configuration is set to
Windows.

11. Click Next to specify the Language Settings.

12. Select a primary language from the Locale list. By default, the primary language is
set to 1033 - English (United States).

13. Click Next.

The project creation confirmation message appears in the wizard.

14. Click Finish.

A Client Framework project file, with an .smproj extension, is created in the location
specified. You can view the project through Solution Explorer, Class View, or Object
Browser.

Note: The XML modelling extensions are fully enabled in a Client Framework model.
3826 5823-008 3–5

Developing Applications
Adding System Modeler Items

You can add new items or existing items from several places within System Modeler,
depending on the situation.

You can add elements from the

• Class View

• Members tab

• Subclass list of the class Properties tab

• Model Inheritance tab

You cannot add elements from the Object Browser.

Adding New Items

The process of adding a new element is the same for all System Modeler elements. The
elements available to add differ according to the selected parent element.

To add a new element, perform either of the following:

1. Select a System Modeler element from any of the views described in Adding System
Modeler Items.

2. Right-click and select Add from the cascading menu.

3. Select the element to add on the secondary, and any subsequent, cascading menu.

The new element is added to your selected element with a default name.

Or

1. Select a System Modeler element from any of the views described in Adding System
Modeler Items.

2. From the File menu, select Add.

3. Select Add New Item.

The Add New Item dialog box is displayed.

4. Select the required element.

5. Enter a name for the new element.

Note: Element names must be unique amongst its siblings.

6. If you want the document window for the new element to open immediately upon
creation, select Open the new item.

7. Click Create.

Note: When you add a new element, the new element is selected. The element
remains selected when it is updated.
3–6 3826 5823-008

Developing Applications
Add New Item Dialog Box

This dialog box allows you to add items to your System Modeler projects.

Templates

Displays the valid items that you can add to the selected element.

The templates are organized in three groups:

• Kinds

• Stereotypes

• Wizards

Name

Enter the name for the new item. If you do not specify a name, it is generated
automatically.

Names can be between 1 and 64 characters in length and can contain a combination of
alphanumeric characters and underscores. Names can contain non-ASCII characters.

A name must not begin with an underscore or numeral, and must not contain any white
space, be that spaces or tabs.

Adding Existing Items

You can add existing elements to folders.

A folder is a convenient way of grouping together model elements; for example, all
elements that are used by a particular business activity. A folder does not own the
elements it contains. Ownership remains with the folder’s parent element, meaning
individual elements can be contained in more than one folder.

The Add Existing Element option enables you to select the elements you want to see
in the folder. Elements can be added from either, Solution Explorer, Class View or the
Members tab.

To add an existing item, perform either of the following:

1. Select a folder from any of the views described in Adding System Modeler Items.

2. Either right-click and select Add Existing Item, or on the File menu, select Add
Existing Item.

The Add Existing Item dialog box is displayed, which contains the elements available
to be added to the selected model or folder. If no elements are available the dialog
box is empty.

3. Either scroll or use the Name field to locate an element.
3826 5823-008 3–7

Developing Applications
4. Select the required element.

5. Click Open.

Add Existing Item Dialog Box

You can use this dialog box to add existing items to a folder. Following is the description
of the fields.

Members Filter

Allows user to filter members in the add dialog box.

From

The From field:

• Displays the namespace to which the folder belongs.

• Displays the items contained in the namespace that you can add to the folder.

• Displays the items either in a simple List or with Details. In both the modes, the items
are sorted alphabetically. You can change the sorting in the Details mode.

Use filters to display only the required items.

To change the sort or set a filter, perform the following:

1. Right-click any column heading.

2. Select the action from the context menu.

Name

You can enter the name of the item to add to the folder. While entering the first letters of
a name, the cursor scrolls to the item that most closely matches in the display field.

Notes: Following rules are applied to all the items including Folders and
Dictionaries except Diagrams:

• When you add an existing item such as report or ispec within a folder to another
folder, duplicate instances are created in second folder. The changes made in any
of the instances are reflected in other instance.

• When you add an existing item such as a report or ispec which is not within a
folder to another folder moves the items to the folder. The items that are not
within a folder are termed as Orphaned Items.
3–8 3826 5823-008

Developing Applications
Synchronize Selection in Class View

In windows where elements, like Members list, Search result List, Diagrams, and so on
are displayed, you can synchronize a current element with the Class View.

For synchronizing a selected element, perform the following:

1. Right-click the selected element.

2. Select Synchronize Class View option.

This option is also available in the Quick Navigator window.

Adding IGraphicalPresentation for Client Framework
Applications

The IGraphicalPresentation is an element that defines the attributes exposed by the AB
Suite Access Layer for creating client applications by using the technology of your choice.
It is automatically added when you add an Ispec, an Event, an Insertable, a CopyIspec, or
a CopyEvent.

Note: The IGraphicalPresentation is not added to a class automatically. Therefore, if
you want to add the IGraphicalPresentation to a class, you must do it manually.

To add an IGraphicalPresentation, perform the following:

1. Right-click the model, point to Add, and then select Folder from the context menu.

A folder with the default name Folder1 appears under the model.

2. Rename the folder from Folder1 to an appropriate name.

3. Right-click the folder, point to Add, and then select Segment from the context
menu.

A segment with the default name Segment1 appears under the folder.

4. Rename the segment from Segment1 to an appropriate name.

5. Right-click the segment, point to Add, and then select any of the following elements
from the context menu:

• Ispec

• Event

• Insertable

• CopyIspec

• CopyEvent

The element that you select from the context menu appears under the folder and
theIGraphicalPresentation node appears automatically under the selected element.

6. Rename the element as appropriate.
3826 5823-008 3–9

Developing Applications
You can also add the IGraphicalPresentation to a class by performing the following:

1. Perform step 1 through step 4.

2. Right-click the segment, point to Add, and then select Class from the context
menu.

3. Rename the class from Class1 to an appropriate name.

4. Right-click the ispec, point to Add, and then select Presentation from the context
menu.

An IGraphicalPresentation node appears under the class.

You can now add attributes to the IGraphicalPresentation node by performing the
following:

1. Right-click the IGraphicalPresentation node, point to Add, and then select
Attribute from the context menu.

An attribute with the default name Attribute1 appears in the Members pane.

2. Rename the attribute from Attribute1 to an appropriate name and set its properties as
required.

Note: The attribute created under the IGraphicalPresentation node also appears
in the Members pane for an ispec or a class definition. Different properties of an
attribute can be set when it is selected in the context of the
IGraphicalPresentation node, and when it is selected in the context of an ispec.
The properties of an attribute under the IGraphicalPresentation node deal with the
data being exchanged between the user interface and the runtime system. The
properties of the same attribute that appears under the ispec deal with modelling
and persistence of the attribute.

After you add attributes to the IGraphicalPresentation node, you can generate the Client
Framework projects and design the user interface by using the development tools
available for the chosen client technology.

If you want to add an Ispec, an Event, an Insertable, a CopyIspec, or a CopyEvent without
an IGraphical Presentation node, perform the following:

1. Right-click the model, point to Add, and then select Folder from the context menu.

A folder with the default name Folder1 appears under the model.

2. Rename the folder from Folder1 to an appropriate name.

3. Right-click the folder, point to Add, and then select Segment from the context
menu.

A segment with the default name Segment1 appears under the folder.

4. Rename the segment from Segment1 to an appropriate name.
3–10 3826 5823-008

Developing Applications
5. Right-click the segment, point to Add, and then select Class from the context
menu.

A class with the default name Class1 appears under the folder.

6. Open the Properties window of the class, and then select any of the following
elements, which you want to add to the segment, from the Stereotype list.

• Ispec

• Event

• Insertable

• CopyIspec

• CopyEvent

This adds the elements of your choice to the segment without the IGraphicalPresentation
node.

Adding Attributes, Variables, or Parameters

In an XML Framework model or Client Framework model you can add attributes,
variables, or parameters using a dialog box.

To add attributes, perform the following:

1. In the Class View window, right-click an element for which you want to add an
attribute and then select Attribute.

 Or

 Right-click the element, point to Add, and then select Add New Item....

The Add New Item dialog box appears.

2. Select Attribute.

The Add New Attribute dialog box appears.

You can define a simple attribute, array attribute, or list attribute using this dialog box.

To define a simple attribute

a. In the Template box, optionally enter or browse to the class or type that this
attribute derives from. If left blank, the attribute will be created with Primitive =
String and Length = 1.

b. In the Name box, enter an appropriate name for the attribute, or retain the
default name.

c. Click Create.
3826 5823-008 3–11

Developing Applications
To define an array attribute, perform the following:

a. In the Template box, optionally enter or browse to the class or type that this
attribute derives from. If left blank, the attribute will be created with Primitive =
String and Length = 1.

b. In the Name box, enter an appropriate name for the attribute, or retain the
default name.

c. In the Multiplicity box, enter a valid Multiplicity value. For example, ‘5’, ‘2,2’
(for a two dimensional array). By default, Multiplicity field is set to 1.

d. Click Create.

To define a list attribute

a. In the Template box, enter or browse to the class or type that this attribute
derives from.

b. In the Name box, enter an appropriate name for the attribute, or retain the
default name.

c. Select the List check box.

Notes:
• Template is required for a List definition.

• If you select the List check box the Multiplicity field is disabled because
it is not valid to have an array of lists.

d. Click Create.

Note: The Kind property of the List attribute displays List Attribute.

You can add more attributes by selecting the Keep Open check box.

You can also define a variable or a parameter by using a dialog box similar to the Add New
Attribute dialog box. When you right-click a method, point to Add, and select Variable or
Parameter from the context menu the Add New Variable or Add New Parameter dialog
box appears. The fields in this dialog box are similar to the Add New Attribute dialog box,
except the title of the dialog box.

Grouping Elements

It is possible to group attributes, parameters, and variables within your project.

Groups are displayed in the Members pane as an expandable list. Elements in groups
cannot be sorted, but can be rearranged by dragging and dropping, or by changing the
sequence numbers.

To add an element to a group, perform the following:

1. Select the element in the Members window.

2. Right-click the element and select Add New Item to <selected item name>.
3–12 3826 5823-008

Developing Applications
Setting Properties

For each element in your project, the Properties window displays properties which
influences how the element functions.

Properties are displayed for elements selected in the tool windows (Solution Explorer,
Class View, Object browser) and the editors in the document windows.

For the Painter and UML Designer tabs, the object name field lists all available elements
from the active tab. For other tabs, however, the object name field lists only the selected
element.

The Properties window displays the properties of single or multiple selected elements. If
multiple elements are selected, only the properties common to all selected elements are
displayed.

The Properties window displays different types of editing fields, depending on the needs
of a particular property. These edit fields include edit boxes, drop-down lists, and links to
custom editor dialog boxes such as the Element Picker.

Properties shown in gray are read-only.

When a value is changed from the default it is displayed in bold. To revert a property to
the default value, right-click and select Reset.

Refer to the Agile Business Suite Developer Online Help for more information on
setting property values for graphical objects.

All Properties

The table below lists all properties for all elements. The following links describe the
properties applicable to each element type:

• All Properties

• NOF Format Property

• Attribute Properties

• Class Properties

• Class Diagram Properties

• Dictionary Properties

• Copy Event Properties

• Copy Ispec Properties

• Event Properties

• External Class Properties

• Folder Properties

• Group Properties
3826 5823-008 3–13

Developing Applications
• Frame Properties

• Insertable Properties

• Ispec Properties

• Location Properties

• Method Properties

• Messenger Properties

• Model Properties

• Parameter Properties

• Profile Properties

• Reference Properties

• Report Properties

• Segment Properties

• SQL Script Properties

• Serialization Properties

• Teach Screen Properties

• Variable Properties

Property Function

(Name) Specifies the logical name of the selected element. The
following are reserved words and cannot be used to name an
element: SUPER, COMPONENT, THIS, and OWNER.

AccessControlled Allows an administrator to specify if the model, and all its
elements are under access control. When set to True, all
elements can individually have security applied to them.

ActmthNotEntered Specifies whether end-users are allowed to alter the
accounting month. When this property is set to True, the
accounting month cannot be changed. The value of the
accounting month is stored in the ACTMTH System attribute.

AllowPurge Specifies whether users of your generated system are allowed
to physically delete records using the PUR command in the
Maint field of the standard Ispec screen.

When the record is displayed, an entry of PUR in the Maint
field causes a physical deletion to take place.

If this value is False, users are not allowed to enter PUR in the
Maint field. This is the default.

AlphaClearWhenCharacter Specifies the DEF.WHEN.CLEAR property for alphanumeric
attributes.

Author Read-only. The identifier of the person who created the
selected element. Reflected on the Properties tab.
3–14 3826 5823-008

Developing Applications
AutomaticEntryCapable Specifies whether the element is able to accept Automatic
Entries.

AutomaticTab Cursor automatically tabs to next field on a presentation
screen at runtime.

Note: This option is applicable only to the Presentation and
Winform Client.

AutoRecallCapable Specifies whether you want to enable all data values for an
Ispec record to be recalled to the screen, based on a specified
Key value.

BaseYear Specifies the year upon which the DateConvert command
bases relative day numbers.

Caption Language dependent description of an element to appear in
messages.

CenturyStartYear Specifies a secondary base year to define which century a date
belongs to. This is independent of the value of the Base Year.

Conditions Specifies logic that selects a subset of records from a file
associated with the selected profile.

This property is reflected in, and can be changed from, the
Conditions tab of the selected profile.

Constraint An expression that is an attribute qualified path to the value
being represented by a Reference attribute.

ConvertToUpperCase Specifies that all input is converted into upper case characters.

Copies Specifies the number of copies that can be painted onto a
form in Painter for an attribute that is a member of a Copy
Ispec.

Created Read-only. The date on which the selected element was
created.

CurrencySign Specifies the character to be output with EDIT $ Attributes in
the Report to be modified or added to the selected Element.
By default, the value is $.

DateConvertSetsGLB.CENTURY Specifies whether Glb.Century is reset by a complex
DateConvert command.

DateFormat Specifies the format of the date throughout the segment and
its element. Options are UK, International, or US.

DecimalCharacter Specifies the character to be used as a decimal place.

Decimals Specifies the number of decimal places required. The
Decimals property is only displayed if the Primitive property is
set to number or signed number.

DecimalsKeyed Specifies the default for how decimal points are used in
numeric attributes. This property's value is inherited.

Property Function
3826 5823-008 3–15

Developing Applications
DefaultCursorField Specifies the Default cursor field position, otherwise cursor
positioning may be random.

You can set this property by using any one of the following
ways:

• Use the Element Picker to select the attribute in the
DefaultCursorField property field.

• Enter the attribute name in the DefaultCursorField property
field manually.

Notes:

• This property is valid only if the Direction property is
set to In or InOut.

• The attribute being set in the field must be of primitive
type or a reference.

DefaultDevice Specifies the device to which the report is print or display.

Fixed Type Specifies the default settings for background color, foreground
color and font for Fixed Presentation types in Painter at Model
or Segment levels. These settings can be changed for each
child element individually in Painter. Expand each sub property
to select your chosen setting. Refer to PresentationType
Property under Defining User Interfaces for more information.

Graphical Type Specifies the default settings for background color, foreground
color, font, ScrollBars, ShowActmth, ShowHeader, and
TransmitToCursor for Graphical Presentation types in Painter at
Model or Segment levels. These settings can be changed for
each child element individually in Painter. Expand each sub
property to select your chosen setting. Refer to
PresentationType Property under Defining User Interfaces for
more information.

Print Type Specifies the default settings for BlankWhenZero, background
color, FloatingSign, foreground color and font for Print
Presentation types in Painter at Model or Segment levels.
These settings can be changed for each child element
individually in Painter. Expand each sub property to select your
chosen setting. Refer to PresentationType Property under
Defining User Interfaces for more information.

Note: The changes you apply to this property affect the
display of a report. To get a desired output in a printed
report, you can configure the print properties using AB Suite
Runtime Administration Tool.

Refer to the Agile Business Suite Runtime for Windows®
Operating System Administration Guide for more
information.

Direction For an attribute, painted on a form, a direction of Out
indicates that the control is read-only.

DuplicatesAllowed Specifies whether the profile is permitted to contain duplicate
key values.

Property Function
3–16 3826 5823-008

Developing Applications
EnforcePersistent Specifies that when this property is set to true, all objects
within this namespace that are persistent, or are made
persistent, must inherit their definition from an item in a
Dictionary. Applies to Model and Segment elements only.

EnforcePresentation Specifies that when this property is set to true, all objects
within this namespace that have their direction set to a value
other than None, must inherit their definition from an item in a
Dictionary. Applies to Model and Segment elements only.

EventSet Defines an AutoPersist dependency between two Events. This
dependency causes all the persistent attributes of this event
to persist in the EventSet. The value of the EventSet property
must be the name of another event.

FullSuppression Display a zero numeric value as spaces.

HasMaint Specifies whether the External Ispec contains the MAINT field.

Note: This property becomes visible only if the IsExternal
property of an ispec is set to True.

IfPresent Specifies whether to look up the object if the value for the key
is defined.

If set to True, the profile becomes conditional and returns a
view instead of an index.

Note: This property becomes visible only when a key is
selected.

Inherits Specifies a class from which the selected class inherits. By
leaving the field empty or deleting an existing entry you are
specifying that the selected class has no inheritance. Inherits
can also mean an “instance of” when the deriving attribute
has a multiplicity >0 and does not extend the superclass.

This property is reflected in, and can be changed from, the
Properties tab of the selected class in the Superclass field.

Note: Inheritance from a persistent class is not supported.
This restriction is not enforced by System Modeler and
does not produce a validation error. However, it results in a
compilation error when generated.

For the primitive attributes the following properties are
inherited:

1. Primitive

2. Length

3. Decimals (for Number/Signed Number)

Integrity Indicates if Dataset locking is enabled automatically, and at
what level. This ensures processing integrity and full-
synchronized recovery.

Property Function
3826 5823-008 3–17

Developing Applications
InquiryOnly Specifies whether to prevent Report logic from updating a
database. The following LDL logic commands should not be
used: FLAG, STORE, and PURGE.

When you set Inquiry Only to True, all existing logic will need
to be validated again.

IsAscending Keys are sorted in ascending order.

IsConstant Specifies that an object cannot have its value changed in logic.

IsExternal Specifies whether the class is acting as a proxy for an external
component, class or library.

Even when this property is set to True, the elementstill
contains the following Ispec system Attributes: Actmth,
Glb.Source, Input_Date, Ispec, and TranNo.

Note: These attributes are displayed in Inherits dialog box.

IsFinal Specifies that the method cannot be overridden in a sub class.

IsInnerClass Instances of an inner class are linked to an instance of its
owner and has have access to all its members of its containing
class. Only one class in an inheritance hierarchy can have
IsInnerClass set to True. When a complex class is inherited,
this property is derived by the child class.

IsKey Specifies whether the attribute acts as a key in the database
table containing its owning class.

IsPersistent Specifies whether the element is persistent.

IsRequired Specifies whether the primitive attribute requires a value.

IsResolved Specifies whether the element exists in the model or whether
it has been created during the import of an element, which
refers to it.

Note: This property becomes visible only when an element
is unresolved, that is when it is set to False. This property
can only be changed from False to True. Once an element
has been resolved it cannot be made unresolved again.

IsSynchronous Specifies whether the method can execute synchronously.

IsUnique Specifies whether Items can be added to multiple Dictionaries,
if this property is true items can only be added to that
Dictionary.

Kind Read-only. Identifies the kind of element selected.

Language Specifies the programming language to be used for the logic.

Length Specifies a numeric value for the length of the attribute.

Leftfill Numerics Specifies that the numeric screen items are filled from the left,
not the right.

Property Function
3–18 3826 5823-008

Developing Applications
LineLength Specifies the maximum length of the Report print line. This
property is read-only for frames.

Notes:

• For reports that are generated in an MCP non-ROC
system, you should consider the following rules:

• If DefaultDevice is LP or RP, LineLength is restricted
to 80-132.

• If DefaultDevice is DP, LineLength is restricted to
255.

• If DefaultDevice is VD, LineLength is restricted to
80.

• The changes you apply to this property affect the
display of a report. To get a desired output in a printed
report, you can configure the print properties using AB
Suite Runtime Administration Tool.

Refer to the Agile Business Suite Runtime for Windows®
Operating System Administration Guide for more
information.

LineSpacing Specifies the spacing between the lines.

Locale Specifies the Locale Id of the given language.

MemberPersistence Do members default to Persistent?

MemberVisibility Specifies the default visibility for new member elements. This
can be overridden for individual elements.

MultiByteClearWhen Character Specifies the clear-when character to be used with MultiByte
strings.

Note: This property becomes visible only if
Internationalization Support is set to Multibyte String
Support.

MultiByteStringValidation Specifies the type of validation to be applied to MultiByte
strings.

Note: This property becomes visible only if
Internationalization Support is set to Multibyte String
Support. When Internationalization Support is set to some
other value, this property must be set to spaces.

Modified Read-only. The date the element was last modified.

Namespace Specifies a namespace for qualifying element used in XML.

Multiplicity Number of instances.

Property Function
3826 5823-008 3–19

Developing Applications
NationalString Specifies the type of internationalization support for Single
Byte and MultiByte Coded Character Sets.

The runtime subsystem allows users to make use of different
collating sequences on the same single-byte Character Code
Set. The national strings in a segment could use one collating
sequence when a system is generated from one configure set
and a different collating sequence in a system generated from
another configure set.

The following options are available for this property:

• None – Indicates that there is no international support.

• SingleByte string support – Provides the ability to
generate systems without support of KANJI characters.

• MultiByte string support – Indicates internationalization
support of KANJI characters.

• Unicode – Indicates that there is no international support.
Any MCP generatefails if Unicode is selected.

NOFLength Specifies the size of an object in a fixed presentation.

NOFOrder Redefining the NOF Order.

NOF Format CR/DR or +/-

Note: NOF Format is also used to define the NOF Format
Presentation/Painter properties.

NumericClearWhenCharacter Specifies the DEF.WHEN.CLEAR property for numeric
attributes. This value can be set to blank or None.

Owner The namespace to which the element belongs.

Note: When namespace is changed, system modeler
prompts for a confirmation based on the System Modeler
Policies settings. Refer to System Modeler Policies for
more information on System Modeler Policy settings.

Pitch Specifies the default pitch setting (characters per line) for
printed Report output. The following pitches are available: 220,
160, 132, 99, 66, and 49.

Note: This property is preset and disabled if the Default
Device for your Report is Enterprise Output Manager (EOM)
generated Report.

PresentationType Specifies if the selected element has a user interface, and
what format such an interface takes. Refer to Presentation
Type formats for more information on options.

For Copy Ispecs the default value is Graphical and is read-
only. Refer to the Agile Business Suite Developer Online
Help for more information on using the Painter tab.

Property Function
3–20 3826 5823-008

Developing Applications
Primitive Specifies the kind of data that the element can contain. The
following values are available for this property: Boolean, String,
Signed Number, Date, Class, National string, and MultiByte
string.

Note: A National String behaves the same as a String until
the National Support is enabled on the Segment.

PrintIfPresent Specifies whether a line is to be printed if the attribute value is
not equal to spaces or zeros.

Project File Path Specifies the full path name of the project on the disk.

ProductionSystem Specifies whether the Database auditing of the System’s
application data must occur when the System has been
generated.

RefreshPresentation Specifies whether the framework Construct method should
always be called at the end of the segment cycle.

ReportParameter Specifies the report attribute that revives the parameter used
to invoke the report.

ReservedBy Read-only. The identifier of the user that currently has the
selected element reserved. An element can be reserved in
two ways:

Explicitly by the user or implicitly by the model when any of
the documentation windows are edited.

RSNCapable Specifies that when this property is set to true, includes a
built-in persistent attribute called Identifier from the
framework that acts as the auto incrementing number.

The RSN Capable property can be set when the class has
persistent members.

The RSNCapable must be set on the base class of an
inheritance hierarchy. All subclasses derive the property value
from the base class.

Security Specifies the security level for an element for this user. The
AccessControlled property of the model must be set to True to
provide this option.

Semantics Specifies the semantics to be used by the element. You can
select either System Modeler specific or conventional
semantics.

SeparatorCharacter Specifies the character to be used to delimit groups of three
digits.

Sequence Specifies the sequence number of the selected element.
Changing the sequence number of one element affects the
order of the other elements in the list.

Server Name Specifies the server that hosts the model database.

StandardHeading Specifies whether to print the standard heading on each page
of the Report.

Property Function
3826 5823-008 3–21

Developing Applications
Stereotype Specifies the stereotype that identifies how the class operates
and is interpreted in the system.

SuppressZeros Suppresses the leading zeros for numeric data types in Ispec
screen layouts. This option does not apply to data types in
Reports and Usage Inquiry Attributes.

The SuppressZeros property results in non-significant zeros to
be replaced by spaces on output and leading spaces changed
to zeros on input. If a separator character is also specified, the
leading separators are also changed to spaces.

A zero value appears as 0.

SynchronizedField Specifies whether a control in a presentation has its height and
width adjusted when the length of the contents are changed.
Fixed Width indicates that only controls with fixed width fonts
are synchronized. This property is only available at the
Segment level.

Template Derives the class or type for an attribute. It allows to
instantiate an instance that cannot be extended. This property
can be set to any type (Primitive or List), Class, or Serialization.

Note: In an AB Suite model (that is, a model that does not
have the model extensions enabled) all attributes are
created as Inherits-based. Template-based attributes are
not available in such a model.

Value Specifies the initial value for the Attribute.

VersionFile Specifies the name of the file that contains details of the
element in the Source Control Bank.

Note: When you create a new element, the System
Modeler prompts for a change of VersionFile Property
value based on the System Modeler Policies settings. Refer
to System Modeler Policies for more information on
System Modeler Policy settings.

VideoCapable Specifies whether to direct the output of a Report to a video
device.

Note: In Windows® runtime, this property is ignored as all
reports are automatically Video Capable.

Visibility Specifies the level of visibility for the element.

Private – Only visible within its namespace

Protected – Visible within its namespace and any namespace
inheriting from it.

Public – Visible outside its namespace.

Property Function
3–22 3826 5823-008

Developing Applications
NOF Format Property

The NOF Format object property is used to define the NOF format as a signed number
attribute for Model properties and Painter properties. The following table describes the
values, and identifies the primitive type to which they are applicable.

Note: For signed attribute having direction as None, NOF Format property is not
displayed in property window.

Attribute Properties

The table below lists all properties for the particular element. Not all properties may be
visible when an element is added, or an existing element is selected. Some properties
only become visible when a dependent property is set to a specific value.

Value Description Primitive Type

CR Signed (CR or DR) numeric, default CR Signed Number

- Signed (CR or DR) numeric, default - Signed Number

+ Signed (CR or DR) numeric, default + Signed Number

DR Defaults to DR Signed Number

Property Function

(Name) Specifies the logical name of the selected element. The following are
reserved words and cannot be used to name an element: SUPER,
COMPONENT, THIS, and OWNER.

Alias An automatically generated unique name for the selected element. You
can change this name, but if it clashes with an existing alias, you are
prompted for another name or to cancel the name change.

Author Read-only. The identifier of the person who created the selected
element. Reflected on the Properties tab.

ConvertToUpperCase Specifies that all inputs are converted into upper case characters.

Created Read-only. The date on which the selected element is created.

Decimals Specifies the number of decimal places required. The Decimals
property is only displayed if the Primitive property is set to number or
signed number.

DecimalsKeyed Specifies the default for how decimal points are used in numeric
attributes. This value is inherited.

Description Specifies a short description of the selected element. Reflected on the
Properties tab.

Direction Specifies how the parameter passes data; in, out, or both in and out.
For an Attribute, painted on a form, a direction of Out indicates that the
control is read-only.
3826 5823-008 3–23

Developing Applications
Element Name Specifies the name of the element in the XML message. This need not
be same as the attribute name.

EnableMaskDefinition Specifies that when this property is set to true, the attribute data is
masked in the log file at runtime. By default, the value is False.

To support data masking in the MCP database, this property is enabled
for attributes when the

• Direction property is set to None.

• IsPersistent property is set to True.

• Primitive property is set to either Number or String.

Data masking of persistent attributes in the database is only available
on the MCP platform.

Notes:

• MCP has an optional LogLibSecurity host utility at runtime that
lets you enter the attributes to be masked along with the
starting offset, mask length, and mask character. Refer to the
Agile Business Suite Runtime for ClearPath MCP Administration
Guide for more information on the LogLibSecurity utility.

• EnableMaskDefinition is used in conjunction with the
Obfuscate Level MCP segment configuration property to mask
data in the MCP database. Data masking occurs when
EnableMaskDefinition is set to True and when the

– Obfuscate Level = 1 or

– Obfuscate Level = 2 or

– Obfuscate Level = 3 and Extended Edition is set to True.

ExcludeIfEmpty When formatting an XML message if ExcludeIfEmpty is set to True and
the attribute value is blank or zero, then the element is not included in
the output XML message.

Inherits Specifies a class from which the selected class inherits. By leaving the
field empty or deleting an existing entry you are specifying that the
selected class has no inheritance. Inherits can also mean an “instance
of” when the deriving attribute has a multiplicity >0 and does not
extend the superclass.

This property is reflected in, and can be changed from, the Properties
tab of the selected class in the Superclass field.

Note: Inheritance from a persistent class is not supported. This
restriction is not enforced by System Modeler and does not
produce a validation error. However, it results in a compilation error
when generated.

For the primitive attributes the following properties are inherited:

1. Primitive

2. Length

3. Decimals (for Number/Signed Number)

Integrity Indicates if Dataset locking is enabled automatically, and at what level.
This ensures processing integrity and full synchronized recovery.

Property Function
3–24 3826 5823-008

Developing Applications
Is Key Specifies whether the attribute acts as a key in the database table
containing its owning class.

IsPersistent Specifies whether the element is persistent. If IsPersistent is set to
True, an attribute that is a member of an Ispec or Vanilla class is
database persistent, that is, saved as a column in the database.

IsRequired Specifies whether the primitive attribute requires a value.

For an attribute in a Serialization (serializable interface), in an XML
Framework application, if IsRequired is set to True it indicates that an
input XML message must contain the element and it must contain a
value.

IsResolved Specifies whether the element exists in the model or whether it has
been created during the import of an element which refers to it.

Note: This property becomes visible only when an element is
unresolved, that is when it is set to false. This property can only be
changed from False to True. Once an element is resolved it cannot
be made unresolved again.

Kind Read-only. Identifies the kind of element selected.

Length Specifies a numeric value for the length of the attribute.

Lock Sign Check this check box to specify that a signed field is to be locked at run
time. The numeric value preceding the signed field may be entered or
modified, but the sign itself may not.

MaskDefinition Specifies the mask definition that can be applied to the attribute data at
runtime when the EnableMaskDefintion property is true. This property
is optional and if left blank, the default mask character, '*' is applied to
mask the entire field value.

You can specify a string of characters as the mask definition to mask a
field value at runtime. Only non-Unicode and printable characters can
be specified in the mask. A period (.) indicates that the underlying
position in the field is not masked.

For example, the mask definition “….####....&&&&” has two separate
masks at different positions in the field. Hence
“ABCDEFGHIJKLMNOP” would be masked as
“ABCD####IJKL&&&&”

This property is enabled for attributes that have the Direction property
set to an option other than None and the Primitive property set to
either Number or String.

Notes:

• MCP has an optional LogLibSecurity host utility at runtime that
lets you enter the attributes to be masked along with the
starting offset, mask length, and mask character. Refer to the
Agile Business Suite Runtime for ClearPath MCP Administration
Guide for more information on the LogLibSecurity utility.

• This property is ignored for the masking of data in the MCP
database. DMSII uses its own obfuscation algorithms.

Modified Read-only. The date the element was last modified.

Property Function
3826 5823-008 3–25

Developing Applications
Multiplicity Number of instances.

Caution: In MCP Runtime, Enterprise Database Server (DMSII)
does not allow the number of dimensions to change on an existing
persistent attribute.

NOFOrder Redefining the NOF Order.

NOFType CR/DR or +/-

Owner The namespace to which the element belongs.

Note: When namespace is changed, system modeler prompts for a
confirmation based on the System Modeler Policies settings. Refer
to System Modeler Policies for more information on System
Modeler Policy settings.

Primitive Specifies the kind of data that the element can contain. The following
values are available for this property: Boolean, String, Signed Number,
Date, Class, National string, and MultiByte string.

Note: The National String option is made visible only if
Internationalization Support is set to National String Support.

ReservedBy Read-only. The identifier of the user that currently has the selected
element reserved.

Security Specifies the security level for an element for this user. The
AccessControlled property of the model must be set to True to provide
this option.

Semantics Specifies the semantics to be used by the element. You can select
either System Modeler specific or conventional semantics.

Sequence Specifies the sequence number of the selected element. Changing the
sequence number of one element affects the order of the other
elements in the list.

For an attribute in a Serialization (serializable interface), in an XML
Framework application, Sequence specifies the order in which the
element is written into an output XML message. The order of
elements in an input XML message is not significant.

StoreIfPresent A property that can be applied to persistent, non-key attributes to
improve database performance when handling large data types with
low expected numbers. The database space is optimized by
maintaining a database structure for only those attributes that do not
have a space or zero as their value. This feature is supported only in the
MCP runtime environment.

SuppressZeros Suppresses the leading zeros.

Note: This property is applicable only when:

• Attribute’s primitive type is set to a Number or Signed Number.

• Attribute’s owner has a Presentation and its either Fixed,
Graphical, or Graphical and Fixed.

• Attribute’s Direction is either In, Out, or InOut.

Property Function
3–26 3826 5823-008

Developing Applications
Initial Value

The Value property is used to specify the initial value for an attribute.

Different initial value can be specified for each language translation associated with the
attribute. Each value can be edited either from the Translations tab or by selecting the
language from the Session Language drop-down list and editing the value property of an
attribute.

Initial value must confirm to the following rules:

• Length of the value must not be greater than the length of attribute.

• Double-quote (“) and backslash (\)must be ‘escaped’ by doubling it or preceding it
with a backslash.

• Initial value must be compatible with attribute data type.

• Numeric:

– Number data type cannot have sign (+/-) in the initial value.

– Number of decimals in the initial value must be less than or equal to the decimals
specified in the decimal property of an attribute.

– If the decimal property is not set, initial value of an attribute cannot have decimal
character.

The initial values associated with an attribute for the different language translations can
be validated by using validate option in the attribute level.

Template Derives the class or type for an attribute. It allows to instantiate an
instance that cannot be extended. This property can be set to any type
(Primitive or List), class, or Serialization.

Note: In an AB Suite model (that is, a model that does not have the
model extensions enabled) all attributes are created as Inherits-
based. Template-based attributes are not available in such a model.

Value Specifies the initial value for the element.

Note: This value is validated automatically after the text is entered
and errors are shown in the Error List.

VersionFile Specifies the name of the file which contains details of the element in
the Source Control Bank.

Visibility Specifies the level of visibility for the element.

Private – Only visible within its namespace

Protected – Visible within its namespace and any namespace inheriting
from it.

Public – Visible outside its namespace.

XsdType Specifies the XML type when generating an XML Schema Definition
(XSD) from a Messenger class or a Serializable class definition.

Property Function
3826 5823-008 3–27

Developing Applications
In the Painter, the Value property of a field specifies its default value that gets loaded into
the field when the host sends a blank value.

Note: The value of this property is displayed in the Painter and Debugger screens.
This helps to visualize the look-and-feel of the form with representative data shown
in the associated fields. So, the Value property is applicable only for Winforms and
not for CE clients.

Examples of Initial Value

Example 1: When the attribute is of data type Number

Valid:

123
1.23 (Decimal property set to 2)

Invalid:

+123 (Number must be unsigned)
1.2 (Decimal property set to 0)
1.234 (Decimal property set to 2)
1+2 (Arithmetic expression in the initial value)
1a2 (Alpha numeric in the initial value)

Example 2: When the attribute is of data type SignedNumber

Valid:

+123
-1.23 (Decimal property set to 2)

Invalid:

1+23 (Arithmetic expression in the initial value)
1a2 (Alpha numeric in the initial value)

Example 3: When the attribute is of data type Boolean

Valid:

True
False
Yes
No
Y
N
3–28 3826 5823-008

Developing Applications
Invalid:

123 (Incompatible)
Abc (Incompatible)
1a2 (Incompatible)

Example 4: When the attribute is of data type String

Valid:

123
\\abc
\”1+2
“”12a

Invalid:

\123 (Backslash must be escaped)
“abc” (Double-quote must be escaped)
1”a2 (Double-quote must be escaped)

Example 5: When the attribute is of data type Date

Valid:

12122012
01021999
17011986

Invalid:

11Jan2016 (Incompatible)
Jan112009 (Incompatible)

Class Properties

The table below lists all properties for the particular element. Not all properties may be
visible when an element is added, or an existing element is selected. Some properties
only become visible when a dependent property is set to a specific value.

Property Function

(Name) Specifies the logical name of the selected element. The following are
reserved words and cannot be used to name an element: SUPER,
COMPONENT, THIS, and OWNER.

Alias An automatically generated unique name for the selected element. You
can change this name, but if it clashes with an existing alias, you are
prompted for another name or to cancel the name change.

Author Read-only. The identifier of the person who created the selected
element. Reflected on the Properties tab.
3826 5823-008 3–29

Developing Applications
Created Read-only. The date on which the selected element was created.

Description Specifies a short description of the selected element. Reflected on the
Properties tab.

Inherits Specifies a class from which the selected class inherits. By leaving the
field empty or deleting an existing entry you are specifying that the
selected class has no inheritance. Inherits can also mean an “instance
of” when the deriving attribute has a multiplicity >0 and does not extend
the superclass.

This property is reflected in, and can be changed from, the Properties
tab of the selected class in the Superclass field.

Note: Inheritance from a persistent class is not supported. This
restriction is not enforced by System Modeler and does not produce
a validation error. However, it results in a compilation error when
generated.

For the primitive attributes the following properties are inherited:

1. Primitive

2. Length

3. Decimals (for Number/Signed Number)

Integrity Indicates if Dataset locking is enabled automatically, and at what level.
This ensures processing integrity and fully synchronized recovery.

IsConstant Specifies that an object cannot have its value changed in logic.

IsExternal Specifies whether the class is acting as a proxy for an external
component, class or library.

IsInnerClass An inner class has access to all the members of its containing class.
When a complex class is inherited, this property is derived by the child
class.

IsResolved Specifies whether the element exists in the model or whether it has
been created during the import of an element, which refers to it.

Note: This property becomes visible only when an element is
unresolved, that is when it is set to false. This property can only be
changed from False to True. Once an element has been resolved it
cannot be made unresolved again.

Kind Read-only. Identifies the kind of element selected.

Length Specifies a numeric value for the length of the attribute.

MemberPersistence Do members default to Persistent?

MemberVisibility Specifies the default visibility for new member elements. This can be
overridden for individual elements.

Modified Read-only. The date the element was last modified.

Property Function
3–30 3826 5823-008

Developing Applications
Class Diagram Properties

The table below lists all properties for the particular element. Not all properties may be
visible when an element is added, or an existing element is selected. Some properties
only become visible when a dependent property is set to a specific value.

Multiplicity Number of instances.

Note: MCP-based systems support a maximum of 255 instances of
any persistent class. There is no specific limit for non-persistent
classes.

Owner The namespace to which the element belongs.

Note: When namespace is changed, system modeler prompts for a
confirmation based on the System Modeler Policies settings. Refer
to System Modeler Policies for more information on System Modeler
Policy settings.

PresentationType Specifies if the selected element has a user interface, and what format
such an interface takes. Refer to PresentationType formats for more
information on options.

By default for Copy Ispecs, the value is True and is read-only. Refer to
the Agile Business Suite Developer Online Help for more information
on using the Painter tab.

ReservedBy Read-only. The identifier of the user that currently has the selected
element reserved.

Security Specifies the security level for an element for this user. The
AccessControlled property of the model must be set to True to provide
this option.

Stereotype Specifies the stereotype that identifies how the class operates and is
interpreted in the system.

VersionFile Specifies the name of the file that contains details of the element in the
Source Control Bank.

Note: When you create a new element, the System Modeler
prompts for a change of VersionFile Property value based on the
System Modeler Policies settings. Refer to System Modeler Policies
for more information on System Modeler Policy settings.

Visibility Specifies the level of visibility for the element.

Private – Only visible within its namespace.

Protected – Visible within its namespace and any namespace inheriting
from it.

Public – Visible outside its namespace.

Property Function

(Name) Specifies the logical name of the selected element. The following are reserved
words and cannot be used to name an element: SUPER, COMPONENT, THIS,
and OWNER.

Property Function
3826 5823-008 3–31

Developing Applications
Dictionary Properties

Alias An automatically generated unique name for the selected element. You can
change this name, but if it clashes with an existing alias, you are prompted for
another name or to cancel the name change.

Created Read-only. The date on which the selected element was created.

Description Specifies a short description of the selected element. Reflected on the
Properties tab.

IsResolved Specifies whether the element exists in the model or whether it has been
created during the import of an element, which refers to it.

Note: This property becomes visible only when an element is unresolved,
that is when it is set to false. This property can only be changed from False
to True. Once an element has been resolved it cannot be made unresolved
again.

Kind Read-only. Identifies the kind of element selected.

Modified Read-only. The date the element was last modified.

Owner The namespace to which the element belongs.

Note: When namespace is changed, system modeler prompts for a
confirmation based on the System Modeler Policies settings. Refer to
System Modeler Policies for more information on System Modeler Policy
settings.

ReservedBy Read-only. The identifier of the user that currently has the selected element
reserved.

Security Specifies the security level for an element for this user. The AccessControlled
property of the model must be set to True to provide this option.

Property Function

(Name) Specifies the logical name of the selected element. The following are reserved
words and cannot be used to name an element: SUPER, COMPONENT, THIS,
and OWNER.

Alias An automatically generated unique name for the selected element. You can
change this name, but if it clashes with an existing alias, you are prompted for
another name or to cancel the name change.

Author Read-only. The identifier of the person who created the selected element.

Reflected on the Properties tab.

Created Read-only. The date on which the selected element was created.

Description Specifies a short description of the selected element. Reflected on the
Properties tab.

IsUnique Specifies whether Items can be added to multiple Dictionaries, if this property is
true items can only be added to that Dictionary.

Property Function
3–32 3826 5823-008

Developing Applications
Copy Event Properties

The table below lists all properties for the particular element. Not all properties may be
visible when an element is added, or an existing element is selected. Some properties
only become visible when a dependent property is set to a specific value.

Kind Read-only. Identifies the kind of element selected.

Modified Read-only. The date the element was last modified.

Owner The namespace to which the element belongs.

Note: When namespace is changed, system modeler prompts for a
confirmation based on the System Modeler Policies settings. Refer to
System Modeler Policies for more information on System Modeler Policy
settings,.

ReservedBy Read-only. The identifier of the user that currently has the selected element
reserved. An element can be reserved in two ways:

Explicitly by the user or implicitly by the model when any of the documentation
windows are edited.

Property Function

(Name) Specifies the logical name of the selected element. The following are
reserved words and cannot be used to name an element: SUPER,
COMPONENT, THIS, and OWNER.

Alias An automatically generated unique name for the selected element. You
can change this name, but if it clashes with an existing alias, you are
prompted for another name or to cancel the name change.

Author Read-only. The identifier of the person who created the selected
element. Reflected on the Properties tab.

AutomaticTab Cursor automatically tabs to next field on a presentation screen at
runtime.

Note: This option is applicable only to the Presentation and
Winform Client.

Copies Specifies the number of copies that can be painted onto a form in
Painter for an attribute that is a member of a Copy Ispec.

Created Read-only. The date on which the selected element was created.

Description Specifies a short description of the selected element. Reflected on the
Properties tab.

FullSuppression Display a zero numeric value as spaces.

Property Function
3826 5823-008 3–33

Developing Applications
Inherits Specifies a class from which the selected class inherits. By leaving the
field empty or deleting an existing entry you are specifying that the
selected class has no inheritance. Inherits can also mean an “instance
of” when the deriving attribute has a multiplicity >0 and does not
extend the superclass.

This property is reflected in, and can be changed from, the Properties
tab of the selected class in the Superclass field.

Note: Inheritance from a persistent class is not supported. This
restriction is not enforced by System Modeler and does not produce
a validation error. However, it results in a compilation error when
generated.

Refer to IsInnerClass property for more information.

Integrity Indicates if Dataset locking is enabled automatically, and at what level.
This ensures processing integrity and a fully synchronized recovery.

IsInnerClass An inner class has access to all the members of its containing class.
When a complex class is inherited, this property is derived by the child
class.

IsResolved Specifies whether the element exists in the model or whether it has
been created during the import of an element, which refers to it.

Note: This property becomes visible only when an element is
unresolved, that is when it is set to false. This property can only be
changed from False to True. Once an element has been resolved it
cannot be made unresolved again.

Kind Read-only. Identifies the kind of element selected.

Length Specifies a numeric value for the length of the attribute.

MemberPersistence Do members default to Persistent?

MemberVisibility Specifies the default visibility for new member elements. This can be
overridden for individual elements.

Modified Read-only. The date the element was last modified.

Multiplicity Number of instances.

Owner The namespace to which the element belongs.

Note: When namespace is changed, system modeler prompts for a
confirmation based on the System Modeler Policies settings. Refer
to System Modeler Policies for more information on System
Modeler Policy settings.

PresentationType Specifies if the selected element has a user interface, and what format
such an interface takes. Refer to PresentationType formats for more
information on options.

By default for Copy Events, the value is Graphical and is read-only.

ReservedBy Read-only. The identifier of the user that currently has the selected
element reserved.

Property Function
3–34 3826 5823-008

Developing Applications
Copy Ispec Properties

The table below lists all properties for the particular element. Not all properties may be
visible when an element is added, or an existing element is selected. Some properties
only become visible when a dependent property is set to a specific value.

Security Specifies the security level for an element for this user. The
AccessControlled property of the model must be set to True to provide
this option.

Stereotype Specifies the stereotype that identifies how the class operates and is
interpreted in the system.

VersionFile Specifies the name of the file that contains details of the element in the
Source Control Bank.

Note: When you create a new element, the System Modeler
prompts for a change of VersionFile Property value based on the
System Modeler Policies settings. Refer to System Modeler Policies
for more information on System Modeler Policy settings.

Visibility Specifies the level of visibility for the element.

Private – Only visible within its namespace.

Protected – Visible within its namespace and any namespace inheriting
from it.

Public – Visible outside its namespace.

Property Function

(Name) Specifies the logical name of the selected element. The following are
reserved words and cannot be used to name an element: SUPER,
COMPONENT, THIS, and OWNER.

Alias An automatically generated unique name for the selected element.
You can change this name, but if it clashes with an existing alias, you
are prompted for another name or to cancel the name change.

Author Read-only. The identifier of the person who created the selected
element. Reflected on the Properties tab.

AutomaticEntryCapable Specifies if the element is able to accept Automatic Entries.

AutomaticTab Cursor automatically tabs to next field on a presentation screen at
runtime.

Note: This option is applicable only to the Presentation and
Winform Client.

Copies Specifies the number of copies that can be painted onto a form in
Painter for an attribute that is a member of a Copy Ispec.

Property Function
3826 5823-008 3–35

Developing Applications
Copy From Line Specifies the line number to be the starting point in COPY.FROM
Ispecs.

Use this property in conjunction with the Copy To Line property and
the Max Copies field to specify the group of lines to be repeated in a
COPY.FROM Ispec.

Copy To Line Specifies the line number to be the final line used in COPY.FROM
Ispecs.

Use this property in conjunction with the Copy From Line property
and the Max Copies field to specify the group of lines to be repeated
in a COPY.FROM Ispec.

Created Read-only. The date on which the selected element was created.

DefaultCursorField Specifies the Default cursor field position, otherwise cursor
positioning may be random.

You can set this property by using any one of the following ways:

• Use the Element Picker to select the attribute in the
DefaultCursorField property field.

• Enter the attribute name in the DefaultCursorField property field
manually.

Notes:

• This property is valid only if the Direction property is set to In
or InOut.

• The attribute being set in the field must be of primitive type
or a reference.

Description Specifies a short description of the selected element. Reflected on
the Properties tab.

FullSuppression Display a zero numeric value as spaces.

Inherits Specifies a class from which the selected class inherits. By leaving
the field empty or deleting an existing entry you are specifying that
the selected class has no inheritance. Inherits can also mean an
“instance of” when the deriving attribute has a multiplicity >0 and
does not extend the superclass.

This property is reflected in, and can be changed from, the Properties
tab of the selected class in the Superclass field.

Note: Inheritance from a persistent class is not supported. This
restriction is not enforced by System Modeler and does not
produce a validation error. However, it results in a compilation
error when generated.

Refer to IsInnerClass property for more information.

IsInnerClass An inner class has access to all the members of its containing class.
When a complex class is inherited, this property is derived by the
child class.

Property Function
3–36 3826 5823-008

Developing Applications
IsResolved Specifies whether the element exists in the model or whether it has
been created during the import of an element which refers to it.

Note: This property becomes visible only when an element is
unresolved, that is when it is set to false. This property can only
be changed from False to True. Once an element has been
resolved it cannot be made unresolved again.

IsSynchronous Specifies whether the method can execute synchronously.

Kind Read-only. Identifies the kind of element selected.

Length Specifies a numeric value for the length of the attribute.

MemberPersistence Do members default to Persistent?

MemberVisibility Specifies the default visibility for new member elements. This can be
overridden for individual elements.

Modified Read-only. The date the element was last modified.

Multiplicity Number of instances.

Owner The namespace to which the element belongs.

Note: When namespace is changed, system modeler prompts for
a confirmation based on the System Modeler Policies settings.
Refer to System Modeler Policies for more information on
System Modeler Policy settings.

PresentationType Specifies if the selected element has a user interface, and what
format such an interface takes. Refer to PresentationType formats for
more information on options.

By default for Copy Ispecs, the value is Graphical and is read-only.
Refer to the Agile Business Suite Developer Online Help for more
information on using the Painter tab.

ReservedBy Read-only. The identifier of the user that currently has the selected
element reserved.

Security Specifies the security level for an element for this user. The
AccessControlled property of the model must be set to True to
provide this option.

Stereotype Specifies the stereotype that identifies how the class operates and is
interpreted in the system.

VersionFile Specifies the name of the file that contains details of the element in
the Source Control Bank.

Note: When you create a new element, the System Modeler
prompts for a change of VersionFile Property value based on the
System Modeler Policies settings. Refer to System Modeler
Policies for more information on System Modeler Policies
settings.

Property Function
3826 5823-008 3–37

Developing Applications
Event Properties

The table below lists all properties for the particular element. Not all properties may be
visible when an element is added, or an existing element is selected. Some properties
only become visible when a dependent property is set to a specific value.

Visibility Specifies the level of visibility for the element.

Private – Only visible within its namespace.

Protected – Visible within its namespace and any namespace
inheriting from it.

Public – Visible outside its namespace.

Property Function

(Name) Specifies the logical name of the selected element. The following are
reserved words and cannot be used to name an element: SUPER,
COMPONENT, THIS, and OWNER.

Alias An automatically generated unique name for the selected element.
You can change this name, but if it clashes with an existing alias, you
are prompted for another name or to cancel the name change.

Author Read-only. The identifier of the person who created the selected
element. Reflected on the Properties tab.

AutomaticEntryCapable Specifies if the element is able to accept Automatic Entries.

AutomaticTab Cursor automatically tabs to next field on a presentation screen at
runtime.

Note: This option is applicable only to the Presentation and
Winform Client.

Created Read-only. The date on which the selected element was created.

Description Specifies a short description of the selected element. Reflected on
the Properties tab.

EventSet Defines an AutoPersist dependency between two Events. This
dependency causes all the persistent attributes of this event to
persist in the EventSet. The value of the EventSet property must be
the name of another event.

FullSuppression Display a zero numeric value as spaces.

IsInnerClass An inner class has access to all the members of its containing class.
When a complex class is inherited, this property is derived by the
child class.

Property Function
3–38 3826 5823-008

Developing Applications
IsResolved Specifies whether the element exists in the model or whether it has
been created during the import of an element which refers to it.

Note: This property becomes visible only when an element is
unresolved, that is when it is set to false. This property can only be
changed from False to True. Once an element has been resolved it
cannot be made unresolved again.

IsSynchronous Specifies whether the method can execute synchronously.

Kind Read-only. Identifies the kind of element selected.

Length Specifies a numeric value for the length of the attribute.

MemberPersistence Do members default to Persistent?

MemberVisibility Specifies the default visibility for new member elements. This can be
overridden for individual elements.

Modified Read-only. The date the element was last modified.

Multiplicity Number of instances.

Owner The namespace to which the element belongs.

Note: When namespace is changed, system modeler prompts for
a confirmation based on the System Modeler Policies settings.
Refer to System Modeler Policies for more information on System
Modeler Policy settings.

PresentationType Specifies if the selected element has a user interface, and what
format such an interface takes. Refer to PresentationType formats for
more information on options.

Select a value other than None to add the Painter tab to the
document window. Refer to the Agile Business Suite Developer
Online Help for more information on using the Painter tab.

RefreshPresentation Specifies whether the framework Construct method must always be
called at the end of the segment cycle.

ReservedBy Read-only. The identifier of the user that currently has the selected
element reserved.

Security Specifies the security level for an element for this user. The
AccessControlled property of the model must be set to True to
provide this option.

Stereotype Specifies the stereotype that identifies how the class operates and is
interpreted in the system.

VersionFile Specifies the name of the file that contains details of the element in
the Source Control Bank.

Note: When you create a new element, the System Modeler
prompts for a change of VersionFile Property value based on the
System Modeler Policies settings. Refer to System Modeler
Policies for more information on System Modeler Policy settings.

Property Function
3826 5823-008 3–39

Developing Applications
External Class Properties

The following table lists all the properties for the particular element. Not all properties
may be visible when an element is added, or an existing element is selected. Some
properties become visible only when a dependent property is set to a specific value.

The Synchronize properties are relevant only to external classes with persistent
members. These properties indicate the external database schema file that is imported
and whether the external class should be synchronized with the imported schema file.

Visibility Specifies the level of visibility for the element.

Private – Only visible within its namespace.

Protected – Visible within its namespace and any namespace
inheriting from it.

Public – Visible outside its namespace.

Property Function

(Name) Specifies the logical name of the selected element. The following are
reserved words and cannot be used to name an element: SUPER,
COMPONENT, THIS, and OWNER. Reflected in the Properties tab.

Alias An automatically generated unique name for the selected element. You
can change this name, but if it clashes with an existing alias, you are
prompted for another name or to cancel the name change.

Description Specifies a short description of the selected element. Reflected on the
Properties tab.

IsExternal Specifies whether the class is external and acts as a proxy for an
external component, class, library, or data source.

Kind Read-only. Identifies the kind of element selected.

Owner The namespace to which the element belongs.

Note: When namespace is changed, system modeler prompts for a
confirmation based on the settings of System Modeler Policies.
Refer to System Modeler Policies for more information.

ReservedBy Read-only. The identifier of the user that currently has the selected
element reserved.

VersionFile Specifies the name of the file that contains details of the element in the
Source Control Bank.

Note: When you create a new element, System Modeler prompts
for a change in the value of the VersionFile property based on the
System Modeler Policies. Refer to System Modeler Policies for
more information.

Author Read-only. The identifier of the person who created the selected
element. Reflected on the Properties tab.

Created Read-only. The date on which the selected element was created.

Property Function
3–40 3826 5823-008

Developing Applications
Modified Read-only. The date the element was last modified.

MemberPersistence Specifies the default persistence of the members of an external class.

Note: This property is False for an imported OLTP view file.

InterfaceType Indicates additional framework methods required to represent the
interface.

Set to None for external classes that are manually created.

This property is not available for an imported EAE RDML schema file.

The OltpView option is set for an imported OLTP view file.

Note: The ViewName and ViewType properties are available if
you have selected the OltpView option.

SourceName Set by the External Class Wizard to the external resource name.

For manually created external classes, the SourceName is automatically
set to the class name. You can also set it to a name other than the class
name so that it does not change if the class name is changed.

Notes:

• The SourceName is not case-sensitive.

• This property is available for external classes that are used for
external data sources.

• If the SourceName does not match the name on the host,
Debugger reports a schema mismatch error.

ViewName Should match the View name of the server view files.

Note: This property is available only if you have selected the
OltpView option in the InterfaceType for an external class.

ViewType Should be set to X_COMMON as AB Suite currently supports only this
view type.

Note: This property is available only if you have selected the
OltpView option in the InterfaceType for an external class.

SynchronizeFile Set by the External Class Wizard to the resource used to create and
synchronize the external class and is read-only.

Note: This property is available only for external classes with
persistent members.

Property Function
3826 5823-008 3–41

Developing Applications
Folder Properties

The table below lists all properties for the particular element. Not all properties may be
visible when an element is added, or an existing element is selected. Some properties
only become visible when a dependent property is set to a specific value.

SynchronizeState Indicates the status of the resource if it is present in the
SynchronizeFile. It is read-only.

• InSync

Indicates that the resource has not changed since the class was
last created or synchronized.

• NeedsSync

Indicates that the resource is present but has changed since the
class was last created. This value is changed to InSync after an
external class is synchronized or it is changed to NoFile if the
resource file is removed.

• NoFile

Indicates that the resource does not exist. This value is changed to
NeedsSync after the resource file is specified or it is changed to
InSync if the resource file is removed and then added after an
external class is imported.

Note: This property is available only for external classes with
persistent members.

Length Read-only. Specifies the sum of all the lengths of its members.

Multiplicity Specifies the number of instances.

Each instance represents a unique connection to the external resource.

MemberVisibility Specifies the default visibility of the members of an external class.

By default, it is set to Private. Is set to Public for an external class that
contains an imported database schema file.

Visibility Specifies the level of visibility for the element.

Private – Only visible within its namespace.

Protected – Visible within its namespace and any namespace that
inherits from it.

Public – Visible outside its namespace. Is set to Public for an external
class that contains an imported database schema file.

Property Function

(Name) Specifies the logical name of the selected element. The following are reserved
words and cannot be used to name an element: SUPER, COMPONENT, THIS,
and OWNER. Reflected in the Properties tab.

Created Read-only. The date on which the selected element was created.

Description Specifies a short description of the selected element. Reflected on the
Properties tab.

Property Function
3–42 3826 5823-008

Developing Applications
Group Properties

The table below lists all properties for Group. Not all properties may be visible when an
element is added, or an existing element is selected. Some properties only become
visible when a dependent property is set to a specific value.

IsResolved Specifies whether the element exists in the model or whether it has been
created during the import of an element, which refers to it.

Note: This property becomes visible only when an element is unresolved,
that is when it is set to false. This property can only be changed from False
to True. Once an element has been resolved it cannot be made unresolved
again.

IsUnique Enforces the Uniqueness of all its member elements within the model.

Kind Read-only. Identifies the kind of element selected.

Modified Read-only. The date the element was last modified.

Owner The namespace to which the element belongs.

Note: When namespace is changed, system modeler prompts for a
confirmation based on the System Modeler Policies settings. Refer to
System Modeler Policies for more information on System Modeler Policy
settings.

ReservedBy Read-only. The identifier of the user that currently has the selected element
reserved.

Security Specifies the security level for an element for this user. The AccessControlled
property of the model must be set to True to provide this option.

Property Function

(Name) Specifies the logical name of the selected element. The following are
reserved words and cannot be used to name an element: SUPER,
COMPONENT, THIS, and OWNER.

Author Read-only. The identifier of the person who created the selected element.

Created Read-only. The date on which the selected element was created.

Description Specifies a short description of the selected element.

Kind Read-only. Identifies the kind of element selected. The elements can be
Class, Attribute, Keyword or Variable.

Length Read-only. Specifies the sum of all the lengths of its members.

MemberVisibility Specifies the default visibility for new member elements. On Groups, it is
always set to Public.

Modified Read-only. The date the element was last modified.

Property Function
3826 5823-008 3–43

Developing Applications
Multiplicity Number of instances.

Note: MCP-based systems support a maximum of 255 instances of any
persistent class. There is no specific limit for non-persistent classes.

Owner The namespace to which the element belongs.

Note: When namespace is changed, system modeler prompts for a
confirmation based on the System Modeler Policies settings. Refer to
System Modeler Policies for more information on System Modeler
Policy settings.

PresentationType Specifies if the selected element has a user interface, and what format
such an interface takes. Refer to PresentationType formats for more
information on options.

Primitive Read-only. Specifies the kind of data that the element can contain. On
Groups, it is always set to String.

ReservedBy Read-only. The identifier of the user that currently has the selected element
reserved.

Stereotype Specifies the stereotype that identifies how the class operates and is
interpreted in the system. Changing this value makes the class no longer
act like a group.

Type Read-only. The Type property displays the name of the class that defines
this object. In groups, the type always refers to this class as they can never
derive their definition.

VersionFile Specifies the name of the file that contains details of the element in the
Source Control Bank.

Note: When you create a new element, the System Modeler prompts
for a change of VersionFile Property value based on the System
Modeler Policies settings. Refer to System Modeler Policies for more
information on System Modeler Policy settings.

Visibility Specifies the level of visibility for the element.

Private – Only visible within its owner.

Protected – Visible within its owner and any class inheriting from the
owner.

Public – Visible within and outside its owner and any class inheriting from
the owner.

Property Function
3–44 3826 5823-008

Developing Applications
Frame Properties

The table below lists all properties for the particular element. Not all properties may be
visible when an element is added, or an existing element is selected. Some properties
only become visible when a dependent property is set to a specific value.

Property Function

(Name) Specifies the logical name of the selected element. The following are
reserved words and cannot be used to name an element: SUPER,
COMPONENT, THIS, and OWNER.

Author Read-only. The identifier of the person who created the selected
element. Reflected on the Properties tab.

AutomaticTab Cursor automatically tabs to next field on a presentation screen at
runtime.

Note: This option is applicable only to the Presentation and
Winform Client.

Created Read-only. The date on which the selected element was created.

Description Specifies a short description of the selected element. Reflected on the
Properties tab.

FullSuppression Display a zero numeric value as spaces

Inherits Specifies a class from which the selected class inherits. By leaving the
field empty or deleting an existing entry you are specifying that the
selected class has no inheritance. Inherits can also mean an “instance
of” when the deriving attribute has a multiplicity >0 and does not extend
the superclass.

This property is reflected in, and can be changed from, the Properties
tab of the selected class in the Superclass field.

Note: Inheritance from a persistent class is not supported. This
restriction is not enforced by System Modeler and does not produce
a validation error. However, it results in a compilation error when
generated.

Refer to IsInnerClass property for more information.

IsConstant An object that is constant cannot have its value changed in logic.

IsInnerClass An inner class has access to all the members of its containing class.
When a complex class is inherited, this property is derived by the child
class.

Iskey Does this Attribute act as a key in the database table containing its
class?

IsPersistent Is this object persistent?

IsRequired Specifies whether the primitive attribute requires a value.
3826 5823-008 3–45

Developing Applications
IsResolved Specifies whether the element exists in the model or whether it has
been created during the import of an element, which refers to it.

Note: This property becomes visible only when an element is
unresolved, that is when it is set to false. This property can only be
changed from False to True. Once an element has been resolved it
cannot be made unresolved again.

IsSynchronous Specifies whether the method can execute synchronously.

Kind Read-only. Identifies the kind of element selected.

Length Specifies a numeric value for the length of the attribute.

LineLength Maximum length of the Report print line. This property is read-only for
Frames.

Notes:

• For reports that are generated in an MCP non-ROC system, you
should consider the following rules:

• If DefaultDevice is LP or RP, LineLength is restricted to 80-132.

• If DefaultDevice is DP, LineLength is restricted to 255.

• If DefaultDevice is VD, LineLength is restricted to 80.

• The changes you apply to this property affect the display of a
report. To get a desired output in a printed report, you can
configure the print properties by using AB Suite Runtime
Administration Tool.

Refer to the Agile Business Suite Runtime for Windows®
Operating System Administration Guide for more information.

MemberPersistence Do members default to Persistent?

MemberVisibility Specifies the default visibility for new member elements. This can be
overridden for individual elements.

Modified Read-only. The date the element was last modified.

Multiplicity Number of instances.

Owner The namespace to which the element belongs.

Note: When namespace is changed, system modeler prompts for a
confirmation based on the System Modeler Policies settings. Refer
to System Modeler Policies for more information on System Modeler
Policy settings.

PresentationType Specifies if the selected element has a user interface, and what format
such an interface takes. Refer to PresentationType formats for more
information on options.

Select a value other than None to add the Painter tab to the document
window. Refer to the Agile Business Suite Developer Online Help for
more information on using the Painter tab.

ReservedBy Read-only. The identifier of the user that currently has the selected
element reserved.

Property Function
3–46 3826 5823-008

Developing Applications
Insertable Properties

The table below lists all properties for the particular element. Not all properties may be
visible when an element is added, or an existing element is selected. Some properties
only become visible when a dependent property is set to a specific value.

Security Specifies the security level for an element for this user. The
AccessControlled property of the model must be set to True to provide
this option.

Sequence Sequence number in the ordered list.

Stereotype Specifies the stereotype that identifies how the class operates and is
interpreted in the system.

VersionFile Specifies the name of the file that contains details of the element in the
Source Control Bank.

Note: When you create a new element, the System Modeler
prompts for a change of VersionFile Property value based on the
System Modeler Policies settings. Refer to System Modeler Policies
for more information on System Modeler Policy settings.

Visibility Specifies the level of visibility for the element.

Private – Only visible within its namespace.

Protected – Visible within its namespace and any namespace inheriting
from it.

Public – Visible outside its namespace.

Property Function

(Name) Specifies the logical name of the selected element. The following are
reserved words and cannot be used to name an element: SUPER,
COMPONENT, THIS, and OWNER.

Author Read-only. The identifier of the person who created the selected element.
Reflected on the Properties tab.

AutomaticTab Cursor automatically tabs to next field on a presentation screen at runtime.

Note: This option is applicable only to the Presentation and Winform
Client.

Created Read-only. The date on which the selected element was created.

Decimals Specifies the number of decimal places required.

The Decimals property is only displayed if the Primitive property is set to
number or signed number.

Description Specifies a short description of the selected element. Reflected on the
Properties tab.

FullSuppression Display a zero numeric value as spaces.

Property Function
3826 5823-008 3–47

Developing Applications
IsInnerClass An inner class has access to all the members of its containing class. When
a complex class is inherited, this property is derived by the child class.

IsResolved Specifies whether the element exists in the model or whether it has been
created during the import of an element, which refers to it.

Note: This property becomes visible only when an element is
unresolved, that is when it is set to false. This property can only be
changed from False to True. Once an element has been resolved it
cannot be made unresolved again.

IsSynchronous Specifies whether the method can execute synchronously.

Kind Read-only. Identifies the kind of element selected.

Length Specifies a numeric value for the length of the attribute.

MemberVisibility Specifies the default visibility for new member elements. This can be
overridden for individual elements.

Modified Read-only. The date the element was last modified.

Owner The namespace to which the element belongs.

Note: When namespace is changed, system modeler prompts for a
confirmation based on the System Modeler Policies settings. Refer to
System Modeler Policies for more information on System Modeler
Policy settings.

PresentationType Specifies if the selected element has a user interface, and what format
such an interface takes. Refer to PresentationType formats for more
information on options.

Select a value other than None to add the Painter tab to the document
window. Refer to the Agile Business Suite Developer Online Help for
more information on using the Painter tab.

ReservedBy Read-only. The identifier of the user that currently has the selected
element reserved.

Security Specifies the security level for an element for this user. The
AccessControlled property of the model must be set to True to provide
this option.

Stereotype Specifies the stereotype that identifies how the class operates and is
interpreted in the system.

VersionFile Specifies the name of the file that contains details of the element in the
Source Control Bank.

Note: When you create a new element, the System Modeler prompts
for a change of VersionFile Property value based on the System
Modeler Policies settings. Refer to System Modeler Policies for more
information on System Modeler Policy settings.

Property Function
3–48 3826 5823-008

Developing Applications
Ispec Properties

The table below lists all properties for the particular element. Not all properties may be
visible when an element is added, or an existing element is selected. Some properties
only become visible when a dependent property is set to a specific value.

Visibility Specifies the level of visibility for the element.

Private – Only visible within its namespace.

Protected – Visible within its namespace and any namespace inheriting
from it.

Public – Visible outside its namespace.

Property Function

(Name) Specifies the logical name of the selected element. The following are
reserved words and cannot be used to name an element: SUPER,
COMPONENT, THIS, and OWNER.

Alias An automatically generated unique name for the selected element.
You can change this name, but if it clashes with an existing alias, you
are prompted for another name or to cancel the name change.

AllowPurge Specifies whether users of your generated system are allowed to
physically delete records using the PUR command in the Maint field
of the standard Ispec screen.

When the record is displayed, an entry of PUR in the Maint field
causes a physical deletion to take place.

If this value is False, users are not allowed to enter PUR in the Maint
field. This is the default.

Author Read-only. The identifier of the person who created the selected
element. Reflected on the Properties tab.

AutomaticEntryCapable Specifies whether the element is able to accept Automatic Entries.

 AutomaticTab Cursor automatically tabs to next field on a presentation screen at
runtime.

Note: This option is applicable only to the Presentation and
Winform Client.

AutoRecallCapable Specifies whether you want to enable all data values for an Ispec
record to be recalled to the screen, based on a specified Key value.

Created Read-only. The date on which the selected element was created.

Property Function
3826 5823-008 3–49

Developing Applications
DefaultCursorField Specifies the Default cursor field position, otherwise cursor
positioning may be random.

You can set this property by using any one of the following ways:

• Use the Element Picker to select the attribute in the
DefaultCursorField property field.

• Enter the attribute name in the DefaultCursorField property field
manually.

Notes:

• This property is valid only if the Direction property is set to In
or InOut.

• The attribute being set in the field must be of primitive type
or a reference.

DefaultProfile Defines the keys or profile to be used for the class.

Description Specifies a short description of the selected element. Reflected on
the Properties tab.

FullSuppression Display a zero numeric value as spaces

HasMaint Specifies whether the External Ispec contains the MAINT field.

Note: This property becomes visible only if the IsExternal
property of an ispec is set to True.

Inherits Specifies a class from which the selected class inherits. By leaving
the field empty or deleting an existing entry you are specifying that
the selected class has no inheritance. Inherits can also mean an
“instance of” when the deriving attribute has a multiplicity >0 and
does not extend the superclass.

This property is reflected in, and can be changed from, the Properties
tab of the selected class in the Superclass field.

Note: Inheritance from a persistent class is not supported. This
restriction is not enforced by System Modeler and does not
produce a validation error. However, it results in a compilation
error when generated.

Refer to IsInnerClass property for more information.

IsExternal Specifies whether the class is acting as a proxy for an external
component, class or library.

Even when this property is set to True, the element still contains the
following Ispec system Attributes: Actmth, Glb.Source, Input_Date,
Ispec, and TranNo.

IsInnerClass An inner class has access to all the members of its containing class.
When a complex class is inherited, this property is derived by the
child class.

Property Function
3–50 3826 5823-008

Developing Applications
IsResolved Specifies whether the element exists in the model or whether it has
been created during the import of an element, which refers to it.

Note: This property becomes visible only when an element is
unresolved, that is when it is set to false. This property can only
be changed from False to True. Once an element has been resolved
it cannot be made unresolved again.

IsPersistent If IsPersistent is set to True, an attribute that is a member of an Ispec
or Vanilla class is “database” persistent, that is, saved as a column in
the database.

Kind Read-only. Identifies the kind of element selected.

Length Specifies a numeric value for the length of the attribute.

MemberPersistence Sets the default to Persistent property for the members.

MemberVisibility Specifies the default visibility for new member elements. This can be
overridden for individual elements.

Modified Read-only. The date the element was last modified.

Multiplicity Number of instances.

Owner The namespace to which the element belongs.

Note: When namespace is changed, system modeler prompts for
a confirmation based on the System Modeler Policies settings.
Refer to System Modeler Policies for more information on System
Modeler Policy settings.

PresentationType Specifies if the selected element has a user interface, and what
format such an interface takes. Refer to PresentationType formats for
more information on options.

Select a value other than None to add the Painter tab to the
document window. Refer to the Agile Business Suite Developer
Online Help for more information on using the Painter tab.

ReservedBy Read-only. The identifier of the user that currently has the selected
element reserved.

Security Specifies the security level for an element for this user. The
AccessControlled property of the model must be set to True to
provide this option.

Stereotype Specifies the stereotype that identifies how the class operates and is
interpreted in the system.

VersionFile Specifies the name of the file that contains details of the element in
the Source Control Bank.

Note: When you create a new element, the System Modeler
prompts for a change of VersionFile Property value based on the
System Modeler Policies settings. Refer to System Modeler
Policies for more information on System Modeler Policy settings.

Property Function
3826 5823-008 3–51

Developing Applications
Location Properties

Note: This element is applicable for MCP and Windows® based systems.

The table below lists all properties for the particular element. Not all properties may be
visible when an element is added, or an existing element is selected. Some properties
only become visible when a dependent property is set to a specific value.

Method Properties

The table below lists all properties for the particular element. Not all properties may be
visible when an element is added, or an existing element is selected. Some properties
only become visible when a dependent property is set to a specific value.

Visibility Specifies the level of visibility for the element.

Private – Only visible within its namespace.

Protected – Visible within its namespace and any namespace
inheriting from it.

Public – Visible outside its namespace.

Property Function

(Name) Specifies the logical name of the selected element. The following are reserved
words and cannot be used to name an element: SUPER, COMPONENT, THIS,
and OWNER.

Author Read-only. The identifier of the person who created the selected element.

Created Read-only. The date on which the selected element was created.

Description Specifies a short description of the selected element.

Kind Read-only. Identifies the kind of element selected.

Modified Read-only. The date the element was last modified.

Owner Read-only. The namespace to which the element belongs.

ReservedBy Read-only. The identifier of the user that currently has the selected element
reserved.

Property Function

(Name) Specifies the logical name of the selected element. The following are reserved
words and cannot be used to name an element: SUPER, COMPONENT, THIS,
and OWNER.

Author Read-only. The identifier of the person who created the selected element.

Reflected on the Properties tab.

Caption Language dependent description of an element to appear in messages.

Created Read-only. The date on which the selected element was created.

Property Function
3–52 3826 5823-008

Developing Applications
Messenger Properties

The table below lists all properties for the particular element. Not all properties may be
visible when an element is added, or an existing element is selected. Some properties
only become visible when a dependent property is set to a specific value.

Description Specifies a short description of the selected element. Reflected on the Properties
tab.

IsFinal Specifies that the method cannot be overridden in a sub class.

IsResolved Specifies whether the element exists in the model or whether it has been created
during the import of an element, which refers to it.

Note: This property becomes visible only when an element is unresolved,
that is when it is set to false. This property can only be changed from False to
True. Once an element has been resolved it cannot be made unresolved again.

Kind Read-only. Identifies the kind of element selected.

Modified Read-only. The date the element was last modified.

Owner The namespace to which the element belongs.

Note: When namespace is changed, system modeler prompts for a
confirmation based on the System Modeler Policies settings. Refer to System
Modeler Policies for more information on System Modeler Policy settings.

ReservedBy Read-only. The identifier of the user that currently has the selected element
reserved.

Security Specifies the security level for an element for this user. The AccessControlled
property of the model must be set to True to provide this option.

VersionFile Specifies the name of the file that contains details of the element in the Source
Control Bank.

Note: When you create a new element, the System Modeler prompts for a
change of VersionFile Property value based on the System Modeler Policies
settings. Refer to System Modeler Policies for more information on System
Modeler Policy settings.

Visibility Specifies the level of visibility for the element.

Private – Only visible within its namespace.

Protected – Visible within its namespace and any namespace inheriting from it.

Public – Visible outside its namespace.

Property Function

(Name) Specifies the logical name of the selected element. The following are
reserved words and cannot be used to name an element. SUPER,
COMPONENT, THIS and OWNER.

Author Read-only. The identifier of the person who created the selected element.
Reflected on the Properties tab.

Property Function
3826 5823-008 3–53

Developing Applications
Created Read-only. The date on which the selected element is created.

Description Specifies a short description of the selected element. Reflected on the
Properties tab.

IsInnerClass Instances of an inner class are linked to an instance of its owner and have
access to all its members of its containing class. Only one class in an
inheritance hierarchy can have

IsInnerClass set to True. When a complex class is inherited, this property is
derived by the child class.

Kind Read-only. Identifies the kind of element selected.

Length Read-only. Specifies a numeric value for the length of the attribute.

MemberVisibility Specifies the default visibility for new member elements. This can be
overridden for individual elements.

Modified Read-only. The date the element was last modified.

Owner The namespace to which the element belongs.

Note: When namespace is changed, system modeler prompts for a
confirmation based on the System Modeler Policies settings. Refer to
System Modeler Policies for more information on System Modeler
Policy settings.

Primitive Read-only. This property is set to Class.

ReservedBy Read-only. The identifier of the user that currently has the selected element
reserved.

Stereotype Read-only. This property is set to Messenger in a Messenger class.

VersionFile Specifies the name of the file that contains details of the element in the
Source Control Bank.

Note: When you create a new element, the System Modeler prompts
for a change of VersionFile Property value based on the System
Modeler Policies settings. Refer to System Modeler Policies for more
information on System Modeler Policy settings.

Visibility Specifies the level of visibility for the element.

Private – Only visible within its namespace

Protected – Visible within its namespace and any namespace inheriting
from it.

Public – Visible outside its namespace.

Property Function
3–54 3826 5823-008

Developing Applications
Model Properties

The table below lists all properties for the particular element. Not all properties may be
visible when an element is added, or an existing element is selected. Some properties
only become visible when a dependent property is set to a specific value.

Property Function

AccessControlled Allows an administrator to specify if the model, and all its elements are
under access control. When set to True, all elements can individually have
security applied to them.

Created Read-only. The date on which the selected element was created.

Description Specifies a short description of the selected element. Reflected on the
Properties tab.

Fixed Type Specifies the default settings for background color, foreground color and
font for Fixed Presentation types in Painter at the model level. These
settings can be changed for each child element individually in Painter.
Expand each sub property to select your chosen setting. Refer to
PresentationType Property under Defining User Interfaces for more
information.

Graphical Type Specifies the default settings for background color, foreground color, font,
ScrollBars, ShowActmth, ShowHeader, and TransmitToCursor for Graphical
Presentation types in Painter at the model level. These settings can be
changed for each child element individually in Painter. Expand each sub
property to select your chosen setting. Refer to PresentationType Property
under Defining User Interfaces for more information.

Print Type Specifies the default settings for background color, foreground color and
font for Print Presentation types in Painter at the model level. These
settings can be changed for each child element individually in Painter.
Expand each sub property to select your chosen setting. Refer to
PresentationType Property under Defining User Interfaces for more
information.

Note: The changes you apply to this property affect the display of a
report. To get a desired output in a printed report, you can configure the
print properties using Agile Business Suite Runtime Administration
Tool. Refer to the Agile Business Suite Runtime for Operating System
Administration Guide for more information.

Kind Read-only. Identifies the kind of element selected.

Modified Read-only. The date the element was last modified.

(Name) Specifies the logical name of the selected element. The following are
reserved words and cannot be used to name an element: SUPER,
COMPONENT, THIS, and OWNER. A model can be renamed

Note: The model name and the database name are not necessarily
same.

ProjectFilePath Specifies the full path name of the project on the disk.

ReservedBy Read-only. The identifier of the user that currently has the selected element
reserved.
3826 5823-008 3–55

Developing Applications
Parameter Properties

The table below lists all properties for the particular element. Not all properties may be
visible when an element is added, or an existing element is selected. Some properties
only become visible when a dependent property is set to a specific value.

Security Specifies the security level for an element for this user. The
AccessControlled property of the model must be set to True to provide this
option.

Server Name Specifies the server that hosts the model database.

VersionFile Specifies the name of the file that contains details of the element in the
Source Control Bank.

Note: When you create a new element, the System Modeler prompts
for a change of VersionFile Property value based on the System
Modeler Policies settings. Refer to System Modeler Policiesfor more
information on System Modeler Policies settings.

Property Function

(Name) Specifies the logical name of the selected element. The following are
reserved words and cannot be used to name an element: SUPER,
COMPONENT, THIS, and OWNER.

Author Read-only. The identifier of the person who created the selected element.

Reflected on the Properties tab.

AutomaticTab Cursor automatically tabs to next field on a presentation screen at runtime.

Note: This option is applicable only to the Presentation and Winform
Client.

Caption Language dependent description of an element to appear in messages.

Created Read-only. The date on which the selected element was created.

Description Specifies a short description of the selected element. Reflected on the
Properties tab.

FullSuppression Display a zero numeric value as spaces.

Property Function
3–56 3826 5823-008

Developing Applications
Inherits Specifies a class from which the selected class inherits. By leaving the field
empty or deleting an existing entry you are specifying that the selected class
has no inheritance. Inherits can also mean an “instance of” when the
deriving attribute has a multiplicity >0 and does not extend the superclass.

This property is reflected in, and can be changed from, the Properties tab of
the selected class in the Superclass field.

Note: Inheritance from a persistent class is not supported. This
restriction is not enforced by System Modeler and does not produce a
validation error. However, it results in a compilation error when
generated.

For the primitive attributes the following properties are inherited:

1. Primitive

2. Length

3. Decimals (for Number/Signed Number)

IsResolved Specifies whether the element exists in the model or whether it has been
created during the import of an element, which refers to it.

Note: This property becomes visible only when an element is
unresolved, that is when it is set to false. This property can only be
changed from False to True. Once an element has been resolved it cannot
be made unresolved again.

Kind Read-only. Identifies the kind of element selected.

Length Specifies a numeric value for the length of the attribute.

MemberVisibility Specifies the default visibility for new member elements. This can be
overridden for individual elements.

Modified Read-only. The date the element was last modified.

Multiplicity Number of instances.

Owner The namespace to which the element belongs.

Note: When namespace is changed, system modeler prompts for a
confirmation based on the System Modeler Policies settings. Refer to
System Modeler Policies for more information on System Modeler
Policy settings.

Primitive Specifies the kind of data that the element can contain. The following values
are available for this property: Boolean, String, Signed Number, Date, Class,
National string, and MultiByte string.

PrintIfPresent Specifies whether a line is to be printed if the attribute value is not equal to
spaces or zeros.

ReservedBy Read-only. The identifier of the user that currently has the selected element
reserved.

Security Specifies the security level for an element for this user. The
AccessControlled property of the model must be set to True to provide this
option.

Property Function
3826 5823-008 3–57

Developing Applications
Profile Properties

The table below lists all properties for the particular element. Not all properties may be
visible when an element is added, or an existing element is selected. Some properties
only become visible when a dependent property is set to a specific value.

Sequence Specifies the sequence number of the selected element. Changing the
sequence number of one element affects the order of the other elements in
the list.

Stereotype Specifies the stereotype that identifies how the class operates and is
interpreted in the system.

SuppressZeros Suppresses the leading zeros.

Value Specifies the initial value for the element.

VersionFile Specifies the name of the file that contains details of the element in the
Source Control Bank.

Note: When you create a new element, the System Modeler prompts for
a change of VersionFile Property value based on the System Modeler
Policies settings. Refer to System Modeler Policies for more information
on System Modeler Policy settings.

Property Function

(Name) Specifies the logical name of the selected element. The following are
reserved words and cannot be used to name an element: SUPER,
COMPONENT, THIS, and OWNER.

Author Read-only. The identifier of the person who created the selected
element. Reflected on the Properties tab.

Caption Language dependent description of an element to appear in messages.

Created Read-only. The date on which the selected element was created.

Description Specifies a short description of the selected element. Reflected on the
Properties tab.

DuplicatesAllowed Specifies whether the profile is permitted to contain duplicate Key
values.

IfPresent Specifies whether to look up the object if the value for the key is defined.

If set to True, the profile becomes conditional and returns a view instead
of an index.

Note: This property becomes visible only when a key is selected.

IsResolved Specifies whether the element exists in the model or whether it has
been created during the import of an element, which refers to it.

Note: This property becomes visible only when an element is
unresolved, that is when it is set to false. This property can only be
changed from False to True. Once an element has been resolved it
cannot be made unresolved again.

Property Function
3–58 3826 5823-008

Developing Applications
To create a profile for more than one event, perform the following:

1. Copy the key attributes for the profile from the relevant Event into the Event acting as
the EventSet for the group and create a profile under the EventSet using these keys.

2. Create a profile conditions that includes each of the relevant Event classes in the
profile. For example,

ispec = EVNT1 and

ispec = EVNT2

Reference Properties

The table below lists all properties for the particular element. Not all properties may be
visible when an element is added, or an existing element is selected. Some properties
only become visible when a dependent property is set to a specific value.

 Kind Read-only. Identifies the kind of element selected.

Modified Read-only. The date the element was last modified.

Owner The namespace to which the element belongs.

Note: When namespace is changed, system modeler prompts for a
confirmation based on the System Modeler Policies settings. Refer to
System Modeler Policies for more information on System Modeler
Policy settings.

ReservedBy Read-only. The identifier of the user that currently has the selected
element reserved.

Security Specifies the security level for an element for this user. The
AccessControlled property of the model must be set to True to provide
this option.

VersionFile Specifies the name of the file that contains details of the element in the
Source Control Bank.

Note: When you create a new element, the System Modeler prompts
for a change of VersionFile Property value based on the System
Modeler Policies settings. Refer to System Modeler Policies for more
information on System Modeler Policy settings.

Visibility Specifies the level of visibility for the element.

Private – Only visible within its namespace.

Protected – Visible within its namespace and any namespace inheriting
from it.

Public – Visible outside its namespace.

Property Function

(Name) Specifies the logical name of the selected element. The following are
reserved words and cannot be used to name an element: SUPER,
COMPONENT, THIS, and OWNER.

Property Function
3826 5823-008 3–59

Developing Applications
Author Read-only. The identifier of the person who created the selected element.
Reflected on the Properties tab.

Constraint An expression that is an attribute qualified path to the value being
represented by a Reference attribute.

Note: This value is validated automatically after the text is entered and
errors are shown in the Error List.

Decimals Specifies the number of decimal places required. The Decimals property is
only displayed if the Primitive property is set to number or signed number.

Description Specifies a short description of the selected element. Reflected on the
Properties tab.

Direction Specifies how the parameter passes data; in, out, or both in and out. For an
Attribute, painted on a form, a direction of Out indicates that the control is
read-only. The Direction property is only visible after the element has been
validated and the Inherits property set.

Inherits Read-only. Specifies a class from which the selected class inherits. This
property is reflected in, and can be changed from, the Properties tab of the
selected class in the Superclass field.

Note: The Inherits property is automatically set to the referenced
attribute when the expression in the Constraint property is validated and
a Use dependency exists. The expression is parsed on validation of the
owner.

For the primitive attributes the following properties are inherited:

1. Primitive

2. Length

3. Decimals (for Number/Signed Number)

Kind Read-only. Identifies the kind of element selected.

Length Specifies a numeric value for the length of the attribute.

NOFLength Specifies the size of an object in a fixed presentation.

NOFOrder Redefining the NOF Order.

Owner Read-only. The namespace to which the element belongs.

Primitive Specifies the kind of data that the element can contain. The following values
are available for this property: Boolean, String, Signed Number, Date, Class,
National string, and MultiByte string.

Note: The National String option is made visible only if
Internationalization Support is set to National String Support.

Property Function
3–60 3826 5823-008

Developing Applications
Report Properties

The table below lists all properties for the particular element. Not all properties may be
visible when an element is added, or an existing element is selected. Some properties
only become visible when a dependent property is set to a specific value.

SuppressZeros Suppresses the leading zeros.

Note: This property is applicable only when:

• A Reference has a valid Constraint and references to a Number or
Signed Number.

• Reference’s Owner has a Presentation and its either Fixed, Graphical,
or Graphical and Fixed.

• The Direction of Reference is either In, Out, or InOut.

Property Function

(Name) Specifies the logical name of the selected element. The following are
reserved words and cannot be used to name an element: SUPER,
COMPONENT, THIS, and OWNER.

Alias An automatically generated unique name for the selected element. You
can change this name, but if it clashes with an existing alias, you are
prompted for another name or to cancel the name change.

Author Read-only. The identifier of the person who created the selected
element.

Created Read-only. The date on which the selected element was created.

CurrencySign Specifies the character to be output with EDIT $ Attributes in the Report
to be modified or added to the selected Element. By default, the value
is $.

DecimalCharacter Specifies the character to be used as a decimal place.

DecimalsKeyed Specifies the default for how decimal points are used in numeric
attributes. This value is inherited.

DefaultDevice Specifies the device to which the report prints or displays.

Description Specifies a short description of the selected element. Reflected on the
Properties tab.

FullSuppression Display a zero numeric value as spaces.

InquiryOnly Specifies whether to prevent Report logic from updating a database. The
following LDL+ logic commands should not be used: FLAG, STORE, and
PURGE.

When you set Inquiry Only to True, all the existing logics needs to be
validated again.

IsInnerClass An inner class has access to all the members of its containing class.
When a complex class is inherited, this property is derived by the child
class.

Property Function
3826 5823-008 3–61

Developing Applications
IsResolved Specifies whether the element exists in the model or whether it has
been created during the import of an element which refers to it.

Note: This property becomes visible only when an element is
unresolved, that is when it is set to false. This property can only be
changed from False to True. Once an element has been resolved it
cannot be made unresolved again.

IsPersistent If IsPersistent is set to True, an attribute that is a member of a Reportis
“critical point” persistent, that is, saved at CriticalPoint commands.

Kind Read-only. Identifies the kind of element selected.

Length Specifies a numeric value for the length of the attribute.

LineSpacing Specifies the spacing between the lines.

LineLength Specifies the maximum length of the Report print line.

Notes:

• For reports that are generated in an MCP non-ROC system, you
should consider the following rules:

• If DefaultDevice is LP or RP, LineLength is restricted to 80-132.

• If DefaultDevice is DP, LineLength is restricted to 255.

• If DefaultDevice is VD, LineLength is restricted to 80.

• The changes you apply to this property affect the display of a
report. To get a desired output in a printed report, you can
configure the print properties using AB Suite Runtime
Administration Tool.

Refer to the Agile Business Suite Runtime for Windows®
Operating System Administration Guide for more information.

MemberPersistence Do members default to Persistent?

MemberVisibility Specifies the default visibility for new member elements. This can be
overridden for individual elements.

Modified Read-only. The date the element was last modified.

Owner The namespace to which the element belongs.

Note: When namespace is changed, system modeler prompts for a
confirmation based on the System Modeler Policies settings. Refer to
System Modeler Policies for more information on System Modeler
Policy settings.

Pitch Specifies the default pitch setting (characters per line) for printed Report
output. The following pitches are available: 220, 160, 132, 99, 66, and 49.

Note: This property is preset and disabled if the Default Device for
your Report is Enterprise Output Manager generated Report.

Property Function
3–62 3826 5823-008

Developing Applications
Print Type Specifies the default settings for background color, foreground color and
font for Print Presentation types in Painter at Model or Segment levels.
These settings can be changed for each child element individually in
Painter. Expand each sub property to select your chosen setting. Refer
to PresentationType Property under Defining User Interfaces for more
information.

Note: The changes you apply to this property affect the display of a
report. To get a desired output in a printed report, you can configure
the print properties using AB Suite Runtime Administration Tool.

Refer to the Agile Business Suite Runtime for Windows Operating
System Administration Guide for more information on system modeler
policy settings.

ReportParameter Specifies the report attribute that revives the parameter used to invoke
the report.

ReservedBy Read-only. The identifier of the user that currently has the selected
element reserved.

Security Specifies the security level for an element for this user. The
AccessControlled property of the model must be set to True to provide
this option.

SeparatorCharacter Specifies the character to be used to delimit groups of three digits.

Stereotype Specifies the stereotype which identifies how the class operates and is
interpreted in the system.

StandardHeading Specifies whether to print the standard heading on each page of the
Report.

VersionFile Specifies the name of the file which contains details of the element in
the Source Control Bank.

VideoCapable Specifies whether to direct the output of a Report to a video device.

Note: In Windows®runtime this property is ignored as all reports are
automatically Video Capable.

Visibility Specifies the level of visibility for the element.

Private – Only visible within its namespace.

Protected – Visible within its namespace and any namespace inheriting
from it.

Public – Visible outside its namespace.

Property Function
3826 5823-008 3–63

Developing Applications
Segment Properties

The table below lists all properties for the particular element. Not all properties may be
visible when an element is added, or an existing element is selected. Some properties
only become visible when a dependent property is set to a specific value.

Property Function

(Name) Specifies the logical name of the selected element. The
following are reserved words and cannot be used to name an
element: SUPER, COMPONENT, THIS, and OWNER.

Alias An automatically generated unique name for the selected
element. You can change this name, but if it clashes with an
existing alias, you are prompted for another name or to
cancel the name change.

AlphaClearWhenCharacter Specifies the DEF.WHEN.CLEAR property for alphanumeric
attributes.

Author Read-only. The identifier of the person who created the
selected element. Reflected on the Properties tab.

AutomaticTab Cursor automatically tabs to next field.

Note: This option is applicable only to the Presentation
and Winform Client.

BaseYear Specifies the year upon which the DateConvert command
bases relative day numbers.

CenturyStartYear Specifies a secondary base year to define which century a
date belongs to. This is independent of the value of the Base
Year.

ConvertToUpperCase Specifies that all input are converted into upper case
characters.

Created Read-only. The date on which the selected element was
created.

DateConvertSetsGLB.CENTURY Specifies whether Glb.Century is reset by a complex
DateConvert command.

DateFormat Specifies the format of the date throughout the segment and
its element. Options are UK, International, or US.

DecimalCharacter Specifies the character to be used as a decimal place.

DefaultFixedSettings Specifies the default settings for background color,
foreground color and font for Fixed Presentation types in
Painter at the segment level. These settings can be changed
for each child element individually in Painter. Expand each
sub property to select your chosen setting. Refer to
PresentationType Property under Defining User Interfaces
for more information.
3–64 3826 5823-008

Developing Applications
DefaultGraphicalSettings Specifies the default settings for background color,
foreground color, font, ScrollBars, ShowActmth,
ShowHeader, and TransmitToCursor for Graphical
Presentation types in Painter at the segment level. These
settings can be changed for each child element individually in
Painter. Expand each sub property to select your chosen
setting. Refer to PresentationType Property under Defining
User Interfaces for more information.

DefaultPrintSettings Specifies the default settings for background color,
foreground color and font for Print Presentation types in
Painter at the segment level. These settings can be changed
for each child element individually in Painter. Expand each
sub property to select your chosen setting. Refer to
PresentationType Property under Defining User Interfaces
for more information.

Description Specifies a short description of the selected element.
Reflected on the Properties tab.

EnforcePersistent Specifies that when this property is set to true, all objects
within this namespace that are persistent, or are made
persistent, must inherit their definition from an item in a
Dictionary. Applies to Model and Segment elements only.

EnforcePresentation Specifies that when this property is set to true, all objects
within this namespace that have their direction set to a value
other then None, must inherit their definition from an item in
a Dictionary. Applies to Model and Segment elements only.

FullSuppression Display a zero numeric value as spaces.

IsResolved Specifies whether the element exists in the model or
whether it has been created during the import of an element
that refers to it.

Note: This property becomes visible only when an
element is unresolved, that is when it is set to false. This
property can only be changed from False to True. Once an
element has been resolved it cannot be made unresolved
again.

IsPersistent If IsPersistent is set to True, only Primitive or Group that is a
member of the Segment is “session” persistent, that is,
saved as session data.

Kind Read-only. Identifies the kind of element selected.

MemberVisibility Specifies the default visibility for new member elements.
This can be overridden for individual elements.

Modified Read-only. The date the element was last modified.

Property Function
3826 5823-008 3–65

Developing Applications
MultiByte ClearWhen Character Specifies the clear-when character to be used with MultiByte
strings.

Note: This property becomes visible only if
Internationalization Support is set to Multibyte String
Support.

MultiByteStringValidation Specifies the type of validation to be applied to MultiByte
strings.

Notes:

• This property becomes visible only if
Internationalization Support is set to Multibyte String
Support. When Internationalization Support is set to
some other value, this property must be set to spaces.

• To enable Debugger to emulate the MCP Kanji runtime
behavior, set this property to SOK/EOK. The SOK/
EOK characters in a string primitive is represented by
a dummy SOK/EOK character (0xA0) for the
following:

• Extract file field

• Screen field

• Watch Window item

NationalString Specifies the type of internationalization support for Single
Byte and MultiByte Coded Character Sets.

The runtime subsystem allows users to make use of
different collating sequences on the same single-byte
Character Code Set. The national strings in a segment could
use one collating sequence when a system is generated
from one configure set and a different collating sequence in
a system generated from another configure set.

The following options are available for this property:

• None – Indicates that there is no international support.

• SingleByte string support – No support for Unicode or
Multibyte character sets.

• MultiByte string support – Support for the Kanji Shift-JIS
character set on Windows. Attributes defined with a
Primitive setting of "NationalString" are implemented and
stored in the database as Kanji (only) text coded in the
Shift-JIS multibyte character set. Kanji text can also be
stored within attributes defined with a Primitive setting
of “String”. Note that there is currently no support for
any multibyte character sets other than the Kanji Shift-JIS
character set.

• Unicode – Support for Unicode text. Attributes defined
with a Primitive setting of NationalString are
implemented and stored in the database as Unicode
strings. Any MCP generate fails if Unicode is selected.

NumericClearWhenCharacter Specifies the DEF.WHEN.CLEAR property for numeric
attributes. This value can be set to blank or None.

Property Function
3–66 3826 5823-008

Developing Applications
Serialization Properties

The table below lists all properties for the particular element. Not all properties may be
visible when an element is added, or an existing element is selected. Some properties
only become visible when a dependent property is set to a specific value.

Owner The namespace to which the element belongs.

Note: When namespace is changed, system modeler
prompts for a confirmation based on the System Modeler
Policies settings. Refer to System Modeler Policies for
more information on System Modeler Policy settings.

ReservedBy Read-only. The identifier of the user that currently has the
selected element reserved. An element can be reserved in
two ways:

Explicitly by the user or Implicitly by the model when any of
the documentation windows are edited.

Security Specifies the security level for an element for this user. The
AccessControlled property of the model must be set to True
to provide this option.

SeparatorCharacter Specifies the character to be used to delimit groups of three
digits.

Stereotype Specifies the stereotype which identifies how the class
operates and is interpreted in the system.

SuppressZeros Suppresses the leading zeros.

SynchronizedField Specifies whether a control in a presentation has its height
and width adjusted when the length of the contents are
changed. Fixed Width indicates that only controls with fixed
width fonts are synchronized.

VersionFile Specifies the name of the file which contains details of the
element in the Source Control Bank.

Property Function

(Name) Specifies the logical name of the selected element. The following are
reserved words and cannot be used to name an element. SUPER,
COMPONENT, THIS and OWNER.

Author Read-only. The identifier of the person who created the selected
element. Reflected on the Properties tab.

Created Read-only. The date on which the selected element is created.

Description Specifies a short description of the selected element. Reflected on the
Properties tab..

Element Name Specifies the name of the element in the XML message.

Property Function
3826 5823-008 3–67

Developing Applications
SQL Script Properties

The table below lists all properties for the particular element. Not all properties may be
visible when an element is added, or an existing element is selected. Some properties
only become visible when a dependent property is set to a specific value.

Inherits Read-only. Specifies the interface from which the selected interface
inherits. This property is set to the internal built-in interface
Framework.ISerializable.

Kind Read-only. Identifies the kind of element selected.

Modified Read-only. The date the element was last modified.

Namespace Specifies a namespace for qualifying element used in XML.

Owner The namespace to which the element belongs.

Note: When namespace is changed, system modeler prompts for a
confirmation based on the System Modeler Policies settings. Refer to
System Modeler Policies for more information on System Modeler
Policy settings.

ReservedBy Read-only. The identifier of the user that currently has the selected
element reserved.

VersionFile Specifies the name of the file that contains details of the element in the
Source Control Bank.

Note: When you create a new element, the System Modeler prompts
for a change of VersionFile Property value based on the System
Modeler Policies settings. Refer to System Modeler Policies for more
information on System Modeler Policy settings.

Visibility Specifies the level of visibility for the element.

Private – Only visible within its namespace

Protected – Visible within its namespace and any namespace inheriting
from it.

Public – Visible outside its namespace

Property Function

(Name) Specifies the logical name of the selected element. The following are
reserved words and cannot be used to name an element: SUPER,
COMPONENT, THIS, and OWNER.

Author Read-only. The identifier of the person who created the selected
element. Reflected on the Properties tab.

Created Read-only. The date on which the selected element was created.

Description Specifies a short description of the selected element. Reflected on the
Properties tab.

Property Function
3–68 3826 5823-008

Developing Applications
Teach Screen Properties

The table below lists all properties for the particular element. Not all properties may be
visible when an element is added, or an existing element is selected. Some properties
only become visible when a dependent property is set to a specific value.

IsResolved Specifies whether the element exists in the model or whether it has
been created during the import of an element, which refers to it.

Note: This property becomes visible only when an element is
unresolved, that is when it is set to false. This property can only be
changed from False to True. Once an element has been resolved it
cannot be made unresolved again.

Kind Read-only. Identifies the kind of element selected.

MemberVisibility Specifies the default visibility for new member elements. This can be
overridden for individual elements.

Modified Read-only. The date the element was last modified.

Owner The namespace to which the element belongs.

Note: When namespace is changed, system modeler prompts for a
confirmation based on the System Modeler Policies settings. Refer to
System Modeler Policies for more information on System Modeler
Policy settings.

ReservedBy Read-only. The identifier of the user that currently has the selected
element reserved.

Stereotype Specifies the stereotype that identifies how the class operates and is
interpreted in the system.

VersionFile Specifies the name of the file that contains details of the element in the
Source Control Bank.

Note: When you create a new element, the System Modeler prompts
for a change of VersionFile Property value based on the System
Modeler Policies settings. Refer to System Modeler Policies for more
information on System Modeler Policy settings.

Visibility Specifies the level of visibility for the element.

Private – Only visible within its namespace.

Protected – Visible within its namespace and any namespace inheriting
from it.

Public – Visible outside its namespace.

Property Function

(Name) Specifies the logical name of the selected element. The following are reserved
words and cannot be used to name an element: SUPER, COMPONENT, THIS,
and OWNER.

Created Read-only. The date on which the selected element was created.

Property Function
3826 5823-008 3–69

Developing Applications
Variable Properties

The table below lists all properties for the particular element. Not all properties may be
visible when an element is added, or an existing element is selected. Some properties
only become visible when a dependent property is set to a specific value.

Description Specifies a short description of the selected element. Reflected on the
Properties tab.

IsResolved Specifies whether the element exists in the model or whether it has been
created during the import of an element, which refers to it.

Note: This property becomes visible only when an element is unresolved,
that is when it is set to false. This property can only be changed from False
to True. Once an element has been resolved it cannot be made unresolved
again.

Kind Read-only. Identifies the kind of element selected.

Modified Read-only. The date the element was last modified.

Owner The namespace to which the element belongs.

Note: When namespace is changed, system modeler prompts for a
confirmation based on the System Modeler Policies settings. Refer to
System Modeler Policies for more information on System Modeler Policy
settings.

ReservedBy Read-only. The identifier of the user that currently has the selected element
reserved.

Security Specifies the security level for an element for this user. The AccessControlled
property of the model must be set to True to provide this option.

Visibility Specifies the level of visibility for the element.

Private – Only visible within its namespace.

Protected – Visible within its namespace and any namespace inheriting from it.

Public – Visible outside its namespace.

Property Function

(Name) Specifies the logical name of the selected element. The following are
reserved words and cannot be used to name an element: SUPER,
COMPONENT, THIS, and OWNER.

Author Read-only. The identifier of the person who created the selected element.
Reflected on the Properties tab.

Caption Language dependent description of an element to appear in messages.

Created Read-only. The date on which the selected element was created.

Description Specifies a short description of the selected element. Reflected on the
Properties tab.

Property Function
3–70 3826 5823-008

Developing Applications
Inherits Specifies a class from which the selected class inherits. By leaving the field
empty or deleting an existing entry you are specifying that the selected class
has no inheritance. Inherits can also mean an “instance of” when the
deriving attribute has a multiplicity >0 and does not extend the superclass.

This property is reflected in, and can be changed from, the Properties tab of
the selected class in the Superclass field.

Note: Inheritance from a persistent class is not supported. This
restriction is not enforced by System Modeler and does not produce a
validation error. However, it results in a compilation error when
generated.

For the primitive attributes the following properties are inherited:

1. Primitive

2. Length

3. Decimals (for Number/Signed Number)

IsConstant An object that is constant cannot have its value changed in logic.

IsResolved Specifies whether the element exists in the model or whether it has been
created during the import of an element, which refers to it.

Note: This property becomes visible only when an element is
unresolved, that is when it is set to false. This property can only be
changed from False to True. Once an element has been resolved it cannot
be made unresolved again.

Kind Read-only. Identifies the kind of element selected.

Length Specifies a numeric value for the length of the attribute.

MemberVisibility Specifies the default visibility for new member elements. This can be
overridden for individual elements.

Modified Read-only. The date the element was last modified.

Multiplicity Number of instances.

Owner The namespace to which the element belongs.

Note: When namespace is changed, system modeler prompts for a
confirmation based on the System Modeler Policies settings. Refer to
System Modeler Policies for more information on System Modeler
Policy settings.

Primitive Specifies the kind of data that the element can contain. The following values
are available for this property: Boolean, String, Signed Number, Date, Class,
National string, and MultiByte string.

ReservedBy Read-only. The identifier of the user that currently has the selected element
reserved.

Security Specifies the security level for an element for this user. The
AccessControlled property of the model must be set to True to provide this
option.

Stereotype Specifies the stereotype that identifies how the class operates and is
interpreted in the system.

Property Function
3826 5823-008 3–71

Developing Applications
Element Picker

The Element Picker is used to select an element as a value for a property.

The Element Picker for the Inherits property consists of a dual pane window and a search
capability to quickly retrieve a valid element. The dual pane is similar to Windows Explorer
with the Navigation pane on the left and the Details pane on the right.

• Navigation pane – Displays the project node and relevant dictionaries in the left pane.

• Details pane – Displays a list of elements that can be inherited or that match the
search criteria.

The Navigation pane displays the project node and only those dictionaries that contain
elements that can be inherited by the selected element in the class view or the Members
pane.

The Details pane displays the Name, Primitive, Length, and Stereotype property values
for each element in the list. If the Inherits property contains a value, the Element Picker
opens with that element highlighted. Otherwise, the project node is highlighted in the left
pane and the first element in the list is highlighted in the right pane. The OK button is
enabled if you select a valid element to inherit from in the left pane. Alternately, you can
double-click a valid element to inherit it.

The Search feature in the Element Picker brings up a list of elements that match the
specified search criteria. You can specify one or more letters of an element's name for a
general search, or you can prefix the element kind before the colon in the search string.
The Search feature supports elements such as class, attribute, parameter, profile, and
reference. The scope of the search is always the root model.

For example,

• att:XXX, attribute:XXX

You can use one or more letters of an element's name with the element kind as a
prefix.

• Cla:, class:

You can use a full string or a substring of an element kind as the search string.

Value Specifies the initial value for the element.

VersionFile Specifies the name of the file that contains details of the element in the
Source Control Bank.

Note: When you create a new element, the System Modeler prompts for
a change of VersionFile Property value based on the System Modeler
Policies settings. Refer to System Modeler Policies for more information
on System Modeler Policy settings.

Property Function
3–72 3826 5823-008

Developing Applications
• Eta:XXX

If the element kind is not supported, the entire search string including the colon is
considered in the search.

Model Structure Validation Rules

The validation process of a model structure includes a specified set of predefined rules
for validating the model structure. There are two rules implemented for each of Windows
Runtime, Debugger mode and 30 rules implemented for the MCP platform. Following list
describes the rules and the specific platforms where they are applicable. You can refer to
the list to fix any model structure error.

Rules Mode/Platform Category Description

IDS_EXCEEDED_M
AXPROFILE_LENG
TH

This rule is
applicable only
for MCP
platform.

This rule is
applicable for
Profiles and
Configurations.

If the Name or Alternate Name
property of a Profile in a Class
exceeds nine characters, an error
appears. To validate the model
structure, you must enter
maximum nine characters for
either the Name or Alternate
Name property of a Profile in a
Class.

IDS_DB_PROF_NO
_KEYS

This rule is
applicable for
MCP,
Windows®
platform and
Debugger
mode.

This rule is
applicable for
Profiles.

If a model does not have a key
attribute for the profile, an error
message appears. To validate the
model structure,

• You must add a key for the
profile in Windows® and
MCP platform

• For Debug mode, you must
add a key for the profile and
set the debugger
configuration properties to
online system.
3826 5823-008 3–73

Developing Applications
IDS_INVALID_AUT
OPERSIST_DEPEN
DENCY

This rule is
applicable for
MCP,
Windows®
platform and
Debugger
mode.

This rule is
applicable for
Objects.

Suppose a model has an event,
Event1 with Event Set of another
event, Event2 and if Event1 has a
persistent attribute that is not
present under Event2 for
establishing AutoPersist
dependency, an error message
appears. To validate the model
structure,

• You must add a persistent
attribute for Event2 in
Windows® and MCP
platform.

• For Debug mode, you must
add a persistent attribute for
Event2 and start debugging
by setting the debugger
configuration properties to
online system.

IDS_NO_ISCOPIED
_ATTR

This rule is
applicable only
for MCP
platform.

This rule is
applicable for
Object category.

If Copied Ispecs do not have at
least one attribute with IsCopied
property set, an error message
appears. To validate the model
structure, you must define an
attribute with the IsCopied
property set to True or False.

IDS_DASDL_ATTR_
NAME_TOO_LON
G

This rule is
applicable only
for MCP
platform.

This rule is
applicable for
Profile and
Configuration
categories.

If Name or Alternate Name
property of a persistent attribute
exceeds 10 characters, an error
message appears. To validate the
model structure, you must enter
maximum 10 characters for
either the Name or Alternate
Name property of a persistent
attribute.

IDS_INVALID_SEPA
RATOR_CHARACT
ER

This rule is
applicable only
for MCP
platform.

This rule is
applicable for
Objects.

If DECIMAL.KEYED option is set
to NO for a signed attribute with
the SeparatorCharacter property
defined, an error message
appears. To validate the model
structure, you must not define
the SeparatorCharacter property
for a signed attribute.

IDS_PERSIST_EXT
RACT_FILE

This rule is
applicable only
for MCP
platform.

This rule is
applicable for
Objects.

If an extract file has a persistent
member, an error message
appears. To validate the model
structure, an extract file must not
have a persistent member.

Rules Mode/Platform Category Description
3–74 3826 5823-008

Developing Applications
IDS_NUMERIC_LE
NGTH_EXCEEDED

This rule is
applicable only
for MCP
platform.

This rule is
applicable for
Objects.

If length of a numeric attribute
exceeds 19, an error message
appears. To validate the model
structure, you must specify a
numeric value for the length of
the attribute that does not
exceed 19.

IDS_EXTRACT_NA
ME_RESERVED

This rule is
applicable only
for MCP
platform.

This rule is
applicable for
Profiles and
Configurations.

If an extract file has reserved
words, such as MOVE for the
Name property, an error message
appears. To validate the model,
you must change the Alternate
Name property of an extract file.

IDS_AG_PERS_CL
ASS

This rule is
applicable only
for MCP
platform.

This rule is
applicable for
Objects.

If a model has an aggregated
persistent class, an error
message appears. To validate the
model structure, you must
remove any aggregated
persistent instances.

IDS_INVALID_AUT
OLOOKUP

This rule is
applicable for
MCP,
Windows®
platform and
Debugger
mode.

This rule is
applicable for
Objects.

If a persistent class is performing
autolookup on non-persistent
class, an error message appears.
To validate the model structure,
you must ensure that invalid
autolookup do not exist in a
model.

IDS_PROFILE_IN_E
VENT

This rule is
applicable for
MCP,
Windows®
platform and
Debugger
mode.

This rule is
applicable for
Objects.

If a leaf event has a profile, then
an error message appears. To
validate the model structure, you
must ensure that

• Events which has event set
defined do not have profile
members.

• Events which don’t have
event set defined can have
profiles.

IDS_CAPTION_LEN
GTH_EXCEEDED

This rule is
applicable only
for MCP
platform.

This rule is
applicable for
Objects.

A restriction is imposed on the
upper pane of the Translations
tab that defines all the captions
for a default primary language. If
length of the Caption property of
a Class exceeds 16 characters, a
warning message appears. To
validate the model structure, you
must ensure that length of
caption does not exceed 16
characters.

Rules Mode/Platform Category Description
3826 5823-008 3–75

Developing Applications
IDS_NO_CLASS_P
ARAM

This rule is
applicable only
for MCP
platform.

This rule is
applicable for
Objects.

If you add a class parameter for a
public segment method, an error
message appears. To validate the
model structure, you must either
change the visibility property of
the segment to private, protected
or remove the class parameter
for the public segment method.

IDS_MIXED_GROU
P_DIRECTION_FO
UND

This rule is
applicable only
for MCP
platform.

This rule is
applicable for
Objects.

If you have defined the direction
of a Group and the direction of
the members of the group
doesn’t match with the direction
of the Group, an error message is
displayed. To validate the model
structure, you must ensure that
the direction of the members of
the group is same as the
direction of the Group.

IDS_SAME_POF_D
UPLICATE_FAMILY

This rule is
applicable only
for MCP
platform.

This rule is
applicable for
Segment
Configurations.

If you specify same pack names
for POF Family and Duplicate
POF Family, an error message
appears. You can validate the
model structure by changing
either of the pack names.

IDS_REORDB_DB_
NOT_DEFINED

This rule is
applicable only
for MCP
platform.

This rule is
applicable for
Segment
Configurations.

If you do not specify the
configuration property,
REORGDB Title of a segment, an
error message appears. To
validate the model structure, you
must specify the name of the
database copy in the segment
configuration property,
REORGDB DB Title.

IDS_UNDEFINED_
NATIONAL_SUPPO
RT

This rule is
applicable only
for MCP
platform.

This rule is
applicable for
Segment
Configurations.

If the National Language is not
specified, an error message
appears. To validate the model
structure, specify the National
Language for the segment.

IDS_MAX_TRANSL
ATIONS

This rule is
applicable only
for MCP
platform.

This rule is
applicable for
Folder
Configurations.

If you specify more than 15 as
the list of languages for
Translations property of Build
Target Filter, a warning appears.
Hence, you should ensure to
specify a maximum of 15
because only first 15 languages
are included for translation.

Rules Mode/Platform Category Description
3–76 3826 5823-008

Developing Applications
IDS_RTU_SOURCE
_CONFIG_NOT_SE
T

This rule is
applicable only
for MCP
platform.

This rule is
applicable for
RTU
Configurations.

If the RTU build is set to True for
a deployment folder, and the RTU
Source Set property is blank, an
error message is displayed. To
validate the model structure,
ensure to set the RTU Source Set
property.

IDS_RTU_Filename
_Missing

This rule is
applicable only
for MCP
platform.

This rule is
applicable for
RTU
Configurations.

If you do not specify the RTU File
name property when building
RTU, an error message appears.

To validate the model structure,
you must enter the RTU File
Name property.

IDS_RTU_SOURCE
_DEFAULT_PACK_
NOT

_SET

This rule is
applicable only
for MCP
platform.

This rule is
applicable for
RTU
Configurations.

If you do not set the Default Pack
property of the RTU Source set,
an error message appears while
building RTU.

To validate the model structure,
you must set the Default Pack for
RTU Source Configuration.

IDS_RTU_CONFIG_
DEFAULT_PACK_N
OT_SET

This rule is
applicable only
for MCP
platform.

This rule is
applicable for
RTU
Configurations.

If the RTU build is set to True for
a deployment folder, and the
Default pack is not set, an error
message is displayed. To validate
the model structure, ensure to
set the Default Pack property.

IDS_RTU_RDB_CO
NFIG_NOT_RDB

This rule is
applicable only
for MCP
platform.

This rule is
applicable for
RTU
Configurations.

If you do not set the builder
configuration property, RDB
Configure set to RDB type, an
error message appears when
building RTU.

You must set the property, RDB
Configure set as RDB to validate
the model structure.

IDS_RTU_RDB_DE
FAULT_PACK_NOT
_SET

This rule is
applicable only
for MCP
platform.

This rule is
applicable for
RTU
Configurations.

If the RTU build is set to True,
and the default pack for the RDB
configure is not set, an error
message is displayed. To validate
the model structure, you must
set the default pack for RDB
Configure set to BASE
configuration.

Rules Mode/Platform Category Description
3826 5823-008 3–77

Developing Applications
IDS_RTU_RDB_PO
RTTIMEOUTS_IDE
NTICAL

This rule is
applicable only
for MCP
platform.

This rule is
applicable for
RTU
Configurations.

At the same time, if Primary and
Secondary Port Timeouts for
RDB Configure set are set to 0,
an error message is displayed. To
validate the model structure,
ensure the Primary and
Secondary Port Timeouts are not
set to 0 at the same time.

IDS_RTU_ADDITIO
NAL_CONFIG_NOT
_CFG

This rule is
applicable only
for MCP
platform.

This rule is
applicable for
RTU
Configurations.

If you do not set the property,
Additional RTU Configure sets to
CONFIGURE; an error message
appears when building RTU. To
validate the model structure, you
must set the Type of the
Additional Configuration set as
CONFIGURE.

IDS_RTU_ADDITIO
NAL_DEFAULT_PA
CK_NOT_SET

This rule is
applicable only
for MCP
platform.

This rule is
applicable for
RTU
Configurations.

If the Additional Configuration for
the BASE configuration is not
set, an error is displayed. To
validate the model structure,
ensure to set the Default pack for
the Additional Configuration Set.

IDS_FRAME_CLAS
S_FOUND

This rule is
applicable only
for MCP
platform.

This rule is
applicable for
Objects.

If you define a Frame class in a
Report without setting the
Multiplicity property of Frame to
1, a warning message appears.
To validate the model structure,
you must set the Multiplicity
property of Frame to 1.

IDS_WIDE_STRING This rule is
applicable only
for MCP
platform.

This rule is
applicable for
Objects.

If you do not enable the National
Support on a segment attribute, a
National String behaves as a
String. So, if you define National
Support as None or Unicode,
National Support is not enabled
and a warning message appears.
To validate the model structure,
you must define National Support
as SingleByte string support or
MultiByte string support.

IDS_INVALID_ELE
MENT_NAME

This rule is
applicable only
for MCP
platform.

This rule is
applicable for
class, insertable,
attribute, group,
diagram,
dictionary,
method, and
folder.

If there are invalid characters
detected, an error message
appears. To validate the model
structure, you must use the valid
characters. This rule checks the
Alternate Name, Alias, and Name
property in order.

Rules Mode/Platform Category Description
3–78 3826 5823-008

Developing Applications
IDS_NO_VALID_PR
ESENTATION

This rule is
applicable for
MCP,
Windows®
platform and
Debugger
mode.

This rule is
applicable for
Class.

If the presentation type of a class
is not contained by the
presentation type of the class it
inherits from, an error message
appears. To validate the model
structure, you must set the
presentation type of the class be
contained by the class it inherits
from.

IDS_NOT_MATCH_
PRESENTATIONTY
PE

This rule is
applicable for
MCP,
Windows®
platform and
Debugger
mode.

This rule is
applicable for
Attribute.

If an attribute is presented but its
owner's presentation type is not
contained by the presentation
type of the class it inherits from,
an error message appears. To
validate the model structure, you
must set the presentation type of
its owner be contained by the
presentation type of the class it
inherits from.

IDS_GROUP_ATTRI
BUTES_OVERLAP

This rule is
applicable only
for MCP
platform.

This rule is
applicable for
Attribute.

If the owner of an attribute and
the group it inherits from have
the same presentation type, and
the group has its own group
attributes that have different
directions with the attribute, an
error message appears. To
validate the model structure, you
must set all the attribute’s
directions to be the same.

IDS_CANNOT_EXT
END_SEALED_CLA
SS

This rule is
applicable for
MCP,
Windows®
platform and
Debugger
mode.

This rule is
applicable for
Class.

If a class inherits from an external
class, then it cannot have any
member and its multiplicity
cannot be zero. An error
message appears. To validate the
model structure, you must either
remove the inheritance or ensure
that the class does not have any
member and its multiplicity is
greater than zero.

IDS_GROUP_LENG
TH_INVALID

This rule is
applicable for
MCP,
Windows®
platform and
Debugger
mode.

This rule is
applicable for
Group.

If a group has a length zero, an
error message appears. To
validate the model structure, you
must add some members to the
group and ensure that the length
of the group is greater than zero.

Rules Mode/Platform Category Description
3826 5823-008 3–79

Developing Applications
Element Reservation

In System Modeler a session is always a multi user session. To protect the integrity of the
Model database there are a number of choices for ensuring that elements of the Model,
or the whole model itself, can be reserved (locked) for exclusive use. Reservation
prevents more than one user having access to, and changing the content of the Model at
the same time.

Logic Editor is initially opened in view mode. View mode does not request a write lock for
the method from the model. A lock is then requested when the logic is modified,
preventing other users from obtaining write access to the same method. When the
method is locked, the Reserved By property indicates the user holding the lock. Other
users are able to obtain read-only access to the method in its form prior to the change.
The method is unlocked when the logic is saved, or Logic Editor is closed.

In all types of element reservation, if a reservation fails because the element is reserved
by another user, you are notified. When a reservation is successful, the Reserved By
property in the Property window for the reserved element displays the name of the user
who has reserved it.

This level of protection occurs irrespective of whether the additional security of Source
Control is available in the project. When Source Control is available it is implied that the
Model database is read-only. This means that elements can’t be modified until they are
checked out. System Modeler automatically checks out elements from Source Control
prior to making it available for editing.

Note: All the functions of element reservation and source control rely on the user
having been granted security access to the Model and the element(s) in the Model.

Refer to the following for more information on element reservation:

• Validating Logic

• Automatic Reservation

• Reservations Tab

IDS_SAME_INSER
TABLE_NUM_EXC
EED

This rule is
applicable for
MCP,
Windows®
platform and
Debugger
mode.

This rule is
applicable for
Objects.

If an insertable is instantiated
more than once in a class, an
error message appears. To
validate the model structure, you
must remove the other instances
of the insertable and ensure that
there is only one instance of the
insertable in the class.

Rules Mode/Platform Category Description
3–80 3826 5823-008

Developing Applications
Manual Reservation

In addition to the automatic reservation of elements in the Model you can manually
reserve one or more individual elements. You may want to do this to make the elements
available to you for editing at a future time. However, you should remember that doing so
would prevent other users who may have immediate need to edit the elements, so this
option should be used with discretion.

You can reserve selected elements only, or recursively. A recursive reservation locks all
the child members of the selected element and the element itself.

To manually reserve an element, and optionally its children, perform the following:

1. If it is not already open, open the Class View window by clicking the View, Class
View menu item.

2. Sort the hierarchical list into the most appropriate form to locate the element you
wish to use.

3. If necessary, click the plus (+) symbol next to a node to list all the elements within the
node.

4. Select the File menu.

5. Select Reserve Element.

6. Select one of the menu items listed below:

• Reserve – to reserve the selected element or elements. If one or more
elements are reserved to another user the operation fails, and you are notified.
Other users can view the element but not change it.

• Unreserve – to unreserve (clear the reservation) the selected element or
elements. You can only unreserve elements that are reserved to you. The ability
to unreserve another users' reservation is subject to Access Control.

• Reserve Recursively – to recursively reserve the selected element, or
elements, and each individual child member. If one or more child members of
selected elements are reserved by other users the whole operation fails, and you
are notified. Other users can view the elements but not change them.

Note: Reserving elements recursively does not display all the elements in
the reserve list. The Reservation list is not automatically updated like other
lists, that is, members list. This is done for performance reasons as
maintaining this list automatically causes considerable degradation.
Therefore, this behavior is as designed in AB Suite.

• Unreserve Recursively – to recursively un-reserve (clear the reservation) the
selected element, or elements, and each individual child member of the selected
element. You can only unreserve elements that are reserved to you. The ability to
unreserve another users reservation is subject to Access Control.

• Use Model Exclusively – to lock the database so that no other user can
access it, even to read or browse the records. This is useful if you want to
perform major maintenance on the model database, such as an upgrade.
3826 5823-008 3–81

Developing Applications
When elements have been manually reserved, you can view the list of all reserved
elements from the Reservations tab of the editor window.

Automatic Reservation

To ensure integrity of the model and to prevent two persons from modifying the same
element at the same time, an element is automatically reserved (locked) by System
Modeler to that user, when it is about to be modified. System Modeler determines that
an element is about to be modified if the element is opened in its editor and a key press is
made, or the mouse moved, when any part of the content of the editor is selected.

Automatic reservation occurs regardless of whether Source Control is available or not. If
Source Control is available the element is also be checked out to this user if it has not
already checked out by another user, or separately by the same user.

The point at which a reservation is removed depends on the type of edit being done, as
follows:

• When the changes are saved.

• When the editor is closed for a Documentation or Logic editor, whether or not you
have selected the save option.

• In the case of renaming or changing an attribute, when the change has been made
persistent by saving it in the model.

With automatic reservation, the granularity for reservation is at the element level. For
example, in the case of Logic, the method is locked, and in the case of any modification
made in the editor, the editor element gets locked. Also, refer to Manual Reservation.

Generating Client Framework Projects

System Modeler integrates the generation of Client Framework projects by using the
concept of Technology folders and Graphical Presentation interfaces for ispecs and
classes. You can create a Technology folder for a required client technology to generate
the Client Framework projects and design the user interface by using the development
tools such as WPF Designer, Microsoft Blend, and others for the chosen technology. One
or more Technology folders can be created under a segment in the Class View window.
Each Technology folder can specify either the same or different target technology type
and include the set of ispecs and classes that are required for your client application.
3–82 3826 5823-008

Developing Applications
The following example illustrates the usage of Technology folders:

The DeploymentFolder contains Segment1, and Segment1 contains a Technology folder
named WPFClient. The Technology folder contains an ispec named CUST and an
IGraphicalPresentation node that is exposed as a DataModel for client application
development.

The DeploymentFolder is configured to deploy general application components, such as
runtime system, database, and reports. The Technology folder is configured to generate
Client Framework projects for user interface development.

Note: The Technology folder output is normally generated in the background as
changes are made to the AB Suite application model definitions. Typically, a build
operation performed on a deployment folder does not result in any output from the
Technology folder, because the output would have been generated as changes were
made to an application.

To create a Technology folder and generate Client Framework projects, perform the
following:

1. Add a Folder to a segment, and then drag or add the required ispecs or classes into
the folder. These ispecs or classes are exposed through the Access Layer API, if they
contain an IGraphicalPresentation node. Refer to Adding IGraphicalPresentation for
Client Framework Applications for more information on adding an
IGraphicalPresentation node.

A folder with the default name Folder1 appears under the model.

2. Rename the folder from Folder1 to an appropriate Technology folder name. For
example, if you want to create a WPF application you can rename the folder to
WPFClient.

3. Right-click the Technology folder and select Properties from the context menu.

The <TechnologyFolderName> Property Pages dialog box appears.

4. Select or enter the Client Technology that you want to use from the list.

You can select or enter any of the following client technologies in the Client
Technology field:

• WPF (Windows Presentation Foundation) – It is a user interface
framework that creates rich, interactive client applications. The WPF
development platform supports a broad set of application development features
such as application model, resources, controls, graphics, layout, data binding,
documents, and security. You can choose this option to generate projects for
DataModels, DataViewModels, and Views. The Views can be designed using the
3826 5823-008 3–83

Developing Applications
WPF Designer (or Blend) and deployed for use by the AB Suite WPF Client
application, which is a WPF Container solution provided by Unisys. Alternatively,
you can develop your own WPF Container application and still make use of the
infrastructure provided by this technology option.

• .Net Framework DataModels – This option generates the corresponding
DataModels project for the ispecs or classes specified in the System Modeler
Technology folder. The compiled DataModels assembly can then be referenced
by any .Net application by using the full .Net Framework; for example, ASP.Net
Model View Controller (MVC), ASP.Net Web Forms, Web Services, and others.
You can choose this option, if you want to develop a custom .Net client
application by using the generated DataModels and the Access Layer API
assemblies.

• .Net Portable DataModels – This option generates the corresponding
Portable DataModels project for the ispecs or classes specified in the System
Modeler Technology folder. The compiled Portable DataModels assembly can
then be referenced by any .Net application that requires the .Net Portable subset;
for example, Silverlight, Windows Store Apps, and others. You can choose this
option, if you want to develop a custom .Net client application by using the
generated Portable DataModels and the Remote Access Layer API assemblies.
Note that the Remote Access Layer interface communicates through the AB
Suite WCF (Windows Communication Foundation) Gateway service.

• .Net Portable DataModels and ViewModels – This option generates the
corresponding Portable DataModels project and ViewModels project for the
ispecs or classes specified in the System Modeler Technology folder. You can
choose this option if you want to develop a custom .Net client application that
employs the Model-View-ViewModel (MVVM) pattern, such as SilverLight and
Windows Store Apps.

• WCF Library (Windows Communication Foundation) – This option
generates a WCF Library project that can be used to deploy a WCF Service that
exposes the generated DataModel definitions. A WCF Client can then call this
service with a data contract based on the DataModel for an ispec.

Note: For all the options selected above, the standard .NET DataModels is
always generated, because they are required by the Access Layer Connector
module (which is referenced by the Client application either directly or through
the WCF Gateway).

5. Set the Generate Client Framework Projects property to True.

6. Set the Include ACTMTH property to True or False as required.

7. Set the Include Ispec Header Items property to True or False as required.

8. Click OK.

Note: The Client Technology field in the <Technology Folder Name>
Property Pages dialog box is disabled after generating the Client Framework
projects for a specific client technology.

The relevant Client Framework projects are generated automatically.
3–84 3826 5823-008

Developing Applications
For example, if the client technology is WPF/XAML, the following additional folders are
generated in the Solution Explorer window.

• A Models folder comprising C# projects named, <Application Name>.<Folder
Name>.DataModels and <Application Name>.< Folder Name>.DataViewModels.

• A C# project named <Application Name>.<Folder Name>.Views. This contains
empty XAML Views and Data Sources that can be in the WPF Designer (or Blend), to
create a user interface for an ispec.

Note: For a class, the XAML file is generated under the Classes folder. For an
ispec, an event, a CopyIspec, and a CopyEvent, the XAML file is generated under
the Stereotyped folder.

• DataModels and DataViewModels are generated based on the Graphical Presentation
interface definitions.

• DataViewModels are generated so they can be used by the WPF Client to exchange
data with the WPF View in a typical MVVM pattern, which is usually employed when
developing a WPF/XAML application. The Data Sources assist in designing Views in
the WPF Designer. Refer to Designing User Interfaces for Client Framework
Applications for more information on designing Views in the WPF Designer.

Note: If you turn off the Auto Generate Client Framework Projects option you must
generate the Client Framework projects manually by selecting Generate Client
Framework Projects from the Build menu.

Synchronizing AB Suite Client Framework Applications with
System Modeler

The default synchronization mode for Client Framework projects is to automatically
update the associated project files in the background when changes are made to the AB
Suite Client Framework model definitions.

Note: During synchronization, the Client Framework regenerates the Data Models
for a Technology folder. For the WPF technology, it also regenerates the
DataViewModels and the Data Sources. It does not update any designed Views in the
existing client View projects. Any change made to the ispec definition must be
manually applied to the View by using the WPF Designer.

To verify the synchronization of Client Framework with System Modeler changes, you can
perform either of the following:

• Add a new ispec or class.

The new ispec or class is automatically generated into the Data Models,
DataViewModels, and Client Views projects.

• Update an ispec by adding, renaming, or deleting one or more existing attributes.

The ispec or class is automatically synchronized by creating new DataModel,
DataViewModel, and Data Source definitions for the ispec as required, in the projects
that reference the ispec or class.
3826 5823-008 3–85

Developing Applications
• Delete an ispec or class.

The ispec or class is automatically synchronized by deleting the ispec or class from all
the DataModel and DataViewModel projects that reference the ispec or class. The
Data Source definitions for this ispec are also removed, but any designed View for the
ispec in the Views project is retained. The user can delete the View manually, if it is
not essential.

You can control the automatic synchronization and generation of Client Framework
projects by using the Auto Generate Client Framework Projects option.

To turn off the automatic synchronization of Client Framework projects, perform the
following:

1. From the Tools menu, select Options.

The Options dialog box appears.

2. Expand SystemModeler from the left pane, and then select Client Framework.

3. Clear the Auto Generate Client Framework Projects check box in the right
pane.

If you want to propagate updates to Client Framework projects after turning off the Auto
Generate Client Framework Projects, you must generate the Client Framework
projects manually by selecting Generate Client Framework Projects... from the
Build menu. This also generates any outstanding changes, as determined by Change
Analysis, for a Technology folder.

Using the Client Framework Classes

The AB Suite System Modeler offers a new Framework object, Glb.ClientManager, to
improve list management and dynamic attribute specification that can be integrated with
the Client Framework.

The System Modeler also offers List attributes to provide dynamic list behavior. Lists can
be instantiated and used in logic to hold list items, such as user-defined classes and
primitive classes.

To add a List attribute, perform the following:

1. Create a definition of the items that you want to add to the list.

To create a user-defined class, perform the following:

a. In the Class View window, add a class to a segment or a Technology folder.

b. Add member attributes to the class to form a structure.

c. Set the Visibility property of the member attributes to Public.
3–86 3826 5823-008

Developing Applications
To create a primitive class or Primitive type, perform the following:

a. In the Class View window, add a class or a Primitive to a segment or a Technology
folder.

b. In the Properties window of the class, set the following properties to complete
the definition:

– Primitive – Select a primitive type, such as a String, National String, Date,
Number, or Signed Number.

– Length – Enter the maximum length (number of characters or digits) the
attribute can hold.

– Decimal – Enter the number of decimal places. This property only applies to
numeric data.

2. Create an instance of the list by performing the following:

a. Add an attribute in the ispec where you want to use the list.

b. In the Add New Attribute dialog box set the Template property to the user-
defined class or Primitive that you defined in Step 1.

c. Select the List check box.

3. Add a method to the ispec, and then open the logic editor.

4. Use the Add() method in logic to add items to the list object.

Refer to the Agile Business Suite Programming Reference Manual for more
information on using the Add() method in logic.

The Glb.ClientManager framework class provides the ability to send a list to the client
form by using the SendDynamic method. The list is exposed to the form in a DataModel
as a collection, which can be easily bound to list-based controls.

Performing Backup of AB Suite Solutions

You can back up an AB Suite solution, including any selection of projects, and then restore
it using the AB Suite Application from Backup option in the New Project dialog box.

To back up an AB Suite solution, perform the following:

1. Open the AB Suite solution.

2. On the File menu, click Backup….

The Backup Wizard appears.

3. Select the projects that you want to back up in the Backup Wizard.

Note: The AB Suite model projects are mandatory for every backup and are
therefore selected by default.

4. Browse to and select the location where you want to save the file, by clicking
located next to the Please select destination box.
3826 5823-008 3–87

Developing Applications
The project is saved as a .bck file.

Note: By default, the .bck file is saved in the location where the solution file is
saved.

5. Click Next.

The Confirmation page appears.

6. Click Finish.

7. Click Close.

You can now restore the AB Suite solution into an AB Suite environment. Refer to
Restoring the AB Suite Solutions for more information on restoring the AB Suite solution.

Restoring the AB Suite Solutions

You can restore an AB Suite backup (.bck) file or a .model file into a new System Modeler
solution and get the solution structure based on the projects that was exported
previously.

To restore the AB Suite solution, perform the following:

1. On the File menu, point to New, and then click Project.

The New Project dialog box appears.

2. In the Project Types pane, expand Templates, expand Agile Business Suite, and
then click Applications.

3. In the Templates pane, select New Application From A File.

4. In the Name box, enter the project name.

5. In the Location box, enter the path or browse to the location where you want to
restore the new projects.

6. Click OK.

The New Application From A File wizard appears.

7. Browse to and select the file that you want to restore, by clicking located next
to the Please select file to import box. You can select a .model file or a .bck file.

Note: If you select a .bck file, the restored projects appear in the Application
from Export or Backup File Wizard.

8. Click Next.

9. From the Server Name list, select the SQL server.

10. From the Database Name list, select the database name. By default, this field
displays the model name.

11. In the Model Name box, enter the model name. By default, this field displays the
model name.

Note: If there is more than one AB Suite model while restoring, you must enter
the Server Name, Database Name, and Model Name for each model.
3–88 3826 5823-008

Developing Applications
12. Click Next.

The project creation confirmation message appears in the wizard.

13. Click Finish.

14. Click Close.

On completion, the restored solution appears in the current window.

Converting the AB Suite Model

You can convert an existing AB Suite model to an AB Suite Client Framework model or an
AB Suite XML Framework model by using the Converter.

Converting the AB Suite model to the AB Suite Client Framework model creates the
following:

• A new Client Framework model database.

• A new Client Framework project.

• A clone of the original model database.

The cloned model database is used to

– Extract all the presentation information from the AB Suite model and create
matching WPF or ASP.NET MVC client projects.

– Extract all the application model structures and populate the new Client
Framework model database.

To convert an existing AB Suite model to an AB Suite Client Framework model or an AB
Suite XML Framework model, perform the following:

1. Create a new AB Suite project.

Refer to Adding a Project with an AB Suite Application for more information on
creating an AB Suite project.

2. Import an existing AB Suite model that you want to convert to an AB Suite Client
Framework model by using Model Importer. Refer to Exporting and Importing Model
Elements for more information on importing an AB Suite model.

3. Save the changes, and then close the AB Suite project.

4. On the File menu, point to New, and then click Project.

The New Project dialog box appears.

5. In the Project Types pane, expand Templates, expand Agile Business Suite, and
then click Applications.

6. In the Templates pane, select Convert An Existing Model.

Note: Select .NET Framework 4.6.1 or higher from the Target Framework list.
You can find the Target Framework list on top of the Templates pane.

7. In the Name box, enter the project name.
3826 5823-008 3–89

Developing Applications
8. In the Location box, enter the path or browse to the location where you want to
store the new project.

9. Click OK.

The New Application Wizard appears.

10. From the Server Name list, select the SQL server.

11. From the Database Name list, select the database name of the AB Suite model
that you want to convert to an AB Suite Client Framework model.

The model name appears in the Model Name box.

12. Select Include Client Framework check box to convert the existing AB Suite
model to an AB Suite Client Framework model.

Note: Converting the existing AB Suite model to an AB Suite Client Framework
model enables the XML modelling extensions as the Include XML Framework
check box is selected by default.

If you want to convert the existing AB Suite model to a XML Framework model only
you must not select the Include Client Framework check box.

13. Click Next to create a new database for the Client Framework model or the AB Suite
XML Framework model.

Note: An error appears if you try to convert an AB Suite application with an MCP
configuration to a Client Framework model or an XML Framework model as these
models do not support MCP.

14. From the Server Name list, select the SQL server.

15. In the Database Name box, enter the database name. By default, this field displays
the database name of the AB Suite model.

16. If you have selected the Include Client Framework check box, click Next to
specify the technology to which you want to convert the AB Suite model. If you have
selected the Include XML Framework check box only skip to step 20.

17. Click Next to specify the technology to which you want to convert the AB Suite
model.

18. From the Technology list, select a technology of your choice. You can select more
than one technology if you want to convert the AB Suite model to more than one
technology in the Client Framework model.

Note: The WPF and Metadata technology is selected by default. The Metadata
technology must be selected to create an ASP.NET MVC or Web API projects. The
generated metadata is used in conjunction with the AB Suite Client Framework
Scaffolder.

19. In the Folder Name field, enter a folder name for the specified technology.

20. From the Configuration Name list, select a configuration for the technology
folder.
3–90 3826 5823-008

Developing Applications
21. Click Next.

The project creation confirmation page appears.

22. Click Finish.

Note: When the AB Suite model is converted to an AB Suite Client Framework
model, a log file appears displaying the conversion details.

The Visual Studio development environment starts and displays the project files for the
newly created AB Suite Client Framework model.

You can check if the AB Suite model is converted to the AB Suite Client Framework
model by verifying the following:

In the Class View window of the Client Framework project, verify if

• The Client Packages folder is created under the segment and all other elements
appear within the Technology folder.

• The following properties are set for the specified Technology folder:

– The Client Technology property is set to the technology specified in the New
Application Wizard; for example, WPF.

– The Generate Client Framework Projects property is set to True.

Note: Include ACTMTH and Include Ispec Header Items properties can
be set to True depending on the settings in the original AB Suite model.

• All elements in the AB Suite model with the PresentationType set to Graphical or
Graphical & Fixed have the IGraphicalPresentation node under the elements (class or
ispec) in the converted AB Suite Client Framework model.

• All members defined for an element in the AB Suite model appear under the
IGraphicalPresentation node, if the Direction property of the members in the AB
Suite model is set to a value other than None.

In the Solution Explorer window of the Client Framework project, verify if

• The converted elements (class or ispec) with an IGraphicalPresentation node have the
corresponding project files, such as DataModels, DataViewModels, and Views
generated for the WPF Client Technology folder.

• The converted screens appear similar to the forms in the AB Suite model.

You can verify this by opening each of the converted screens from the Classes or
Stereotyped folder present under the Views folder in the Solution Explorer window.
For a class, the XAML file is generated under the Classes folder. For an ispec, an
event, a CopyIspec, and a CopyEvent, the XAML file is generated under the
Stereotyped folder.

Notes:

• The converted screens generated for the Client Framework displays a
warning when you access the designer as the UserControl for the screens
does not include a Resource Dictionary reference to the Generic.xaml file.
This reference is not intentionally added because of xaml restriction. To view
3826 5823-008 3–91

Developing Applications
the designer without the warning, you must add the <ResourceDictionary
Source="/Themes/Generic.xaml" /> tag within the
<ResourceDictionary.MergedDictionaries> tags as shown in the following
code snippet:

<UserControl.Resources>
 <ResourceDictionary>
 <ResourceDictionary.MergedDictionaries>

<ResourceDictionary Source="/Themes/Generic.xaml" />
 </ResourceDictionary.MergedDictionaries>
 </ResourceDictionary>
 </UserControl.Resources>

• At design time, the converted screens may not display the background colors
applied to the forms in the AB Suite model. However, you can view the
background colors in the converted screens at runtime.

• The converted CopyFrom screens look different from the CopyFrom forms in the
original AB Suite application.

The CopyFrom screens generated for the WPF or the XAML technology in the
converted Client Framework model may not appear exactly as they appear in the
forms present in the AB Suite model. This is because a CopyFrom area is converted
to a DataGrid after conversion. The copied fields are represented as columns in the
DataGrid. Therefore, you generally have to modify the generated DataGrid to suit the
requirements of your user interface. For example, you can delete any Copy.From
columns as the DataGrid column header provides that information.

You can now run the converted Client Framework application by performing the following:

1. Configure the properties of the model and the deployment folder.

Refer to Debugger Configuration Properties and Creating and Configuring a
Deployment Folder for more information on configuring the properties of the model
and the deployment folder.

2. Build the WPF Client technology projects (DataModels, DataViewModels, and Views
projects) from the Solution Explorer window if you want to update the individual
project files.

3. Right-click the deployment folder, and then select Build from the context menu that
appears.

The <TechnologyFolderName>_Config.rtxml file is generated in the location where
you have saved the project:

For example, C:\Users\<UserName>\Documents\Visual Studio
2015\Projects\<TechnologyFolderName>\Access Layer API
Deploy\WpfClient_Config.rtxml

4. Double-click the <TechnologyFolderName>_Config.rtxml file, if you have associated
the “rtxml” extension with the WPF Client executable. Otherwise, set up a shortcut
for the WPF Client with the configuration file as a command line option. Refer to
Using the WPF Client Container for Windows Platform for more information on
executing the WPF Client application.

The WPF Client Container displays the user interface by using the generated XAML
Views that is converted from the forms in the original AB Suite model.
3–92 3826 5823-008

Developing Applications
Perform a few transactions in the WPF Client Container to test if the user interfaces in the
converted Client Framework model work similar to the forms in AB Suite model at
runtime.

If changes are made to the AB Suite model, you can use the Synchronize Project… option
in the File menu to update the AB Suite Client Framework model with the changes made
to the AB Suite model.

Refer to Developing AB Suite Applications in Mixed Mode for more information on
updating the converted model with the changes made to the AB Suite model.

Developing AB Suite Applications in Mixed Mode

Modifying or enhancing the AB Suite Client Framework application that is converted from
the AB Suite application may take some time. Therefore, to facilitate a phased approach
to carry out this conversion, you can connect a Client Framework application (for example,
WPF Client) to a runtime system deployed from either an AB Suite model or a Client
Framework model.

This allows you to not only continue development in the AB Suite model and the existing
Client Tools interfaces, but also develop Client Framework applications that connect to
the runtime system deployed from the AB Suite model. You can used the mixed mode
development until all existing AB Suite forms are converted to Client Framework user
interfaces.

This approach involves keeping the Client Framework model in sync with the AB Suite
model by performing the following operations:

1. Convert an existing AB Suite model to an AB Suite Client Framework model. Refer to
Converting the AB Suite Model for more information.

2. Build the converted Client Framework application, by selecting Build from the Build
menu. Alternatively, you can right-click the model and select Build.

3. Run the Client Framework applications against the runtime system deployed from the
original AB Suite model. Refer to Using the WPF Client Container for Windows
Platform for more information on running the Client Framework application.

If any changes are made to the AB Suite model after converting it to the AB Suite Client
Framework model, you can update the changes in the converted model.

Updating the Converted Model

To update the changes made to the AB Suite model after converting it to the AB Suite
Client Framework model, perform the following:

1. In the Solution Explorer window, select the project that you want to update.

2. From the File menu, select Synchronize Project….

The Synchronize Application Wizard appears, displaying the confirmation message
about the updates being made to the converted Client Framework model.
3826 5823-008 3–93

Developing Applications
3. Click Finish.

A log file appears displaying the details about the updates made to the Client Framework
model.

Note: If you modify the forms in the AB Suite model, you must manually modify the
screens in the converted Client Framework model. However, the log file provides
information about the forms that are modified in the AB Suite model.

If changes are made to the AB Suite model, you can use the Synchronize Project…
option in the File menu to update the AB Suite Client Framework model with the
changes made to the AB Suite model. Refer to Converting the AB Suite Model for more
information on updating the converted model with the changes made to the AB Suite
model.

In mixed mode development, the Client Framework model is never deployed. It is only
used to develop client applications by using the Client Framework interfaces. Therefore,
you cannot take advantage of certain new Client Framework features in System Modeler
(for example, List classes). The new features can only be used when the Client
Framework model is deployed. This can be done when all the existing user interfaces are
converted to technologies that use the Client Framework.

You can now run the AB Suite application and the converted Client Framework application
side by side in two different instances of Visual Studio to check if the user interfaces in
the Client Framework application work similar to the forms in the AB Suite application.

Processing XML Messages

AB Suite allows you to receive and process XML messages in AB Suite Windows
Runtime. XML message processing allows an AB Suite runtime system to act as a
message broker for XML messages. In XML message processing

• A client program submits XML messages through an API.

• Each message is parsed and validated.

• Runtime objects are populated from the message and user-defined method logic is
executed.

• A response that indicates the status of the completed message processing is
returned to the client program. This response can optionally include an output XML
message which can then be returned to the system that was the original source of
the input XML message.

• The processing of each message is handled as a single transaction.
3–94 3826 5823-008

Developing Applications
Receiving and processing data typically includes the following:

• Defining the format of messages through a special type of interface definition known
as “Serialization” or “Serializable Interface”.

• Defining classes that can implement the interfaces. These classes are referred to as
Messenger classes and Serializable classes. These classes contain the
implementation definition for processing the XML messages.

Serialization

A serialization is a construct that can be used to define the format of an XML message.
This follows the object oriented concept of interfaces in which they form a contract
between a client and the implementing class and define the format of data that is passed
in and out of the class.

Serialization is an interface construct that is used to allow message structures, such as
XML to be modelled in Agile Business Suite. The term Serialization refers to the fact that
the data can be serialized to and from message formats like XML. You can use
Serialization to define any structured message format as it is not tied to any specific
message format.

Note: In AB Suite 6.1 Serialization to and from XML messages is supported, and
other message formats, such as JSON may be supported in the future.

The content and structure of an XML message can be defined through one or more
Serializations. The Serialization comprises attributes that define individual primitive
elements and other Interfaces that define complex sub-elements.

The AB Suite model can contain a definition of the message structure as a Serialization,
and can also contain a corresponding class that implements the Serialization. At runtime,
the XML message is de-serialized according to the Serialization definition and the XML
element data is populated into the attributes of an instance of the corresponding class.
This AB Suite instance can then be processed internally through certain business rules
implemented as LDL+ logic.
3826 5823-008 3–95

Developing Applications
The following figure illustrates how the message can be modelled, with the layout of the
message modelled through the Serialization interface definitions. It also illustrates how
the behavior and processing can be implemented in the corresponding class definitions,
which are said to 'implement' the interfaces. For example, the classes can contain LDL+
logic within their methods to store the XML data in database tables.

There are two types of classes that can be used to implement Serialization and process
message data

• Messenger class

• Serializable class

A Messenger class is a stereotyped class with Stereotype=”Messenger”. It includes
built-in behaviors allowing it to process incoming messages.

A Serializable class is an ordinary class (not Stereotype) that is used to implement the
handling of all or part of a message by implementing a Serialization.

Messenger Class

A Messenger class is used to process input data that is submitted to the system in the
form of a message. Such messages are submitted through a programmatic API that
processes the data through a processing cycle. Note that currently the API supports
processing of messages that are in XML format.

The Messenger class contains a built-in cycle for processing input messages. This
involves reading and parsing the input message, populating an instance of the Messenger
class with the data from the message, and then executing user-defined business rules
written as LDL+ logic in built-in methods called Receive() and Respond(). The Messenger
class cycle can optionally return a response message.
3–96 3826 5823-008

Developing Applications
In addition to the built-in methods you can create user-defined methods. However, there
is one important difference with the user-defined methods in a Messenger class
compared to all the methods in other types of classes, related to the way in which the
return type is defined. In standard methods, throughout the rest of the AB Suite model,
the return type of a method is defined by creating a “Return Variable” which is simply a
variable with the same name as the method. Methods within a Messenger class do not
have a “Return Variable”. Instead, you define the return type directly through the
ReturnType property of the method. This is actually defining a “type” rather than an
instance. Therefore, you can return any instance of the specified type from the method
logic.

Data Processing in a Messenger Class

Data processing in the Messenger class primarily involves defining the appropriate
definitions and logic to receive XML input data and process it - typically to store it in a
database or retrieve data from the database, and to respond with output XML data. For
example, an input XML document may have customer details, such as name and address
that can be processed through a class named “Customer”. Based on the defined
definitions and logic, the customer details can be stored in a database table named CUST.
The necessary logic can be defined to assign attributes from the Messenger class
instance to an instance of CUST.

At runtime, a client or a protocol adapter calls the Process() method to submit input
messages to the system. This method accepts two string arguments: a string containing
the XML message and a string with the name of the receiving class; for example
“Customer”.

The XML cycle then passes the received message to an instance of the Messenger class;
for example, “Customer”. This instance is then populated with the data from the input
message. The processing cycle then executes the defined logic to process the input data;
for example to store data or retrieve data from the database.

For a Messenger class to receive an XML input message and process data through an
XML cycle, it must be defined with the following:

Stereotype = “Messenger”

Defining an XML Structure

You can define a simple XML structure or a complex XML structure by adding a
Messenger class and a corresponding Serialization. You can create an XML structure
either manually or by importing an XML Schema Definition (XSD) file.

Defining a Simple XML Structure Manually

To define a simple XML structure you must add a Messenger class in the model, define
Serialization with the necessary attributes and implement the interface into the
Messenger Class for processing the XML data.
3826 5823-008 3–97

Developing Applications
To manually define a simple XML structure, perform the following:

1. Right-click the segment, point to Add, and then select Messenger from the context
menu.

The Messenger class with the default name “Messenger1” appears under the
segment.

2. Rename the Messenger class from “Messenger1” to an appropriate name.

3. Right-click the Messenger class, point to Add, and then select Serialization.

The Serialization with the default name “I<Messenger name>” appears under the
segment.

4. Rename the Serialization from “IMessenger1” to an appropriate name.

You can now define the layout of the XML message by adding attributes to the
Serialization.

5. Right-click the Serialization, point to Add, and then select Attribute from the
context menu.

The Add New Attribute dialog box appears.

6. In the Template box, optionally enter a type or class that this attribute will derive
from.

7. In the Name box, enter an appropriate name.

8. Click Create.

You can add more attributes to the Serialization by setting the Keep Open checkbox
and repeating step 6 through step 8.

9. In the Properties pane of the attributes change the property of each attribute as
required.

You must now add the implements relationship to indicate that the Messenger class will
implement the Serialization.

To create the Implements relationship, perform the following:

1. Right-click the Messenger class, select Quick Actions…, and then select
Implement an Interface….

The Select Interface for <Messenger Name> dialog box appears.

2. Expand the list and select the Serialization for which you want to create the
Implements relationship.

3. Click OK.

At this stage the definition is still incomplete because the class does not yet have an
implementation of all of the attributes in the interface. Therefore, the Errors pane displays
a list of errors indicating that the Messenger class does not implement the interface
members.
3–98 3826 5823-008

Developing Applications
To resolve these errors you must Implement the interface members by performing the
following:

• Right-click the Messenger class, select Quick Actions…, and then select
Implement Interface Members…. This automatically adds attributes to the
Messenger class that correspond to each of the attributes within the interface.

• Alternatively, you can add attributes to the class manually with corresponding names
and types.

Note: It is important to understand that it is the interface definitions and not the
class definitions that define the messages and their layout.

You can preview the message layout for any class that implements a Serialization. The
Message Layout Preview window shows a representation of the corresponding message
layout.

To preview the message layout, perform the following:

• Right-click a Messenger class or other class that implements the Serialization, and
select Preview Message Layout.

The Message Layout Preview window appears displaying a representation of the
layout of the corresponding messenger attributes.

Defining a Complex XML Structure Manually

To define a complex XML structure manually, perform the following:

1. Add a Messenger class to a segment and add a Serialization. See “Defining a Simple
XML Structure Manually” for more information on adding a Messenger class and
Serialization.

2. Add another Serialization anywhere within the model structure by right-clicking on the
element and selecting Serialization.

For example, if you want to represent the following XML structure, you must add one
Serialization to the Messenger class to represent the complete <Customer>
message (for example, ICustomer) and another Serialization (for example, IAddress)
anywhere within the model structure to represent the <Address> element:

<?xml version=ö1.0ö?>
<Customer>

<Name>John Smith</Name>
<Age>54</Age>
<Address>

<Street>115 Main St</Street>
<Suburb>Mornington</Suburb>

</Address>
</Customer>

3. Add attributes to the Serialization to define the layout of the XML message.

For example, you must add attributes, such as Name, Age, and Address to the
ICustomer interface and attributes, such as Street and Suburb to the IAddress
interface.
3826 5823-008 3–99

Developing Applications
See “Defining a Simple XML Structure Manually” for details on adding attributes to
the interface.

4. Define the Address attribute under the ICustomer interface as an instance of the
IAddress interface by performing the following:

a. Open the Properties of the Address attribute in ICustomer interface.

b. Set the Template property to IAddress.

The ICustomer interface represents the complete XML message format.

After adding the Implements relationship, the IAddress interface is shown in the
Class View window under the Base Type node as shown in the following image. In
this case the Address class implements the ‘Address’ interface. See “Defining a
Simple XML Structure Manually” for details on adding an implements relationship.

Generating an XML Schema Definition (XSD) File

You can generate an XSD file from any Messenger or Serializable class definition.

To generate an XSD file, perform the following:

1. Select a Messenger class or a Serializable class.

2. From the File menu, select Export As Xsd....

The Xsd Export Wizard appears.

3. In the File Name box, enter the location of the XSD file name or browse to and
select the location where you want to export the class definition.

4. Click Finish.

An XSD representing the selected class is written to that file.

This process also creates an automatic mapping between the AB Suite primitive types
and the corresponding standard XML types in an XSD.

For example, any attribute with the Primitive property set to String is mapped to
xsd:string or any attribute with the Primitive property set to Number is mapped to an
appropriate type depending on the length and decimals (for example, xsd:unsignedLong
or xsd:decimal).

You can override this automatic mapping and specify a particular XML type. For example,
you may use a String in AB Suite to hold an element that is of a type not fully supported
by a corresponding AB Suite primitive type, such as xsd:dateTime. Hence, even if the
attribute in AB Suite that holds this data is a String, you may want the exported XSD
definition to represent it with the correct XML type (that is, xsd:dateTime).
3–100 3826 5823-008

Developing Applications
To override the automatic mapping, perform the following:

• Select the attribute within the Serialization (Serializable interface definition) and set
the XsdType property of the attribute to an appropriate XML type.

To set the XsdType property, perform the following:

1. In the Properties window of the attribute, click the Element Picker ... corresponding
to the XsdType property.

The XML Type Definition window appears.

2. Select an appropriate XML type and click OK. Alternately, you can double-click the
XML type.

This property does not influence any of the internal processing of the element when
processing the XML messages. It is only used in the Export As Xsd operation.

Importing XSD Files

You can create a class in your model that defines an XML document using the XSD Import
Wizard. The input file for this process must be an XSD file that defines the schema for an
XML document. After completion of this process your model will contain a class or
classes that define the structure of the XML document.

To create a class in your model that defines an XML document using the XSD Import
Wizard, perform the following:

1. In the Class View, right-click the segment, point to Add, and then select Add New
Item....

The Add New Item dialog box appears.

2. From the templates available in the Add New Item dialog box, select XSD Import,
and then click Create.

The Xsd Import Wizard appears.

3. Enter the location of the XSD file or browse to the location of the XSD file that you
want import by clicking .

4. Click Load.

The Xsd Structure section displays the element name in the selected XSD file.

5. Click Next.

The Confirmation page appears in the wizard.

6. Click Finish to complete importing the XML definition.

A new folder, MessageDefinitions, is created at the folder level under the segment.
The XML definition is imported to a folder, Messages, under the MessageDefinitions
folder.
3826 5823-008 3–101

Developing Applications
Defining Lists in an XML Framework Model

Lists can be defined within Serializations and Serializable classes to represent repeating
elements in an XML message format.

A List can be defined in either of the following ways:

• As a special kind of attribute or variable within classes and interfaces. That is, you can
define a List attribute by selecting the List check box in the Add New Attribute dialog
box when adding a new attribute or variable.

• As a List type. This is a re-usable list definition that can be used in ordinary attributes
to define a list through the Template property. You can do this by selecting List in the
Add New Item dialog box.

To understand the usage of List we can use the following example. This is a simple XML
message with a repeating element:

<?xml version="1.0"?>
<People>
 <Surname>Smith</ Surname >
 < Surname >Jones</ Surname >
 < Surname >Harris</ Surname >
</People>

To define a List Attribute to represent the repeating <Name> element, perform the
following:

a. Right-click the Serialization that represents the “People” message format, point
to Add, and then select Attribute from the context menu.

 The Add New Attribute dialog box appears.

b. In the Template box, enter or browse to the type that this attribute will derive
from. For example, the Primitive type for Surname. This can be any Primitive
type, Class, or Serialization.

c. In the Name box, enter an appropriate name; for example, Surname.

d. Select the List check box.

e. Click Create.

A corresponding List attribute has to be defined within the class that implements the
above Serialization.

Implementing Multiple Interfaces

You can also implement multiple interfaces for a Serializable class or a Messenger class
when you want to have a single class implementation and have more than one variation
of an XML message returned from it.
3–102 3826 5823-008

Developing Applications
To implement multiple interfaces for a Serializable class or a Messenger class, perform
the following:

1. In the Class View window, add a Serializable class or a Messenger class; for example,
CustomerInfo.

2. Add Serializations (Serializable interfaces) to define the XML messages; for example,
ICustomerInfo and ICustInfoSummary.

3. Implement the interfaces (once for each interface) for the Serializable class or the
Messenger class.

Note: You can also implement interfaces present anywhere within the model.

4. When writing logic to return an XML message from a Respond() method you can
specify the interface you want to use to serialize the class to XML by using the AsA
command option in the Return logic command.

For example:

If FullDetails
Return aCustInfo AsA ICustomerInfo

End

Return aCustInfo AsA ICustInfoSummary

If you have a Messenger class that implements multiple interfaces you have to specify
the interface to be used for de-serializing an input XML message.

To specify the interface to be used for de-serializing an input XML message, perform the
following:

1. In the Class View windowLimits on LINC+ Logic commands and System Attributes
are described, expand the Messenger class after creating the Implements
relationship.

2. Select the Serialization (serializable interface) that is to be used to de-serialize input
XML messages, and then invoke the Properties window.

3. Set the Use for Cycle property under the Misc group to True.

The Use for Cycle property also specifies the interface to be used to serialize a
method parameter that is being passed in an external method call.

Sending XML to External Systems

You can not only process an XML input message that originates outside the AB Suite
system and respond with an XML reply message but also process the XML messages in
the reverse direction. That is, you can initiate the sending of an XML message to an
external system from within the AB Suite system and receive an XML message in reply.
You can do this by calling an external library passing an XML message as a parameter and
receiving an XML reply message as the return value from that call.

To achieve this, you must add methods in an external library that takes a string parameter
expected to contain an XML message. In the AB Suite model you can define the
parameter to be a Serializable class. In your LDL logic you can populate an instance of this
3826 5823-008 3–103

Developing Applications
class and pass it as an argument in the external method call. The runtime infrastructure
automatically serializes the argument into an XML message and the external library
receives it as a string.

Similarly, you can add a method in an external class that returns a string value containing
an XML message as the return value of the method (or as the value of an InOut or Out
parameter). The ReturnType of the method in the AB Suite model can be defined to be a
Serializable class. In this case the XML message in the return value is automatically de-
serialized to populate an instance of this class.

Refer to HowTo Process XML in AB Suite 6.1 in the Documentation Libraries page on
the Product Support site for an example on calls made to an external library that send and
receive XML messages.

Introducing the Runtime Cycle

Transaction Processing

Transaction processing is implemented via the Agile Business Suite segment cycle. This
functionality occurs since all segment methods implicitly process transactions, and the
segment cycle processes ispecs as transactions.

The transaction processing cycle also determines the context in which logic commands
operate. When a logic command is executed, its operating context is resolved to the
stereotype of the initial class activated by the segment cycle (for ispecs and events) or
the called report (for reports).

Other processing occurs within the context of the segment cycle (including the ispec
cycle), such as copy cycle processing (transaction processing of copy ispecs and events),
SQL script processing (of SQL scripts), and automatic entry processing.

Segment Cycle

The segment cycle is the processing cycle that occurs when the application executes an
ispec or event transaction. It is controlled by the segment and defines the order in which
built-in methods are called.

Note: In the following text of this topic, the term ispec should be read to denote
both ispecs and events.
3–104 3826 5823-008

Developing Applications
The following diagram is of the basic segment cycle:

Requesting an Ispec

An ispec can be requested as a result of one the following:

• A request from the Select Ispec dialog box.

• A Recall logic command invoked by another ispec.

• A Recall logic command invoked by the same ispec.

• An Abort logic command.

• A Roc logic command.

• A request/incoming message from an external caller via the segment's public (COM)
interface.

• An automatic refresh of the ispec.

When an ispec is requested, the following process steps occur before the ispec is ready
to accept input (for ispecs with a user interface, this corresponds with its display to the
application client). The orange arrow in the diagram above indicates the starting point:

1. Segment and ispec attributes without defined initial values are initialized to their
corresponding values from the input message.

2. The Construct method is called unless either the ispec is being requested due to an
automatic refresh and a Message logic command has not been invoked, or the ispec
has not been requested as a result of a Recall logic command invoked by the same
ispec.

The Construct method can be used for reasons such as the pre-filling of user
interface fields, or security checking.
3826 5823-008 3–105

Developing Applications
Transmitting an Ispec Update

An ispec update initiates the following process steps (the green arrow in the diagram
above indicates the starting point):

1. Segment and ispec attributes without defined initial values are initialized to their
corresponding values from the input message if they are in the presentation, or to the
appropriate “empty” value (0, “”, or false), depending on the attribute type.

2. Automatic edit occurs – attributes with decimals are validated.

Any errors are returned to the application client.

3. The Prepare method is called.

The Prepare method can be used for reasons such as generating a customer number,
performing any necessary validation of user input data, performing logic actions
based on the user input, or recalling another ispec without processing the current
ispec.

Any Message or Recall logic commands invoked halts processing at the end of the
prepare method.

4. Automatic validation occurs – keys, dates, and required fields are validated; the
database records corresponding to the specified keys are retrieved if they have an
automatic lookup dependency.

Any errors are returned to the application client.

5. The Main method is called.

The Main method can be used for reasons such as checking stock-on-hand, or
checking a customer credit limit for a sale.

Any errors are returned to the application client.

6. Automatic update occurs – for a persistent ispec, the database record is updated (or
written).

7. At this point, one of the following process steps occurs:

• If a Recall logic command was invoked on the same ispec, the Construct method
call is skipped, and the segment cycle repeats from step 1 above.

• If a Recall logic command was invoked on a different ispec, the specified ispec is
requested. Refer to Requesting an Ispec for more information.

• If the ispec's Refresh Screen property is set to true, and no Recall logic
command was invoked, the current ispec is requested. Refer to Requesting an
Ispec for more information.

• If the ispec's Refresh Screen property is set to false, and no Recall logic
command was invoked, the Select Ispec dialog box is displayed. Refer to
Requesting an Ispec for more information.
3–106 3826 5823-008

Developing Applications
Transmitting an Ispec Inquiry

An ispec inquiry occurs when an ispec is transmitted with its Maint built-in presentation
attribute is set to FIR, LAS, NEX, BAC, or REC. It initiates the following process steps:

1. Segment and ispec attributes without defined initial values are initialized to their
corresponding values from the input message.

2. Automatic edit of keys occurs – numeric fields are validated, separators and decimal
points are removed.

Any errors are returned to the application client.

3. The database record corresponding to the specified keys is retrieved.

4. The retrieved record is made available (for ispecs with a user interface, this
corresponds with its display to the application client)

Glb.Error

The behavior of the segment cycle is affected by the Glb.Error built-in segment attribute
in the following manner:

• Automatic processing (edit, validation, or update) does not occur if Glb.Error is set to
“*****”. If Glb.Error is set to “*****” upon completion of the Main method call, the
automatic update of the database update does not take place.

• Glb.Error is initialized to spaces prior to both the Prepare and Construct method calls.
Consequently, automatic processing in the Construct method occurs even if Glb.Error
has previously been set to “*****” in the Prepare or Main methods.

• A Message or Recall logic command invoked in the Prepare or Main methods sets
Glb.Error to “*****” and cause the Construct method call to be skipped. However,
explicitly setting Glb.Error to “*****” does not cause the Construct method call to be
skipped if the ispec's Refresh Screen property is set to true.

If Glb.Error is set to Glb.Spaces following the invocation of a Message or Recall logic
command, database updates, including the automatic update following the Main
method call, occurs, and construct automatic processing is performed if the ispec's
Refresh Screen property is set to true.

• If database updates in the Prepare or Main methods are completed successfully, the
message “SUCCESSFUL ENTRY” is displayed on the status line. However, if
database updates are disabled because Glb.Error is set to “*****”, the message
“THIS ENTRY DID NOT UPDATE” is displayed instead, regardless of any successful
database update that might subsequently occur in the ensuing Construct method.
This situation results because the status line message is output after the Main
method call, at which point the application does not know whether the Construct
method attempts to (successfully or otherwise) update the database.

Ispec Cycle

The ispec cycle is a subset of the segment cycle and consists of the processing of an
input message by a single ispec. It is controlled by each individual ispec.
3826 5823-008 3–107

Developing Applications
The ispec cycle can also be called independently of the segment cycle, such as with
external automatic entry processing.

Copy Cycle

The copy cycle is the processing cycle that occurs when the application executes an copy
ispec or copy event transaction. It is controlled by the segment and defines the order in
which built-in methods are called.

Note: In the following text of this topic, the term “ispec” should be read to denote
both ispecs and events.

The copy cycle is similar to the segment cycle, except that it consists of three phases –
the validate, update, and refresh phases; and each phase is performed multiple times for
each copy ispec.

Requesting a Copy Ispec

When a copy ispec is requested, the following process occurs before it is ready to accept
input (this corresponds with its display to the application client). The orange arrows in the
diagram above indicates the request phase:

1. Segment and copy ispec attributes without defined initial values are initialized to their
corresponding values from the input message. This occurs for the first copy of the
copy ispec only.

2. The construct method is called once for each copy of the copy ispec.

3. The graphical presentation is displayed.

A copy ispec can be requested similarly to an ispec. Refer to Requesting an Ispec in
Segment Cycle for more information.

Transmitting a Copy Ispec

Upon transmission of a copy ispec, two passes through the logic of the copy ispec are
performed - the first pass is the validate phase, and the second pass is the update phase.
3–108 3826 5823-008

Developing Applications
The update phase is only performed if there are no errors in the validate phase.

Validate Phase

The validate phase consists of the following process steps (indicated in the diagram
above by the green arrows):

1. Segment and copy ispec attributes without defined initial values are initialized to their
corresponding values from the input message. This occurs for the first copy of the
copy ispec only.

2. The following loop is performed once for each copy of the copy ispec. Any errors that
occur in one copy never affect the processing of other copies:

• Non-copied attributes (those without graphical presentations, or with their
corresponding graphical object's Is Copied presentation property set to false)
are set to their corresponding values from the input message.

• Automatic edit occurs. If an error occurs, the remainder of the loop is not
performed for the current copy.

• The prepare method is called. If an error occurs, the remainder of the loop is not
performed for the current copy.

• Automatic validation occurs. If an error occurs, the remainder of the loop is not
performed for the current copy.

• The edit method is called. If an error occurs, the remainder of the loop is not
performed for the current copy.

3. At this point, one of the following process steps occurs:

• If any errors were detected in any copy, they are returned to the application client.
All error messages are stored until all copies have been processed.

• If a Recall logic command was invoked in any copy, the specified ispec is
requested. Only the last invoked Recall logic command is executed (after all
copies have been processed).

• If no errors occurred, no Recall logic commands were invoked, and the Glb.Error
built-in segment attribute is set to Glb.Spaces, processing proceeds to the update
phase.
3826 5823-008 3–109

Developing Applications
Update Phase

The update phase effectively repeats the validate phase, except that it also calls the main
method and performs automatic update for each copy. It consists of the following
process steps (indicated in the diagram above by the blue arrows):

1. Segment and copy ispec attributes without defined initial values are initialized to their
corresponding values from the input message. This occurs for the first copy of the
copy ispec only.

2. The following loop is performed once for each copy of the copy ispec.

• Non-copied attributes (those without graphical presentations, or with their
corresponding graphical object's Is Copied presentation property of set to false)
are set to their corresponding values from the input message.

• Automatic edit occurs again

• The prepare method is called again.

• Automatic validation occurs again

• The edit method is called again

• The main method is called.

• If the Glb.Error built-in segment attribute is set to Glb.Spaces, automatic update
occurs.

3. At this point, one of the following process steps occurs:

• An ispec is requested.

• The current copy ispec is refreshed.

• The Select Ispec dialog box is displayed.

An EndExit logic command terminates processing for the current method only (prepare,
edit, or main) for the current copy. It has no effect on the processing of subsequent
copies.

Messenger Cycle

The Messenger cycle is the XML processing cycle that consists of the processing of an
input message within a single database transaction. The input in a messenger cycle
comes from an XML message and the output includes a response XML message. The
Messenger cycle also includes framework methods that are used to include user-defined
logic. In a Messenger cycle steps, such as initialization, validation, parsing message, and
serialization are automatic.

Defining the Processing Logic

A special type of serializable class is used to define the processing logic to be executed
for an input XML message. This class is called a Messenger class and is defined with
Stereotype=Messenger. The Messenger class defines the format of an XML message
and the processing logic to handle the message when it is input to the system. The
Messenger class is an entry point for processing an input XML message. An XML
message is passed to an instance of the corresponding Messenger class for processing.
3–110 3826 5823-008

Developing Applications
In a Messenger cycle a Messenger class is defined to implement the Serialization that
defines the structure and layout of the input XML message. Then, the class implements
an automatic processing cycle to receive an XML message and execute user-defined
processing logic.

Basic Steps in a Messenger Class

The basic steps in a messenger class are as follows:

1. Parsing the input message and populating an instance of the Messenger class with
the data from the message.

2. Validating the input data from the message.

3. Executing user-defined logic.

4. Returning a response XML message (optional).

Including User-Defined Logic

Built-in framework methods are available in which user-written logic can be included to
perform any user-defined business rules or processing including reading from and writing
to the database.

The framework methods are

• Receive() – Intended for any logic to process the input message. This method can
include validating input data, storing data in the database, reading data from the
database, and so on.

• Respond() – Intended for any logic to formulate a response message. This method
typically includes logic to read data from the database, populate a serializable class
instance (that is, a class that implements the Serialization), and then return that
instance. A returned serializable instance is automatically serialized into the
corresponding XML message and included in the response.

The Respond() method is unique, that is, it is defined with a ReturnType of 'String'.
The String return value contains the XML message stream. To return the XML
message you must use the Return command to return a serializable class instance
that is cast to the Serialization through the 'AsA' command option. The returned
instance is implicitly converted to a string value by serializing the instance according
to the interface definition.

The syntax of the Return command when used in this context is

Return <instance> AsA <interface>

Where, <instance> is the serializable class instance and <interface> is the
Serialization that is implemented by the class.
3826 5823-008 3–111

Developing Applications
The following image shows the Messenger cycle:

The Messenger Cycle is similar to the Ispec cycle, except that the input comes from an
XML message instead of a client form and the output can include a response XML
message.

SQL Script Processing

SQL script processing occurs when the application executes the SQL script variant of the
Determine Actual logic command. It is controlled by each SQL script and defines the
order in which the built-in SQL script methods are called.

The following diagram is of the basic SQL script process:
3–112 3826 5823-008

Developing Applications
This process occurs upon invocation of a Determine Actual logic command specifying the
SQL script:

1. Any internal variables, such as error result codes, are initialized.

2. The SQL statements in the SQL script's construct method are executed.

3. The SQLCODE return code is verified, and sets the JumpTo built-in segment
attribute.

If errors are detected, rollback occurs and the Determine Actual logic command loop
is exited.

If no record is retrieved, the Glb.Status built-in segment attribute is set to “*****”
and logic control passes to the end of the Determine Actual logic command loop to
execute the SQL script's destruct method (Refer to step 7).

4. The SQL statements in the SQL script's main method are executed.

5. The SQLCODE return code is verified, and sets the Glb.MainSQLCode built-in
segment attribute.

If errors are detected, rollback occurs and the Determine Actual logic command loop
is exited.

If no record is retrieved and it is also the first iteration through the Determine Actual
logic command loop, the Glb.Status built-in segment attribute is set to “*****” and
logic control passes to the end of the loop to execute the SQL script's destruct
method (Refer to step 7), otherwise the Glb.Status built-in segment attribute is set to
spaces.

6. Logic command statements within the Determine Actual logic command loop are
executed.

If the Determine Actual logic command loop is exited using a Break or EndExit logic
command, control passes to the end of the Determine Actual logic command loop to
execute the SQL script's destruct method. If exited using a Break All logic command
variant, control passes to the end of the outermost loop. If exited using an EndExit
logic command, control passes to the end of the current method.

If the Determine Actual logic command loop is exited using a JumpTo logic
command, control passes to the end of the Determine Actual logic command loop to
execute the SQL script's destruct method before transferring control to the Label
destination of the JumpTo logic command.

If the Determine Actual logic command loop is not exited using a Break or JumpTo
logic command, execution returns to step 4 above.

7. The SQL statements in the SQL script's destruct method are executed.

The SQLCODE return code from the destruct method sets the Glb.PostSQLCode
built-in segment attribute.
3826 5823-008 3–113

Developing Applications
Examples

• Selective Data Retrieval with Join Example

• Selective Update Example

• Database Issues

 Refer to Determine Actual and SQL Script Variant for more infomration on SQL script
usage.

Database Issues

Database Integrity

SQL scripts operate within the context of the existing Agile Business Suite transaction
structure. A commit would destroy the atomicity of the transaction and potentially leave
the database in an indeterminate state. For ispecs, this means that any command which
would cause an implicit or explicit commit of database changes is specifically not allowed,
and results in a validation error when the component is built. For reports, commands that
force an implicit or explicit commit can be used; as such a capability is already available
with the Sleep logic command.

Resilience and Recovery

Use of SQL scripts exposes the Agile Business Suite database to uncontrolled updates. It
is possible to perform updates that do not take into consideration the internal semantics
that Agile Business Suite imposes on a database table. Due care should be taken to
ensure that the database is not corrupted or internal semantics invalidated.

OLEDB

Upon completion of the construct built-in method, the Glb.PreSQLCode built-in segment
attribute is set to the Database return SQLCode value.

Upon completion of the main built-in method, the Glb.MainSQLCode built-in segment
attribute is set to the Database return SQLCode value.

Upon completion of the destruct built-in method, the Glb.PostSQLCode built-in segment
attribute is set to the Database return SQLCode value.

Upon completion of any non-built-in SQL script method, Glb.MainSQLCode is set to the
Database return SQLCode value.

If there are multiple SQL statements in any method, only the last value of SQLCode is
set.

The following example checks SQLCODE values:

Determine Actual MySQL
DoWhen Glb.PreSQLCode <> 0
Message "Construct method caused a warning"
: We don’t want to process this for each iteration, so clear the condition
Glb.PreSQLCode := 0
End
3–114 3826 5823-008

Developing Applications
DoWhen Glb.MainSQLCode <> 0
Message "Main method caused a warning"
: Clear the condition for the next iteration
Glb.MainSQLCode := 0
End
: Logic
End : End of Determine Actual MySQL
: Check for any warnings from the destruct method
DoWhen Glb.PostSQLCode <> 0
Message "Destruct method caused a warning"
: Clear the condition
Glb.PostSQLCode := 0
End

Selective Data Retrieval with Join Example

This example uses the SQL script “LargePolicies” to iterate over data retrieved
concurrently from two database tables by means of a join operation.

Construct

The construct method consists of the following SQL statements:

DECLARE Cursor1 CURSOR FOR
SELECTPolicy.Acct Cust.Name Cust.Address Policy.Value
FROMPolicy, Cust
WHEREPolicy.Acct = Cust.Acct AND Policy.Value > :MaxValue ;
OPEN Cursor1 ;

This declares a cursor “Cursor1” over the set of data represented by the SELECT and
WHERE clauses. It then opens the cursor. As an example, this would retrieve the name
and address of every customer with a policy value greater than $1,000,000.

Main

The main method consists of the following SQL statement:

FETCH Cursor1 INTO :PolicyAcct :CustName :CustAddress :PolicyValue ;

This fetches the next record into the instance variables defined by the DECLARE …
CURSOR FOR statement in the construct method.

Destruct

The destruct method consists of the following SQL statement:

CLOSE Cursor1 ;

This closes the cursor Cursor1.

Attributes

The following attributes should be defined for the SQL script, for use as instance
variables:

• PolicyAcct – string-primitive, length 15.

• CustName – string-primitive, length 30.
3826 5823-008 3–115

Developing Applications
• CustAddress – string-primitive, length 50.

• PolicyValue – number-primitive with 2 decimal places, length 12.

• MaxValue – number primitive, length 10.

Invocation

The SQL script is invoked from a report as follows:

MaxValue := 1000000
Determine Actual LargePolicies
PolicyTotal := PolicyTotal + PolicyValue
F10_Acct := PolicyAccount
F10_Name := CustName
F10_Address := CustAddress
Frame10.Print()
End

Upon invocation, processing occurs as described in SQL Script Processing.

Selective Update Example

This example uses the SQL script “PremiumUpdate” to update all records from a single
table that meet the selection criteria.

Construct

The construct method consists of the following SQL statements:

UPDATE Policy SET Policy.Premium = Policy.Premium * :PremiumIncr
WHERE Policy.StartDate > 19851103 ;

This is a singleton SQL statement that increases the policy premium by 11.5% (specified
by PremiumIncr) for all policies started after November 3, 1985.

Main

The main method is not defined or empty.

Destruct

The destruct method is not defined or empty.

Attributes

The following attribute should be defined for the SQL script, for use as an instance
variable:

• PremiumIncr – number-primitive with 3 decimal places, length 4.
3–116 3826 5823-008

Developing Applications
Invocation

The SQL script should only be executed once. Consequently, an unconditional Break logic
command should be invoked from within the Determine Actual logic command loop:

PremiumIncr := 1.115
Determine Actual PremiumUpdate
: Logic
Break
End

Upon invocation, processing occurs as described in SQL Script Processing .

Automatic Entries

Automatic entries are used to pass ispec information between deployed applications. This
information passing can occur between applications on the same or on different hosts.
Transactions that initiate inter-application communication are fully recovered in the event
of a system failure (except where the two-phase commit process abandons a
transaction).

Internal Automatic Entries

Internal automatic entries occur between applications using the same database (or within
the same application).

The automatic entry sends information from the originating ispec or report to the
database via the database record buffer of the target ispec.

External Automatic Entries

External automatic entries occur between applications using different databases. The
target application must have an ispec identical to that specified by the originating
application, sharing the same attributes, and in the same order.

External automatic entries can be used to interface to an external system, using the NOF
or USER interface methods. Refer to the Agile Business Suite Runtime for Windows®

Operating System Administration Guide for your host type for more information.

Automatic Entry Processing

The target ispec must be an automatic entry ispec (its Auto Entry Capable property is
set to true).

Note: An external-only ispec (its External Only property is set to true) is
inherently an automatic entry ispec.

The data object used to pass information to the target application is specified as an
instance of the target ispec as a non-persistent ispec attribute of the originating segment.
3826 5823-008 3–117

Developing Applications
To send an automatic entry, perform the following:

In logic:

1. Call the target ispec's Initialize built-in method to clear it.

2. Set the members of the target ispec to the required values.

For members of the target ispec that are not given a value by an explicit assignment
statement:

• For new records, any members omitted are set to zero (for number-primitive
variables) or a space character.

• For existing records being modified, any members omitted retain their existing
values. However, if the member's Clear When property is set to zero (for
number-primitive variables) or a space character, the value is set to zero or a
space character, as appropriate.

3. Specify the target application by setting one or more of the following built-in segment
attributes:

• Glb.Destination to the destination database; it is set by default to Glb.Self.

• Glb.DestHost to the destination host; it is set by default to Glb.SelfHost.

• Glb.DestEnv to the destination environment; it is set by default to Glb.SelfEnv.

To specify an internal automatic entry, set the Glb.Destination built-in segment
attribute to Glb.Spaces or Glb.Self and the Glb.DestHost built-in segment attribute to
Glb.Spaces or Glb.SelfHost.

4. Call the target ispec's Store built-in method to send the automatic entry. Refer to
Store for more information.

If the target ispec has at least one attribute set as a key, the Maint built-in attribute
value should be passed as a parameter to Store.

Internal Automatic Entry Processing

For internal automatic entries, no transaction processing of the target ispec occurs. The
database is updated immediately with the information.

External Automatic Entry Processing

For external automatic entries:

1. After the automatic entry is sent, the originating application is suspended while
waiting for a response from the automatic entry.

2. The target application receives the automatic entry in the input buffer and processes
the information as normal client input. All phases of the segment cycle , except for
the Construct method, are performed for the target ispec.

The Glb.Origin, Glb.OriginHost, and Glb.OriginEnv built-in segment attributes can be
used to identify the source of the transaction.
3–118 3826 5823-008

Developing Applications
Whilst the target ispec is processed, a recall of a different ispec (using the Recall logic
command) is ignored. A recall of the same ispec causes a reply to be returned to the
originating application. Otherwise, a simple acknowledgment is returned, indicating
that processing is complete. If the Glb.Error built-in segment attribute is set to
“*****”, only an error acknowledgement is returned upon completion.

3. The originating application receives the response and the reply can be determined
from the values of the members of the targeted ispec.

The Glb.Status and Glb.HubStatus built-in segment attributes can be used to identify
the result of processing the message. Refer to Glb.Status and Glb.HubStatus
Settings for more information on the values returned to Glb.Status and
Glb.HubStatus.

The Auto Write&Clear command only clears the automatic entry buffer if no data is
returned to the buffer, in which case it clears the buffer regardless of the Glb.Error
built-in segment attribute value. However, if data is returned, the Auto Write&Clear
logic command behaves identically to the Auto Write command.

Failure Behavior

An automatic entry is rejected if:

• The Maint built-in attribute value is passed to the Store method as ADD, and the
record already exists in the target database.

• The Maint built-in attribute value is passed to the Store method as CHG or DEL, and
the record does not exist in the target database.

Refer to Glb.Status and Glb.HubStatus Settings for more information on failure behaviour.

Data Truncation

If a mixed string and wide string value is input to a wide string-primitive variable, the value
is moved character-by-character, and truncated to the length of the variable.

If a mixed string and wide string value is input to a string-primitive variable, the value is
moved byte-by-byte, and truncated to the length of the variable. This truncation may
occur after the first byte of a double-byte character, resulting in an invalid character.
However, truncation does not occur when moving these values into a wide string array
variable.

Automatic Entry Restrictions

The following restrictions also apply to the use of automatic entries:

• They are not valid in Edit methods of copy ispecs.

• Signed number-primitive variables are corrupted if passed in an external automatic
entry to an application deployed to a platform with a different character set, that is,
between EBCDIC (applications deployed to MCP) and ASCII (applications deployed to
UNIX, Windows® , or OS 2200).
3826 5823-008 3–119

Developing Applications
• Only the values ADD, CHG, and DEL can be passed as parameters to the Store
method. The Glb.Status built-in segment attribute is set to “*****” when the
automatic entry is sent if any other value, such as PUR, is passed.

A signed number-primitive value cannot be transferred between different host
platforms. To transfer a signed value between applications deployed to different host
platforms, specify a separate variable for the sign, and transfer the absolute value.

• A string value cannot be transferred to an unsigned number-primitive variable with
decimals (or vice versa).

• A string value cannot be transferred to a signed number-primitive variable (or vice
versa).

• A number value cannot be transferred to a wide string-primitive variable (or vice
versa).

• Number array variables are implemented as COBOL COMPUTATIONAL fields.
Moving a number array to anything other than an identically defined number array
may result in data that is invalid for use in either computation or display.

Numeric Arrays

Numeric arrays are stored in COMP data format, which is different from how string arrays
are stored (as string values).

To calculate the required size for the receiving attribute to store an incoming numeric
array:

1. Allow one byte for every two digits.

2. Add half a byte for each array element, rounded up to the nearest byte.

For example, an array with ten elements, each three digits in length, would be
calculated as:

((10 * 3) / 2 + (0.5 * 10)) := 20

Graphical Interface Workbench

If a Graphical Interface Workbench interface is used to view the output from copy ispecs
that contain external automatic entries, the automatic entry buffer that holds the
information from the external automatic entry is also used for the video output items for
the copy ispec for the Graphical Interface Workbench interface. This can result in
corrupted data on the output screen.

To avoid this, when coding copy ispecs to use automatic entries for Graphical Interface
Workbench-type interfaces:

1. Code any Initialize method calls before setting up any display fields on the screen.
The BEGIN.EDIT logic command can be used to help do this. Refer to Segment Cycle
for Copy.From Ispecs in the Enterprise Application Host Builder Guide and
BEGIN.EDIT and End.EDIT later in this section for more information.
3–120 3826 5823-008

Developing Applications
2. Store the fields in the automatic entry buffer immediately into SDs or GSDs, by using
the Move.ARRAY; command. This prevents the fields from being initialized on each
copy cycle, being overwritten by other external Automatic Entries, or being
overwritten by setting up display fields on the screen.

3. Reference the SD or GSD, rather than using the Move.ARRAY; command, in the Ispec
user logic.

Automatic Entry Example

This example in the logic of a report calculates each customer's bank balance and makes
internal automatic entries updating the interest amount. It also makes an external
automatic entry to the database of a different application if the customer is unemployed.

LookUp Every Cust : Iterate through every customer
 Determine Total Deposits (Cust.Customer) Amount : Determine the total amount
 : of the customer’s deposits
 Glb.Total := Glb.Total * Cust.Interest : Calculate the interest
 SD_Interest := "Interest" : Give a description
 Deposit.Initialize()
 Deposit.SetMaint("CHG")
 Deposit.Customer := Cust.Customer
 Deposit.Amount := Glb.Total
 Deposit.Narration := SD_Interest
 Deposit.Store() : Store in Deposit database table
 Deposit.Initialize() : Clear the Deposit buffer values

 : Logic

 Journal.Initialize()
 Journal.SetMaint("ADD")
 Journal.Ledger := SD_Interest
 Journal.Amount := Glb.Total
 Journal.Amount.Contra()
 Journal.Store() : Store in Journal database table
 Journal.Initialize() : Clear the Journal buffer values
 DoWhen Cust.EType = "N" : For unemployed customers
 Glb.Destination := "EmployDB" : The interest amount is sent to
 Deposit.Initialize() : the Employ application
 Deposit.SetMaint("ADD")
 Deposit.External(true) : (running against EmplyDB)
 Deposit.Customer := Cust.Customer
 Deposit.Amount := Glb.Total
 Deposit.Narration := SD_Interest
 Deposit.Store()
 Deposit.Initialize()
 DoWhen Glb.Status = "NOEXT" : Check external automatic entry
 Message Error "External application not identified"
 EndExit
 Glb.Destination := Glb.Self : Reset Glb.Destination
 End
End

Runtime Limits

This section summarizes the limits that are currently in effect with Agile Business Suite.

• Ispec Class Limits

• Ispec Class and Report Ordering

• Reports Class Limits
3826 5823-008 3–121

Developing Applications
• Profiles Limits

• Ispec Attribute Limits

• Segment Attribute Limits

• Methods Limits

• Database Limits

Limits on LINC+ Logic commands and System Attributes are described in the LINC+
Programming Reference Manual and Logic Online Help.

Conventions

Limits are summarized in tables. Additional information may be included after each table.

The phrase No limit means that there is no direct limit, although system software and size
considerations (and the associated increase in edit and generate times) may have an
impact.

The phrase System means that the limit is imposed by system software, such as the
COBOL compiler.

Ispec Class Limits

The following table contains a summary of the limits for an Ispec Class for each target
host. It is intended as a guide only and should be read in conjunction with the information
in the subsections following the table:

Limit Windows® MCP

Number of Ispec Classes No Limit 1500

(1000 for Output or I/O)

Number of Attributes in Output
Structure

1024 3020

Length of Attributes in Output
Structure

29 characters

(For Numeric)

2 31-1 characters

(For Text)

24570 characters

Byte length of Input/ Output Ispec
classes

4000 bytes

(65000 for Big Buffer
Ispecs)

26,450 characters

Number of Logic Lines in an Ispec
class

2097151

Number of lines in a
Class

999999

Number of Nested Database
Commands

32 No limit
3–122 3826 5823-008

Developing Applications
Number of Attributes in the Output Structure

In Windows-based systems, there is a limit of 950.

In MCP-based Systems, the maximum number of Usage Input-Output and Usage Output
items is 3,020 (and is limited by the accumulated size).

The number of fields reserved for the different types of generated fields are listed in the
following table:

Notes:

• Component arrays often result in a long Attribute.

• In SQL Server, this limitation of allowing only a single field within a table to
exceed 4000 characters is not present. However, this limit is enforced at the
validation phase of Generate for all database types to ensure that specifications
developed in Agile Business Suite are consistent for all deployed database types.

Size of Ispec Class or Profile Record in MCP-based Systems

Usage Input-Output and Usage Output Attributes are limited to an accumulated size of
4,065 words (24,570 characters), which is the DMS II record size limit.

Size of Ispec Class or Profile Record in Windows-based Systems

An Attribute Item of type long may not be used as a Key or Profile Key.

For SQL Server, the size of an index must be smaller than 900 bytes.

References to other Ispec classes 65535 (within a method)

2097151 (within a class)

6009

References to Methods 2000 (includes references
to other Ispec classes)

Painted Items in an Ispec class 9990 320

Painted Items in a Copy.From area 9990 100

Maximum size of External Automatic
Entry (HUB) transaction

9999 characters 2000 bytes

Generate Subtract

GLB_DTIME (Ispec) 1

GLB_DTIME, MAINT (Std component) 3

ACTMTH, GLB_DTIME, GLB-REPORT, INPUT-DATE, ISPEC, XTRANNO 6

Descending key fields 1 for each

Limit Windows® MCP
3826 5823-008 3–123

Developing Applications
Byte Length Limit for Windows-based Systems

For Input/Output Ispecs that are to be generated to a Windows® operating system, there
is a 4,000 byte data limit. The combined maximum size of user defined fields is 3,893
bytes. The remaining 107 bytes are made up of the following system-defined fields:

• ACTMTH

• LB.SOURCE

• INPUT-DATE

• MAINT

• TRANNO

• 1 byte for the @-sign field

• 80 bytes for the status line

This limit is due to the internal buffer RDATA-AREA having a maximum length of 4,000
bytes. RDATA-AREA stores the Input/Output buffer for the Ispec. Anything over the 4,000
byte limit causes memory to be overwritten.

The limit is checked during the Model Validation phase of the Builder generate process. If
the maximum length is exceeded an error is given and the generate is stopped.

Note: This limitation does not apply to Big Buffer Ispecs classes. For Input/Output
Big Buffer Ispec classes, the maximum byte length is 65000 bytes for a Windows®
oerating system.

Database Commands

In Windows-based systems, there is no limit to the number of Database commands.

In MCP-based systems, there is a limit of 999 references to other Ispec classes (all
Events count as one reference) from an Ispec class.

Painted Items in an Ispec Class

For Windows® and MCP-based systems the limit to the number of painted items in an
Ispec Class, or a Copy.From area is as follows:

Limit of 320. Maximum of 100 items in the Copy.From area of the screen layout for a
Copy.From Ispec classes.

Note: This limitation does not apply to Big Buffer Ispec classes. The maximum
number of painted items in a Big Buffer Ispec class is 1000.

Internal Database Storage Order

In MCP-based systems, Ispec Attributes are stored in the database in the following order:
alphanumeric items (in alphabetical order), numeric items (in alphabetical order), and a
filler item if defined.
3–124 3826 5823-008

Developing Applications
In Windows-based systems, Attributes used as Keys are defined first (in alphabetical
order), followed by all other Attributes (in alphabetical order).

Ispec Class and Report Ordering

MCP is an EBCDIC based platform, the Windows environment is ASCII based. Builder
converts ASCII to EBCDIC during the generate file transfer process.

Because of this difference, Ispec and Report Classes appear differently in lists in
Developer and MCP Runtime, when their names contain numeric characters. MCP
Runtime displays the name containing the numeric after those with no numeric
characters. Developer displays the name containing the numeric before those with no
numeric characters. For example, MCP displays Ispec classes in the following order,
ABCD, ABC2, while Developer displays them in the opposite order, ABC2, ABCD.

You must also be aware that the sort order is based on the collating sequence of the
native character set for the host platform on which you are running the application. This
affects the order in which items are stored and retrieved from the database.

You should make appropriate allowances for this if your application is to run on both
Windows® and MCP operating systems.

Reports Class Limits

The following table contains a summary of the limits for Reports for each target host:

Limit Windows® MCP

Reports in a System No limit No limit

Logic Lines for a Frame class 999,999 999,999

Nested Database Commands No limit No limit

References to Ispec classes (all Events
count as 1 reference) from a Report class

999 600

Segment Method logics in a single Frame
class

2000 (includes references to
ispec classes)

Segment Methods in a report 2000 (includes references to
ispec classes)

Methods in a single Frame class 900 900

Methods in a Report 900 900

Display items in one Frame class 204 204

Display and Attributes in one Frame class 450 450

Global Setup Attributes in a Report class 64K bytes 999x1 Mb bytes

Setup Attributes in a Frame class 64K bytes 1 Mb

Size of generated Report code System System
3826 5823-008 3–125

Developing Applications
Number of Logic Lines for a Report

999,999 lines for each Frame class, and 999,999 lines for Main logic.

Setup Attributes in a Report Frame in MCP-based Systems

A separate limit of 64K bytes applies to Attributes with initial values and Attributes
without initial values.

Database Commands

There is no limit for Database Commands in the Windows® operating system.

In MCP-based systems, there is a limit of 999 references to other Ispec classes (all
Events count as one reference) from an Ispec class.

Physical Size of Extract Files Created Within a Report on MCP-based
Systems

If the Extract is a Frame, a limit of 99,999,999,999 records applies (set on the Extract File
Options screen).

If not an Extract Frame, the file size is taken from the value of the Expected Number field
for the Ispec class (limit of 99,999,999,999 records set on the Extract File Options
screen).

Files Used in a Report class System System

Extract files in a Report class 26 600 (only first 26 CP
recoverable)

Physical size of Extract files created within
a Report class

No Limit

Size of Extract file (Extracted Frame, 80-
byte records)

No Limit Expected number field to
99,999,999,999

Size of Extract file (Ispec class) No Limit Expected number field to
99,999,999,999

Attached Reports running at one time for a
System

500

Standalone Reports running at one time for
a System

System System

Sorting No Limit Sort memory 999K words, Sort
disk 999,999K words

Size of RIP file card equates 5K bytes

Limit Windows® MCP
3–126 3826 5823-008

Developing Applications
Profiles Limits

The following table contains a summary of the limits for Profiles for each target host.

Number of Profiles

The number of Profiles over any Ispec class is limited to 99 for all hosts.

Length of Profile Keys

On MCP-based systems, there is no limit, although DASDL may impose an upper limit.

On Windows-based systems, the sum of the lengths of all Profile Keys is limited to half
the database block size. An Attribute of type long may not be used as a Key. For SQL
Server, the size of an index must be smaller than 900 bytes.

Number of Lines in a Profile Definition

For Windows® and MCP-based systems the limit on the number of lines in a Profile
definition is as follows:

There is a limit of 99 lines when defining your Profile (that is, lines for COMP.NAME; or
EVENT.NAME; commands, KEY; commands, DO.WHEN; conditions and for MCP-based
Systems, DATA; commands). You should use this limit at your discretion as your system
may experience memory problems.

Ispec Attribute Limits

The following table contains a summary of the limits for Setup Attributes for the different
target hosts.

Limit Windows® MCP

Number of Profiles 99 No Limit

Number of Keys in a Profile 16 20

Length of Profile Keys 240 bytes No Limit

Number of Lines in a Profile Definition 99 99

Alphanumeric Key Length 78 78

Usage Output Alphanumeric Key 4095 4095

Unsigned Numeric Key 12 12

Signed Numeric Key 11 11

Limits Windows® MCP

Number of Ispec Attributes 2097151 No limit

Size of an alphanumeric Ispec Attribute 2 31 - 1 characters 9,999
3826 5823-008 3–127

Developing Applications
Size of Ispec Attributes on MCP-based Systems

Ispec Attributes without initial values have a maximum limit of 99 Ispec classes with
greater than 64K byes of Ispec Attributes or the equivalent size in one Ispec class.

Ispec Attributes in a Method

If you intend to access a Method using the Component Enabler interface, you can only
use 5000 Ispec Attributes to define the parameters of the Method. Also, if a parameter is
longer than 5000 bytes, only the first 5000 bytes are transferred.

These limits only apply if you use the Component Enabler interface. They are not
enforced by Developer.

Segment Attribute Limits

The following table contains a summary of the limits for Global Setup Attributes.

Size of an Ispec Attribute with alphanumeric
literal

2 31 - 1 characters 160

Size of a numeric Ispec Attribute 29 18

Size of an Ispec Attribute with numeric literal 29 18

Total size of an Ispec Attribute array (characters) Size of public Array
variable of any datatype

1MB

Size of all Ispec Attributes with initial values 29 characters

(for numeric)

2 31 - 1 characters

(for text)

No limit

Size of all Ispec Attributes without initial values 29 characters

(for numeric)

2 31 - 1 characters

(for text)

See Text

Ispec Attributes in an Ispec class 2097151 No Limit

Ispec Attributes in Report 2097151 No Limit

Ispec Attributes in a Method 2097151 See Text

Limit Windows® MCP

Number of Folders 999 999

Number of Segment Attributes 2097151 No Limit

Size of an alphanumeric Segment Attribute 2 31 - 1 9,999

Size of a Segment Attribute with alphanumeric literal 2 31 - 1 160

Limits Windows® MCP
3–128 3826 5823-008

Developing Applications
Size of Segment Attributes on MCP-based Systems

Total size of all Segment Attributes without initial values has a maximum of 6,336K bytes.

Methods Limits

The following table contains a summary of the limits for Methods for each target host.

Methods in an Ispec Class

MCP-based Systems

There is a limit of 9,000 on the total number of inserts of a Method into another Method.

Windows-based Systems

For Methods, there is a limit of 500 on the number of inserts of a Global Logic into an
Ispec class (including nested inserts).

Size of a numeric Segment Attribute 29 18

Size of a Segment Attribute with numeric literal 29 18

Total size of a Segment Attribute array (characters) 65,000 1MB

Size of all Segment Attributes with initial values 29 characters

(for numeric)

2 31-1 characters. (for
text)

No Limit

Size of all Segment Attributes without initial values 29 characters

(for numeric)

2 31-1 characters. (for
text)

No Limit

Segment Attributes in an Ispec class 2097151 No Limit

Segment Attributes in Report 2097151 No Limit

Limit Windows® MCP

Number of Methods 2097151 No limit

Logic Lines in a Method 2097151 9,999

Methods in an Ispec class 2097151 No limit

Nested Methods 2097151 No limit

Macro Methods in Module Master No Limit No limit

Macro Methods inserts in Module No Limit 3,000

Size of an alphanumeric Attribute in a Method 2 31-1 4,095

Limit Windows® MCP
3826 5823-008 3–129

Developing Applications
Nested Methods

The upper limit for nested Methods is the limit on the number of Methods in an Ispec
class.

Length

By default, the value is 1.

The following table contains limits for Attributes.

Database Limits

Limits of Persistent Agile Business Suite Constructs

The Database Reorganization module of AB Suite translates the persistent constructs of
the model into database structures. The naming conventions for the database structures
and the corresponding limits is listed in the table below:

Type of Attribute Maximum Length

Alphanumeric 2 31-1

Usage Inquiry, Alphanumeric 2 31-1

Usage Output, Alphanumeric 2 31-1

Ispec class, Numeric, with
NO.DECIMAL.KEYED

29

Ispec class, Numeric, with DECIMAL.KEYED 29

Date By default, exactly 6 (can be specified as 8 to
include the century)

Model Construct DB Construct DB Naming Convention Length_Limit

Database Schema
(Segment property)

Database
Schema

Database Schema 8 characters

Persistent Ispec Table SegmentName_IspecName 30 characters

Persistent Attribute Column ColumnName 30 characters

Profile Index SegmentName_ProfileName 30 characters

Conditional Profile Materialised
View

SegmentName_MaterialisedView
Name

30 characters

SQL Scripts Stored
Procedures

Stored Proc Name=CONSTRUCT,
PREPARE, MAIN

30 characters
3–130 3826 5823-008

Developing Applications
Defining User Interfaces
The Agile Business Suite Developer is used to design and construct user interfaces, for
you to interact with deployed applications. It allows you to add simple graphical objects,
such as lines and images, and graphical objects, such as edit boxes and radio buttons,
which are bound to attributes as their data source.

When a graphical object is bound to an attribute, it can read and display the data in the
attribute and modify the contents if applicable.

Note: In Teach Screens, graphical objects cannot have associated attributes.

You can use the following two modes to design the forms:

• Graphical Mode to design GUI screens for application ispecs and methods. These
screens can display the greatest range of visual objects, such as check boxes, list
boxes, images, and so on.

• Fixed Mode (Green Screen Painter) to design character screens for different
runtime platforms. These screens use fixed type fonts and cannot display complex
graphics.

You can toggle between the two modes in AB Suite applications by selecting the required
mode from the list above the form. You can design the screens by using the toolboxes
available for each mode.

Note: In AB Suite Client Framework applications, you cannot toggle between the
Graphical and Fixed modes. When a Presentation Interface is added to a class or
an ispec, the PresentationType property of the class or the ispec is set to Graphical
and is read-only.

User interfaces for Client Framework applications are designed using the standard tools
for the chosen technology (for example, WPF Designer for WPF Client applications). A
Client Framework model does not allow the System Modeler Painter to be used for
designing the user interface for Client Framework applications. Refer to Designing User
Interfaces for Client Framework Applications for more information.

Any named element can have a form if its PresentationType property is set to a value
other than None, with the exception of a model or folder.

The first step in creating an interface for AB Suite applications is to add a form to the
element. You can then add graphical objects to the form so that a user can interact with
the underlying elements of the application.
3826 5823-008 3–131

Developing Applications
Differences between Graphical and Fixed Screens

The Fixed mode screens (green screens) are similar to the Graphical screens; however
different types of items are handled differently in the Fixed mode and Graphics mode.
The main differences are summarized in the following table.

PresentationType Property

A presentation format is selected by specifying the PresentationType property. The
PresentationType property comprises the following options:

• Graphical

• Fixed

• Graphical and Fixed

• Print

• None

Property Graphics Screen Fixed Screen

Fonts Supports multiple fonts and point
sizes.

Supports fixed type fonts only (the
fonts used are not proportional to
the width of the characters).

Any font change applies to all items
in a form and is not specific to an
item in the form.

Controls Supports the use of all graphical
controls in the System Modeler
(SM) Graphical Painter Toolbox.

Supports use of only the following
controls in the SM Fixed Painter
Toolbox:

Pointer, Labels, TextField, and
PasswordField.

Overlapping of
fields

Supports overlap of characters or
fields without restriction.

Prevents overlapping of characters
or fields. The character or field that
is positioned on top of another
character or field is truncated. In
addition, if the available space
where a field is placed is less than
the defined length of the attribute
then the field is truncated.

Grids Displays the default grid size. Displays a different grid size. The
size of the grid depends on the
fixed font type and size.

Foreground and
background colors

Supports custom colors. Limits the use of colors to the
following: Black, White, Red, Green,
Blue, Yellow, Cyan, and Magenta.
3–132 3826 5823-008

Developing Applications
Graphical

The Graphical format allows the addition of graphical objects listed in the toolbox to a
form for creating AB Suite applications. This format is most suitable for GUI screens that
can display the greatest range of visual objects, such as check boxes, list boxes, and
images. For Client Framework applications, the PresentationType property is set to
Graphical and is read-only. Furthermore, you cannot use System Modeler Painter for
developing user interfaces for Client Framework applications. The development of user
interface for Client Framework applications is achieved by using external tools for the
chosen technology.

Fixed

The Fixed format is most suitable for character-based screens that are unable to display
complex graphics. This format limits the graphical objects to Labels, TextFields, and
PasswordFields. Note that there is a limited range of available colors and fonts in a Fixed
presentation.

Graphical and Fixed

The Graphical and Fixed format allows you to create either a graphical or fixed form, or
both. It allows you to have different versions of the same form, which can be accessed
from either a graphical or character-based screen.

Print

In the Print format, the addition of graphical objects to the form is limited to only Labels.
This format is ideal for printing report outputs.

None

Generally, this is the default value for the PresentationType property and is selected for
elements that do not require a form. The exception to this is CopyEvents and CopyIspecs,
which have a default value of Graphical but can be changed to Fixed and Graphical &
Fixed.

Refer to Common Properties for more information on setting the Font, Foreground color,
and Background color for each of these presentation types of AB Suite applications.

Adding a Form

You can add a form to an element by selecting the element from the Class View.

To add a form to an element from the Class View, perform the following:

1. Open the Class View window and select the element to which you want to add a
form.

Note: If you wish to select an element lower in the hierarchy of the element
node that is displayed in the Class View, press + (plus key) on the numeric keypad
to expand the element and to display its members.
3826 5823-008 3–133

Developing Applications
2. Open the Properties window of the selected element, and set the
PresentationType property to any value other than None.

This adds the Painter tab to the document window. Refer to PresentationType
Property for a description of the available presentation types.

The Painter tab is available at the bottom of the document window. Click this tab to
open the newly created form on which you can add graphical objects. Before you add
objects, you may want to display the form grid to have your objects snap to the grid for
more accurate positioning. You may also want to set the properties of the form, which
can be done before or after you add the objects.

Setting the Properties of a Form

The visual characteristics that you specify for a form are inherited by all graphical objects
that you add to the form, when they are appropriate for an object type. You can specify
different visual attributes for a particular object or group of objects after the objects have
been added to the form. If you wish to return the changed visual attribute of an object to
its original inherited value, select the object and the property that you wish to reset, click
Reset from the context menu.

To set the properties of a form in the Properties window, perform the following:

1. Click anywhere on the form to select the form.

2. On the View menu, right-click Properties window to open the Properties window.

3. Specify the properties as listed in the following table.

Property Function

Name Specifies the name of the element that contains the form.

This property is read-only.

GridSize Specifies the size in pixels of the horizontal and vertical guidelines to
help you align objects on a form.

The grid size may differ between Graphical and Fixed screens. The grid
size depends on the fixed type font and font size for a Fixed screen.

ShowGrid Specifies whether the form displays grid lines. By default, the grid is
turned on.

SnapToGrid Specifies whether the objects on the form get locked to the nearest
grid lines. By default, the value is True.

FormLayout Specifies the display format of form objects. By default, the Grid option
is selected.

The following two options are available:

• Grid – Specifies absolute positioning behavior of form objects.

• Flow – Specifies a logical flow layout of form objects in a top-left,
bottom-right arrangement.
3–134 3826 5823-008

Developing Applications
AutoTabbing Specifies if the cursor automatically moves to the next field on the form
after data is entered in the current field. Options include True and False.

Note: This option is applicable only for the Presentation and
Winforms clients.

BackgroundColor Specifies a background color for the form. Select a color from one of the
tabs in the drop-down list. The colors for a Fixed screen are limited to
the following: Black, White, Red, Green, Blue, Yellow, Cyan, and
Magenta.

BackgroundImage Specifies an image to be displayed as the form background.

Font Specifies font attributes that are applied directly to the text appearing
on the form. The fonts for a Fixed screen are limited to fixed type fonts
only. Any font change applies to all items in a form.

ForegroundColor Specifies a foreground color for the form. Select a color from one of the
tabs in the drop-down list. The colors for a Fixed screen are limited to
the following: Black, White, Red, Green, Blue, Yellow, Cyan, and
Magenta.

ScrollBars Specifies if a form displays scroll bars when the content of a form
exceeds a screen display size.

The following options are available:

• No

• Horizontal

• Vertical

• Both

ShowActmth Specifies whether the accounting month field appears. Options are True
(default) and False.

ShowHeader Specifies whether the header fields of a form appear. Options are True
(default) and False.

ShowToolTip Specifies an optional tooltip to appear when the user at runtime hovers
the mouse over a control in Winforms.

To view the tooltip in the Presentation Client, you have to hover the
mouse on the control and press the F1 key. This tooltip is only visible at
Runtime.

Size Specifies the size of the form representing the height and width in
pixels. By default, the value is 80 by 24 pixels. You can adjust the size,
if needed.

TransmitToCursor Specifies that the form data up to the position of the cursor (in the order
of tabbed fields) is transmitted to the host.

By default, the value is False, and it sends all the form data to the host
at transmit time.

Property Function
3826 5823-008 3–135

Developing Applications
Using the Form Grid

The Form Grid provides horizontal and vertical guidelines designed to help you align
objects on your form, or a Panel that was added from the Toolbox.

ShowGrid – Specifies whether form display the sizing grid. By default, the grid is turned
On. The grid size may differ between Graphical and Fixed screens. For Fixed screens, the
grid size depends on the fixed type font and font size.

SnapToGrid – Specifies whether forms objects snap to the grid. When this feature is
turned on, objects are automatically aligned to the grid when resized or moved. The
resizing and movement of objects on the form are constrained to the grid increment
when this feature is turned on.

Having SnapToGrid turned on makes it easier to align objects precisely, but limits the
freedom with which you can place objects. By default, SnapToGrid is turned On.

To display the grid, select the ShowGrid property in the Properties window of the
selected form.

The default Grid Settings can be set in Windows Forms Designer from the Tools,
Options dialog box.

Inherited Form Objects

When you click the Painter tab to create a new form, you may find that graphical objects
enclosed in a GridPanel already exist on the form.

This can occur in the following cases:

• Inherited Interface – If the class for which you are creating an interface inherits
from another class that contains an interface, the form objects of the parent class are
added to the current form as immovable objects and cannot be modified. Instead, if
an attribute inherits from a class that contains an interface, the form objects of the
parent class are added to the current form as a movable GridPanel when the attribute
is dragged onto the form.

• Attribute Group – If the class for which you are creating an interface contains an
Attribute Group. In previously released versions of the product, these were referred
to as Keywords. The existing GridPanel can be moved within the form, but its
contents cannot be modified or removed.

Adding Graphical Objects

There are several ways in which you can add graphical objects to a form in the Painter tab.

• Drag an object from the Toolbox onto a form.

• Change the Direction property of an attribute in the Class View.
3–136 3826 5823-008

Developing Applications
• Copy an existing object on a form and paste it as an additional object on the same
form, or on a different form.

• Drag an attribute from the Class View window on to a form to create an object on the
form.

Note: A quick way to add a label to a form is to position the cursor on the form
where you want the label to be positioned, and start typing. A label object is
automatically added to the form and your text is placed in the label as you type.

Each object that you add to a form possesses certain properties. The properties that are
available vary depending on the type of object. You can modify the properties of the
object to suit the requirements of your form. You may also change the type of some
Graphical Objects. For instance, after you have added a Text Field to a form or GridPanel,
you may decide that it would be more useable as a Text Area.

Note: The properties of form objects are transient until a form is saved. It is only
after a form is saved that a form and its contents are committed to the project
database.

SM Graphical Painter Toolbox

The SM Graphical Painter Toolbox contains all the graphical objects that can be added to a
form. All graphical objects added to a form from the Toolbox possess one or more
identifier properties that are used internally by the software. For example, the properties
Id and Name. These properties are read-only and cannot be changed. They however
appear in the Properties window for your reference.

Two tool boxes are available for different modes in the Painter tab. The SM Graphical
Painter Toolbox contains all the elements listed in the following table; the SM Fixed
Painter Toolbox contains only the Pointer, Label, TextField, and PasswordField controls.

The table below describes the objects that are generally available in the Toolbox. Click an
object on a form to view the available properties in the Properties window.

Note: To access the tools that are applicable for designing a form in the Painter tab,
click the SM Graphical Painter tab in the Toolbox.

Object Description

Pointer By default, this tool is selected when the Toolbox opens. It cannot be
deleted. The Pointer enables you to drag objects onto the Design view
surface, resize them, and reposition them on the form.

Button Inserts a Button object. To change the text appearing on the button, edit
the Text property. By default, Id=Button1 for the first inserted Button,
Id=Button2 for the second, and so on. Multiple buttons on a form or in a
GridPanel exhibit particular functionality. Refer to Panel Function for more
information.
3826 5823-008 3–137

Developing Applications
CheckBox Inserts a Checkbox object. By default, Id=CheckBox1 for the first
inserted checkbox, Id=CheckBox2 for the second, and so on. Multiple
checkboxes on a form or in a GridPanel exhibit particular functionality.
Refer to Panel Function for more information.

ComboBox Inserts a single line ComboBox object with Size =27 (Width), 22 (Height).
You can change the width by editing the Size property or by dragging the
bject. By default, Id=ComboBox1 for the first inserted Combobox,
Id=ComboBox2 for the second, and so on.

Label Inserts a text label object containing text.

ListBox Inserts a multiline List box object with Size = 27, 38. To display a longer
list, edit the size property or drag the object. By default, Id=ListBox1 for
the first inserted List box, Id=ListBox2 for the second, and so on.

Note: The maximum aggregate size of a “list box entry” is 999
characters. This includes delimiters, values sent to the host, and the
value appearing in the list box.

Line Inserts Line. By default, Id=Line1 for the first inserted Line, Id=Line2 for
the second, and so on.

Panel Inserts a GridPanel object in which other graphical objects can be
inserted and are identified as a group of objects sharing common
attributes. The border of the panel can be formatted with a Border Style.
By default, Id=GridPanel1for the first inserted GridPanel,
Id=”GridPanel2” for the second, and so on.

Note: Objects in a GridPanel belong to the same parent.

Image Inserts an Image. Edit the ImageSource property to browse to the
required image file. By default, Id=Image1 for the first inserted Image,
Id=”Image2” for the second, and so on.

RadioButton Inserts a Radio Button object. By default, Id=RadioButton1 for the first
inserted Radio Button, Id=RadioButton2 for the second, and so on.
Multiple Radio Buttons on a form or in a GridPanel exhibit particular
functionality. Refer to Panel Function for more information.

TextField Inserts a Text Field object. To change the default text, edit the Value
property. By default, Id=TextField1 for the first inserted Text field,
Id=TextField2 for the second, and so on.

The TextField has delimiters (< >) to show the start and end of characters
in Fixed mode screens.

SubmitButton Inserts a Submit button, which transmits the form and the form data to
the application at runtime. By default, Id=SubmitButton1 for the first
inserted Submit button, Id=SubmitButton2 for the second, and so on.

PasswordField Inserts a Password field object. By default, Id=PasswordField1 for the
first inserted Password Field, Id=PasswordField2 for the second, and so
on. The PasswordField has delimiters (^< >) to show the start and end of
characters in Fixed mode screens.

Object Description
3–138 3826 5823-008

Developing Applications
Dragging Objects from the Toolbox

To drag an object from the Toolbox and drop it onto a form, perform the following:

1. Open the Class View window from the View menu.

2. Select the element that you want to open in the Painter.

Note: Sort the hierarchical list into the most appropriate form to locate the
attribute you wish to use. If necessary, expand a node to list all the items within
the node.

3. Open the form by clicking the Painter tab available at the bottom of the document
window.

Note: Ensure that the PresentationType property is set to a value other than
None.

4. In the Toolbox, click the desired object and drag it to your form.

5. Drop the object onto the form by releasing the mouse button.

The object is added to the form at the specified location in its default size. You can then
modify the properties of the object.

If the object is added to the form by dragging from the Toolbox, and is required to be
bound to an attribute (a dynamic object) to be functional, an attribute is created for the
object when the object is dropped onto the form. The Attribute property appears in the
object's Properties window. Objects for which an attribute is optional and have been
added to the form by dragging from the Toolbox are treated as static objects and cannot
have an attribute bound to them.

Changing an Attributes Direction Property

You can add a dynamic object to a form by changing the Direction property of its
associated attribute. When the direction is changed, a default Text box is placed on the
form.

To add an attribute to a form by changing its Direction property, perform the following:

1. Click Class View on the View menu to open the Class View window.

2. Open an existing form, or create a new one.

TextArea Inserts a Text Area object to enable a user to enter multiple text lines.
You can change the default text by editing the Value property. By default,
Id=TextArea1 for the first inserted Text Area, Id=TextArea2 for the
second, and so on.

Rectangle Adds a Rectangle to a page, for example, to visually group other objects
on a form. After you add a rectangle, you can modify its properties to
change its appearance.

Object Description
3826 5823-008 3–139

Developing Applications
3. Select the attribute you wish to add to the form as an object.

Note: Sort the hierarchical list accordingly to locate the attribute you wish to
use. If necessary, expand a node to list all the items within the node.

4. Open the Properties window from the View menu or press F4.

5. Set the Direction property to a value other than None.

A default text box is placed on the form.

To change the text box to another object type, refer to the instructions in Changing the
Object Type.

Dragging an Attribute from the Class View

You can add a dynamic presentation to a form by dragging an existing attribute from the
Class View window and dropping it onto a form or GridPanel.

Several conditions apply to performing this operation as described below.

When the attribute is a member of the current class

• If an attribute's graphical object is already on the form, then dropping the attribute is
rejected unless you press and hold the control key prior to dragging the attribute from
the Class View. In this case, a copy of the attribute is created and added to the
current class. Any existing object presentation of the item is read from the Model. If
no graphical object exists for the attribute, a default Text Field object is created.

When an attribute is not a member of the current class:

• If an attribute's graphical object is already on the form then dropping the attribute is
rejected unless you press and hold the control key prior to dragging the attribute from
the Class view. This causes a copy of the item to be created and added to the current
class. Any existing object presentation of the item is read from the Model. If no
graphical object exists for the attribute, a default Text Field object is created.

• Press and hold the shift key prior to dragging an attribute from the Class View. The
attribute is moved from the original class and added to the current class. Any existing
object presentation of the item is read from the Model. If no graphical object exists
for the attribute, a default Text Field object is created.

When pasting an attribute, a copy of the attribute is created and added to the current
class. Any existing object presentation of the item is read from the Model. If no graphical
object exists for the attribute, a default Text Field object is created

To drag an attribute from the Class View window and drop it onto a form, perform the
following:

1. Open the form by clicking the Painter tab available at the bottom of the document
window.

2. If it is not already open, open the Class View window by clicking the View, Class
View menu item.
3–140 3826 5823-008

Developing Applications
3. Sort the hierarchical list into the most appropriate form to locate the attribute you
wish to use.

4. If necessary, click the plus (+) symbol next to a node to list all the items within the
node.

5. Select the attribute you wish to assign to a graphical object, and drag it onto the form.

6. Drop the attribute onto the form, following the conditions described earlier.

7. If you want to assign another type of object to the attribute, select the existing object
and click the arrow adjacent to the Object Type property in the Property window.

This displays a list of other object types, which can replace the existing object while
still maintaining the binding to its attribute.

Note: The list only contains dynamic objects required, or allowed, to be bound
to an attribute: Button, CheckBox, Image, Label, ListBox, PasswordField,
RadioButton, TextArea, and TextField.

Some special types of attributes require additional handling when dragged from the Class
View window. Refer to Adding an Array and Adding a CopyFrom for more information on
these attributes.

Adding a Reference

A Reference is a form of an Attribute and is added to a form in the same way as any other
Attribute. They allow for storage of multiple values and to process information in a tabular
form, accessing individual items in the array by using a Reference to present the cell in an
Array.

To add a Reference to a form, perform the following:

1. Set the PresentationType property of the owner of the Reference element to a
value other than None.

2. Enter a logical condition in the Constraint field that must remain true for the
Reference element.

3. Set the Direction property of the Reference to a value other than None, or drag the
Reference from the Class View onto the form of the owner. Follow the instructions
for Dragging an Attribute from the Class View on how to add a Reference element.

Refer to Reference for more information.

Adding a CopyFrom

Attributes that are members of the stereotype class <<Copy>> (described as a
CopyIspec) possess the capability of being painted on a form multiple times, each
instance being a unique representation of the attribute. This capability is known as a
Copy.From and is determined by the ‘Is Copied’ property of the graphical object.

To add a CopyFrom to the form, open the CopyIspec in the Painter. Refer to Dragging an
Attribute from the Class View or Dragging Objects from the Toolbox.
3826 5823-008 3–141

Developing Applications
If an attribute is dragged onto the form, a default Text Field is created. Select the attribute
and set the IsCopied property to ‘True’. This creates additional copies of the text field
corresponding to the Copies property of the CopyIspec and a sequence number is
appears in the Sequence property of the graphical object in the Properties window. The
sequence number determines the sequence in which the objects are displayed at runtime
and is adjusted whenever an object is removed from the form. Default TextField objects
are created if there is no existing object associated with the attribute.

Therefore, if the number of the Copies property of the CopyIspec is 5 and the Iscopied
property is set to True, 5 object copies are painted. These text field copies behave as
individual controls, except that they are attached to the same attribute and have the
CopySequence property.

If you drag an object from the Toolbox onto the form, instead of dragging an attribute from
the Class View, the object appears on the form. Set the IsCopied property to “True” again
to create the additional copies of the object.

Once the object copies have been painted on the form, you can change the number in the
Copies property of the CopyIspec to a different value. If you do so, you are prompted to
“Save and Refresh” the form to display an equivalent number of copies, or to “Ignore”
and restore the original value in the Copies property.

Once you have added the number of CopyFrom objects to a form, they can be
manipulated individually in the same way as any other object, and can be grouped using a
GridPanel .

Note: If you attempt to add an attribute, that does not have the CopyFrom capability,
more than once to a form, it does not succeed. Refer to Copy in the Classes in the Agile
Business Suite Developer Online Help for more information on the <<Copy>> class.

Presentation of Insertable Classes

The attributes of an Insertable class are aggregated independently to form the
presentation. These attributes have corresponding graphical objects that appear in the
presentation. For CopyIspecs, attributes with fixed and graphical presentations are
copied. The IsCopied property of each of the graphical objects must be set to True for the
object to be copied. If the attribute is copied, it is copied for all presentations (format and
language).

Fixed screen presentation format has a Copy Region Panel that can be used to copy
controls based on the IsCopied property. The copies are kept in sync through the copy
panel. Once the first presentation is modified, the subsequent copies are updated to
reflect the change.

Graphical screens do not have such a copy panel. For graphical screens, copies can be
moved around separately, independent of the other copies.
3–142 3826 5823-008

Developing Applications
Manipulating Objects

Once you have added the object to the form, you can change its size and position by
selecting a handle on the border of the object and dragging it to the required position. You
can do so by using the Snap to Grid feature for maximum precision, or turning Snap to
Grid off for greater freedom of movement.

You can also change the size or position of the object by selecting the object and
specifying the Size or Location property in the Properties window.

Changing the Position of an Object Incrementally

You can change the position of an object, or multiple objects, incrementally by “nudging”
the selected object with the Up, Down, Left, or Right arrow keys. Select one or more
object as described below, and press the appropriate arrow key.

The distance that the object moves depends on the setting of the Snap to Grid option.

• With Snap to Grid on, the object moves one grid increment.

• With Snap to Grid off, the object moves one pixel.

Placing Objects on Fixed Screens

By default, overlapping a character or a field on top of another character or field in a Fixed
screen is prevented. In addition, if the available space for the placement of a field on a
form is less than the defined length of the attribute, then the field is truncated.

Making an Object Invisible

You may wish to make one or more objects, on a form invisible to the user at runtime. To
do this, change the Visibility property of the object from True to False.

Selecting Multiple Objects

You can also select multiple objects that you want to delete, cut or copy, and paste onto
another area of the form or onto another form. You can also move multiple objects, in one
operation, to a different position on the form.

To select multiple objects, perform the following:

1. Identify the desired objects for selection.

2. Position the cursor on the form at a location outside the total area of the objects.

3. Click and hold down the left mouse button and drag the cursor around the objects. A
“bounding” box is drawn on the screen to identify the area within which all the
objects are selected.

4. Release the mouse button which in turn selects all the objects within the area.

Note: Selecting multiple objects in this way groups them only temporarily and
should not be confused with creating a group of objects with the GridPanel control.
3826 5823-008 3–143

Developing Applications
You may also select multiple objects by holding down the Shift key and clicking each
object that you wish to select.

Changing the Object Type

If you want to change an existing object to another object type, select the object and click
the arrow adjacent to the Object Type property in the Property window. This displays a list
of other object types, which can replace the existing one. If the existing object is not
capable of being assigned to an attribute, the object does not provide an Object Type
property and cannot be changed.

Note: If the existing object is of a type that is required (dynamic), or allowed to be
assigned to an attribute to be functional, the list only contains dynamic objects
capable of being assigned to an attribute and of the allowed type. These dynamic
objects include Button, CheckBox, Image, Label, ListBox, PasswordField, RadioButton,
TextArea, and TextField.

The following objects are static and cannot be bound to an attribute, and their object type
cannot be changed using the Object Type property. If you wish to change such an object
from one type to another, you must delete the existing object and add another object of
the preferred type:

• GridPanel

• Line

• Rectangle

• Submit

Removing an Object

Select the object to be removed from a form, and on the Edit menu or the context menu,
click Delete.

Note: When an object is removed from a form and has been bound to an attribute,
the attribute is not deleted from the Model unless the following steps are taken.

To remove an object and delete the attribute, perform the following:

1. If it is not already open, open the Class View window by clicking the View, Class
View menu item.

2. Sort the hierarchical list into the most appropriate form to locate the attribute you
wish to keep.

3. If necessary, click the plus (+) symbol next to a node to list all the items within the
node.
3–144 3826 5823-008

Developing Applications
4. Select the attribute you wish to delete.

– In the Property window select the Direction property.

5. Set the property to None.

This removes the object from the form in the Painter window and deletes the attribute.

Sizing an Object Dynamically

Certain graphical objects that contain text, or are attached to an attribute, can have their
height and width resized dynamically to fit the text or attribute to which they are attached.

The graphical objects that can be resized are listed in the following table with the
applicable resize function.

“Both” means that the control can be resized to either the length of the attribute or the
length of the text whichever is longest.

The resize calculation considers text alignment for the controls from the “TextAlign”
property. Resizing does not occur when the “SynchronizeField” property is set to “Yes”
on the component.

To set the relative size of an object, perform the following:

1. Open a form.

2. Select the graphical object that you wish to resize.

3. On the Format menu, click Make Same Size.

4. On the sub-menu, click either As Text or As Attribute.

The menu entries are only available if the object has either Text or an Attribute
attached.

Control Type Attribute Text Both

Label YES

Button YES

SubmitButton YES

PasswordField YES

RadioButton YES

CheckBox YES

TextField YES

TextArea YES
3826 5823-008 3–145

Developing Applications
When a group of objects are selected, and none of the selected objects have text or
an attribute attached, then none of the menu entries are available. If the group has at
least one object with text and at least one object with an attribute attached, both
menu entries are available.

If an object has both text and an attribute attached, the object is resized to either the
length of the attribute or the width of the text whichever is longer.

As Text – The width and height of the object are resized to the pixel width and height of
the current text based on the font for this object.

To make an object with a PresentationType property of Fixed or Print the same size as
text, the object width is resized to the character width of its text based on the font for this
control.

As Attribute – The width and height of the object are resized to the pixel width and
height of the total length of the attribute based on the font for this object.

To make an object with a PresentationType property of Fixed or Print the same size as the
attribute, the object width is resized to the character width of its total length based on
the font for this control.

The total length is the sum of attribute length and extra characters applicable for value
of the PrintFormat property, if the attribute is a SignedNumber. The table below identifies
the number of extra characters required for each PrintFormat value and PresentationType.

Graphical Object Properties

To set the properties of a graphical object by using the Properties window, perform the
following:

1. If the item that you want to modify is not selected, click the down arrow button next
to the object name box to display the list of objects and select it, or click the object on
the form.

Graphical
Extra

Characters Fixed
Extra

Characters Print
Extra

Characters

CR 2 CR 2 Blank 1--2

DR 2 DR 2 CR 2

+ 1 + 1 DR 2

_ 1 _ 1 + 1

_ 1

$ 2--3

* 1--2
3–146 3826 5823-008

Developing Applications
2. In the Properties window, if the properties are displayed alphabetically, select the
property that you want to modify. If the properties are displayed within groups and
the property you want to set is not visible, click the plus (+) symbol next to the
appropriate group.

For example, click the Misc group and select tabindex to set the index for the tab
order of the object.

3. Specify a value for the property.

Depending on the property, you may be required to type a value, select a value from a list,
or set the value in a custom editor. If you wish to restore a changed value to its default
value, select the object, right-click the appropriate property, and then click Reset on the
context menu.

Setting a Single Property for Multiple Objects

You can specify the same property value for a group of objects. This technique can be
useful, for example, if you add several button objects to a form or document and want
each button to have the same value for the height and width properties.

Note: If you select multiple objects of different types, the Properties window
displays only the properties that are common to all the selected objects.

To set the value of a property for multiple objects, perform the following:

1. Select the first object in the group of objects that you want to modify.

2. Hold down the Ctrl or Shift key while selecting other objects that you want to modify.

3. In the Properties window, specify the value for the property.

The value is set for each selected object.

You may also select multiple objects by creating a “bounding” box around objects as
described in Manipulating Objects under “To select multiple objects”.

• All Object Properties

• Common Properties

• Pointer Object Properties

• Button Object Properties

• CheckBox Object Properties

• ComboBox Object Properties

• Label Object Properties

• ListBox Object Properties

• Line Properties

• GridPanel Properties

• Image Object Properties

• Radio Button Object Properties
3826 5823-008 3–147

Developing Applications
• TextField Object Properties

• Submit Button Properties

• PasswordField Object Properties

• TextArea Object Properties

• Rectangle Object Properties

Common Properties

The properties listed in the following table are common to all, or multiple graphical
objects. The read-only Design properties reflect the properties of the attribute attached to
the form object. These Design properties can be modified by changing the attribute
properties.

Property Function

Direction Read-only design property. Specifies the value of the Direction property
of the attribute associated with the form object.

Id Read-only design property. By default, it is automatically generated.
Identifies the object type and number.

Length Read-only design property. Specifies the Length of the attribute
associated with the form object.

Name Read-only design property. Specifies the Name of the attribute
associated with the form object. You can change this property by
renaming the attribute. Its value is set to Static Control for unassociated
form objects.

Primitive Read-only design property. Specifies the Primitive type of the attribute

associated with the form object.

BackgroundColor Specifies a background color for the object. Select a color from one of the
tabs in the drop-down list. All objects initially inherit the background color
of their parent. Note that you can specify a custom color for graphical
screens and specify one of the following colors for character screens:
Black, White, Red, Green, Blue, Yellow, Cyan, and Magenta. If you
change this value, you can restore the default value specified for the
parent object by right-clicking the property and clicking Reset on the
context menu.

BackgroundImage Specifies an Image to display in the background of the object.

BorderStyle Specifies a style to control the border of the container that surrounds the
object. Options are None, FixedSingle, or Fixed3D.

ControlType Specifies the type of object the selection should be. To change the
ControlType, choose from the list of available types.

DefaultValue Specifies the default text thatdisplays in the drop-down box entry field
when the host does not send any data.
3–148 3826 5823-008

Developing Applications
DropDownStyle Specifies the appearance and functionality of the ComboBox. Select from
the values Simple, DropDown, and DropDownList. Note that if you
change the height by using the mouse or entering values in the Height
property, the physical height of the control appears only for a Simple
style, though at runtime the height setting is maintained for all styles.

Font Specifies font attributes that are applied directly to the text in the object.
If you change this value, you can restore the default value specified for
the parent object by right-clicking the property and clicking Reset on the
context menu.

ForegroundColor Specifies a foreground color for the object. Select a color from one of the
tabs in the drop-down list. Note that you can specify a custom color for
graphical screens and specify one of the following colors for character
screens: Black, White, Red, Green, Blue, Yellow, Cyan, and Magenta. If
you change this value, you can restore the default value specified for the
parent object by right-clicking the property and clicking Reset on the
context menu.

Location Specifies the point in pixels that represents the upper-left corner of the
object relative to the upper-left corner of its container as an X and Y
location.

ReadOnly Specifies whether the content of the object is read-only.

ScrollBars Specifies whether the Form should have scroll bars or not. Setting this
property only have an impact on systems generated for CE. There is no
impact at design time. Options are No, Vertical, Horizontal, and Both
(default).

Size Specifies the size of the object representing the height and width in
pixels.

TabIndex Specifies the index that defines the tab order for the object.

Text Specifies the text to be displayed in the object.

TextAlign Specifies whether the text in the object is left-aligned, right-aligned,
center-aligned, or justified.

TextPosition Specifies the position of the label relative to the object. The choices are
Left and Right (default).

ToolTip Specifies an optional tooltip to appear when the user at runtime hovers
the mouse over a control in Winform. To view the tooltip in Presentation
Client, the user has to hover on the control and press the F1 key. This
tooltip is visible only at runtime.

ValidateEntry When set to True, specifies that the value entered by the user at runtime
is one of the values in the drop-down list.

Value Specifies the value to be displayed in or on the object. This value is
returned to the application when a transaction occurs at runtime.

Visible Specifies if the object is visible to the user at runtime, options are True
(default) and False.

Property Function
3826 5823-008 3–149

Developing Applications
To see properties specific to any particular object, which also include common properties
for each object, click the object in the list below.

• Pointer Object Properties

• Button Object Properties

• CheckBox Object Properties

• ComboBox Object Properties

• Label Object Properties

• ListBox Object Properties

• Line Properties

• GridPanel Properties

• Image Object Properties

• Radio Button Object Properties

• TextField Object Properties

• Submit Button Properties

• PasswordField Object Properties

• TextArea Object Properties

• Rectangle Object Properties

Pointer Object Properties

There are no properties associated with the Pointer object.

Button Object Properties

Add a Button to a form to enable the user to provide a value that is sent back to the
application when the button is clicked at runtime. Button objects have special
characteristics when added to a GridPanel or a form.

Note: The read-only Design properties are displayed for Button objects associated
with attributes. These properties provide a better understanding of the object. You
can change the property values in the Properties window after selecting the
associated attribute in the Class View.

Wrap Specifies whether the browser automatically performs word-wrap on the
text of the object.

Property Function

Direction Read-only. Specifies the value of the Direction property of the attribute
associated with the Button object.

Property Function
3–150 3826 5823-008

Developing Applications
Id Read-only. By default, it is automatically generated. Id=Button1 for the
first inserted Button, Id=Button2 for the second, and so on.

Length Read-only. Specifies the Length of the attribute associated with the Button
object.

Name Read-only. Specifies the name of the attribute associated with the Button
object.

Primitive Read-only. Specifies the value of the Primitive property of the attribute
associated with the Button object.

BackgroundColor Specifies a background color for the object. Select a color from one of the
tabs in the drop-down list. Note that you can specify a custom color. If you
change this value, you can restore the default value specified for the parent
object by right-clicking the property and clicking Reset on the context
menu.

BackgroundImage Specifies an image to appear in the background of the object. The image
always appears as a tiled image.

ControlType Specifies Button as the type of object added to the form. To change the
ControlType, choose from the list of available types.

Font Specifies font attributes that are applied directly to the text appearing in
the object. If you change this value, you can restore the default value
specified for the parent object by right-clicking the property and clicking
Reset on the context menu.

ForegroundColor Specifies a foreground color for the object. Select a color from one of the
tabs in the drop-down list. Note that you can specify a custom color. If you
change this value, you can restore the default value specified for the parent
object by right-clicking the property and clicking Reset on the context
menu.

Location Specifies the point in pixels that represents the upper-left corner of the
object relative to the upper-left corner of its container as an X and Y
location.

Selected Specifies whether the button should be selected by default. You can select
only one button on a form. Therefore, when set to True, any other button in
the same group is reset to False.

Size Specifies the size of the object representing the height and width in pixels.

TabIndex Specifies the index that defines the tab order for the object.

Button groups are defined as a set of button controls within a GridPanel.
Set the TabIndex property on the GridPanel to define the position of the
button group as a whole within the overall form tab order.

The TabIndex values for the individual buttons within the GridPanel can be
set to any arbitrary values to define the order of tabbing from button to
button within the button group.

Text Specifies the text to be displayed in the object.

TextAlign Specifies whether the text in the object is left-aligned, right-aligned, center-
aligned, or justified.

Property Function
3826 5823-008 3–151

Developing Applications
CheckBox Object Properties

Add checkboxes to your form when you want a user to select one or more items, or none
at all. Checkboxes have special characteristics when added to a GridPanel or a form.

When you add a checkbox to a form, the checkbox has a label attached to it automatically.
You can change its Text property and specify a label.

ToolTip Specifies an optional tooltip to appear when the user at runtime hovers the
mouse over a control in Winforms. To view the tooltip in the Presentation
Client, the user has to hover over the control and press the F1 key. This
tooltip is visible only at runtime.

Value Specifies a value to be returned to the server when the form is submitted
at run time. This is to provide keyword/value pairs for button groups. Refer
to Panel Function for more information on this property.

Property Function

Direction Read-only. Specifies the value of the Direction property of the attribute
associated with the CheckBox object.

Id Read-only. By default, it is automatically generated. Id=CheckBox1 for the
first inserted CheckBox, Id=CheckBox2 for the second, and so on.

Length Read-only. Specifies the Length of the attribute associated with the
CheckBox object.

Name Read-only. Specifies the name of the attribute associated with the
CheckBox object.

Primitive Read-only. Specifies the value of the Primitive property of the attribute
associated with the Checkbox object.

BackgroundColor Specifies a background color for the object. Select a color from one of the
tabs in the drop-down list. Note that you can specify a custom color. If you
change this value, you can restore the default value specified for the parent
object by right-clicking the property and clicking Reset on the context
menu.

BackgroundImage Specifies an image to appear in the background of the object. The image
always appears as a tiled image.

Checked Specifies the initial state of the check box. Can also be specified for Radio
Buttons.

CheckedValue Specifies the string value to be returned to the server for a single checkbox
when the checkbox is checked and the form is submitted at run time. For
multiple checkboxes in a group, this property does not exist. Refer to
GridPanel Function for more information on this property.

ControlType Specifies CheckBox as the type of object added to the form. To change the
ControlType, choose from the list of available types.

Property Function
3–152 3826 5823-008

Developing Applications
ComboBox Object Properties

Font Specifies font attributes that are applied directly to the text appearing in
the object. If you change this value, you can restore the default value
specified for the parent object by right-clicking the property and clicking
Reset on the context menu.

ForegroundColor Specifies a foreground color for the object. Select a color from one of the
tabs in the drop-down list. Note that you can specify a custom color. If you
change this value, you can restore the default value specified for the parent
object by right-clicking the property and clicking Reset on the context
menu.

Location Specifies the point in pixels that represents the upper-left corner of the
object relative to the upper-left corner of its container as an X and Y
location.

Size Specifies the size of the object representing the height and width in pixels.

TabIndex Specifies the index that defines the tab order for the object.

Text Specifies the text to be displayed in the object.

TextAlign Specifies whether the text in the object is left-aligned, right-aligned, center-
aligned, or justified.

TextPosition Specifies the position of the label relative to the object. The choices are
Left and Right (default).

ToolTip Specifies an optional tooltip to appear when the user at runtime hovers the
mouse over a control in Winforms. To view the tooltip in the Presentation
Client, the user has to hover over the control and press the F1 key. This
tooltip is visible only at runtime.

Unchecked Value Specifies the string value to be returned to the server for a single checkbox
when the checkbox is unchecked and the form is submitted at run time.
For multiple checkboxes in a group, this property does not exist. Refer to
Panel Function for more information on this property.

Property Function

Id Read-only. By default, it is automatically generated. Id=ComboBox1 or the
first inserted ComboBox, Id=ComboBox2 for the second, and so on.

Name Read-only. The value of this property is set to Static control.

BackgroundColor Specifies a background color for the object. Select a color from one of the
tabs in the drop-down list. Note that you can specify a custom color. If you
change this value, you can restore the default value specified for the parent
object by right-clicking the property and clicking Reset on the context
menu.

ControlType Specifies ComboBox as the type of object added to the form. To change
the ControlType, choose from the list of available types.

Property Function
3826 5823-008 3–153

Developing Applications
Label Object Properties

Add a Label to your form to identify the name of a control or group of controls. A Label
can optionally be bound to an attribute.

Note: When a Label is added to a form that has the identity of a Report Frame, the
Label properties are different. Refer to Label Object Properties in Report Frames for
information on these properties.

Labels are of two types: Static and Dynamic.

Static Labels are directly typed on the form in the Painter tab or created with a drag and
drop operation from the Toolbox (these labels are not associate with any attribute).

DefaultValue Specifies the default text that appears in the drop-down box entry field
when the host does not send any data.

DropDownStyle Specifies the appearance and functionality of the ComboBox. Select from
the values Simple, DropDown, and DropDownList. Note that if you change
the height by using the mouse or entering values in the Height property,
the physical height of the control appears for a Simple style, though the
height setting is maintained at runtime for all styles.

Font Specifies font attributes that are applied directly to the text appearing in the
object. If you change this value, you can restore the default value specified
for the parent object by right-clicking the property and clicking Reset on
the context menu.

ForegroundColor Specifies a foreground color for the object. Select a color from one of the
tabs in the drop-down list. Note that you can specify a custom color. If you
change this value, you can restore the default value specified for the parent
object by right-clicking the property and clicking Reset on the context
menu.

ListContents Opens the List Contents Editor to specify settings for the List Box. Can
also be specified for a Combo Box.

Location Specifies the point in pixels that represents the upper-left corner of the
object relative to the upper-left corner of its container as an X and Y
location.

ScrollBars Specifies whether the ComboBox should have scroll bars or not. Options
are No (default) and Horizontal.

Size Specifies the size of the object representing the height and width in pixels.

TabIndex Specifies the index that defines the tab order for the object.

ToolTip Specifies an optional tooltip to appear when the user at runtime hovers the
mouse over a control in Winforms. To view the tooltip in the Presentation
Client, the user has to hover over the control and press the F1 key. This
tooltip is visible only at runtime.

ValidateEntry When set to True, specifies that the value entered by the user at runtime is
one of the values in the drop-down list.

Property Function
3–154 3826 5823-008

Developing Applications
Dynamic Labels are labels whose ControlType is changed to Label from another control
that was associated with an attribute. If the control is associated with an Attribute, then
deleting the attribute results in deleting the related presentation on the Painter.

When a Label is added to a form that has the identity of a Fixed screen, the Label
properties are different. Refer to Label Object Properties in Fixed Screens for more
information on these properties.

Property Function

Id Read-only. By default, it is automatically generated. Id=Label1 for the first
inserted Label, Id=”Label2” for the second, and so on.

Name Read-only. The value of this property is set to Static control.

BackgroundColor Specifies a background color for the object. Select a color from one of the
tabs in the drop-down list. Note that you can specify a custom color. If you
change this value, you can restore the default value specified for the parent
object by right-clicking the property and clicking Reset on the context
menu.

BorderStyle Specifies options to control the border of the container that surrounds the
object.

The following options are available:

• None – The object appears without a border.

• FixedSingle – The object has a single line border.

• Fixed3D – The object has a three-dimensional border.

• UnderBar – The object has a border only for the lower line.

ControlType Specifies Label as the type of object added to the form. To change the
ControlType, choose from the list of available types.

Font Specifies font attributes that are applied directly to the text appearing in the
object. If you change this value, you can restore the default value specified
for the parent object by right-clicking the property and clicking Reset on the
context menu.

ForegroundColor Specifies a foreground color for the object. Select a color from one of the
tabs in the drop-down list. Note that you can specify a custom color. If you
change this value, you can restore the default value specified for the parent
object by right-clicking the property and clicking Reset on the context
menu.

Location Specifies the point in pixels that represents the upper-left corner of the
object relative to the upper-left corner of its container as an X and Y location.

Size Specifies the size of the object representing the height and width in pixels.

TabIndex Specifies the index that defines the tab order for the object.

If the label contains a “shortcut key” definition (a character preceded by the
“&” character), then you should set the TabIndex value to the same value as
the TabIndex value of the field to which you want focus to go when the
shortcut key is activated.

Text Specifies the text to be displayed in the object in the form.
3826 5823-008 3–155

Developing Applications
ListBox Object Properties

When you want user to choose options from a list, add a List box to your form. Only one
choice can be made from the list at runtime.

TextAlign Specifies whether the text in the object is left-aligned, right-aligned, center-
aligned, or justified.

ToolTip Specifies an optional tooltip to appear when the user at runtime hovers the
mouse over a control in Winforms. To view the tooltip in the Presentation
Client, the user has to hover over the control and press the F1 key. This
tooltip is visible only at runtime.

Wrap Specifies whether the browser automatically performs word-wrap on the
text of the object.

Property Function

Id Read-only. By default, it is automatically generated. Id=ListBox1 for the
first inserted ListBox, Id=ListBox2 for the second, and so on.

Name Read-only. The value of this property is set to Static control.

BackgroundColor Specifies a background color for the object. Select a color from one of the
tabs in the drop-down list. Note that you can specify a custom color. If you
change this value, you can restore the default value specified for the parent
object by right-clicking the property and clicking Reset on the context
menu.

BorderStyle Specifies a style to control the border of the container that surrounds the
object. Options available for List Box control are None and Fixed3D.

Note: The appearance of a ListBox is always Fixed3D, regardless of
whether the None or Fixed3D options are selected.

Client generators such as Component Enabler and Winforms interpret the
BorderStyle property set here in the Property window and generate the
Graphical User Interface accordingly.

ControlType Specifies ListBox as the type of object added to the form. To change the
ControlType, choose from the list of available types.

Font Specifies font attributes that are applied directly to the text appearing in the
object. If you change this value, you can restore the default value specified
for the parent object by right-clicking the property and clicking “Reset” on
the context menu.

ForegroundColor Specifies a foreground color for the object. Select a color from one of the
tabs in the drop-down list. Note that you can specify a custom color. If you
change this value, you can restore the default value specified for the parent
object by right-clicking the property and clicking Reset on the context
menu.

ListContents Opens the List Contents Editor to specify settings for the List Box. Can also
be specified for a Combo Box.

Property Function
3–156 3826 5823-008

Developing Applications
Line Properties

You can add a Line to a page, for example to separate text or areas of a form. After you
add a line, you can modify its properties to change its appearance.

Location Specifies the point in pixels that represents the upper-left corner of the
object relative to the upper-left corner of its container as an X and Y
location.

ScrollBars Specifies whether the ListBox should have scroll bars or not. Options are
No (default) and Horizontal.

Size Specifies the size of the object representing the height and width in pixels.

TabIndex Specifies the index that defines the tab order for the object.

ToolTip Specifies an optional tooltip to appear when the user at runtime hovers the
mouse over a control in Winforms. To view the tooltip in the Presentation
Client, the user has to hover over the control and press the F1 key. This
tooltip is visible only at runtime.

Property Function

Id Read-only. By default, it is automatically generated. Id=Line1 for the first
inserted Line, Id=”Line2” for the second, and so on.

Name Read-only. The value of this property is set to Static control.

ControlType Read-only. Specifies Line as the type of object added to the form.

Direction Specifies if the line drawn is in the vertical or horizontal direction.

ForegroundColor Specifies a foreground color for the object. Select a color from one of the
tabs in the drop-down list. Note that you can specify a custom color. If you
change this value, you can restore the default value specified for the parent
object by right-clicking the property and clicking Reset on the context menu.

Length Specifies the length of the line in pixels.

LineStyle Specifies the style of the line and can be selected from the list.

Location Specifies the point in pixels that represents the upper-left corner of the object
relative to the upper-left corner of its container as an X and Y location.

TabIndex Specifies the index that defines the tab order for the object.

ToolTip Specifies an optional tooltip to appear when the user at runtime hovers the
mouse over a control in Winforms. To view the tooltip in the Presentation
Client, the user has to hover over the control and press the F1 key. This
tooltip is visible only at runtime.

Property Function
3826 5823-008 3–157

Developing Applications
GridPanel Properties

The GridPanel acts as a container for other graphical objects and exhibits the following
characteristics:

• A GridPanel can be dropped on a form from the Toolbox using the Panel tool.

• A GridPanel can be pasted on a form from the clipboard.

• A GridPanel can contain one or more objects including other Panels.

• Objects can be moved into a GridPanel.

• Objects can be moved out of a GridPanel.

• Objects can be dropped into a GridPanel from the Toolbox.

• Objects can be pasted into a GridPanel from the clipboard.

• If a panel is deleted, all the objects that it contains are also deleted.

When a GridPanel contains other objects, all objects within the GridPanel are treated as a
single entity. The objects can be moved with the GridPanel while maintaining their relative
positions to the border of the GridPanel. The objects can inherit the presentation style
applied to the GridPanel by using the properties selected for the GridPanel in the
Properties window, unless the objects have their own individual presentation style
applied to them. Note that the form itself is in fact a “parent” GridPanel.

A GridPanel shares the same qualities as a form, in that any object placed in the GridPanel
inherits the visual attributes of the GridPanel. You can specify different visual attributes
for any particular object or group of objects after they have been added to the GridPanel.
If you wish to return the changed visual attribute of an object to its original inherited value,
select the object and the property that you wish to reset, and then click Reset on the
context menu.

Note: There is a unique property Value, assigned to Buttons and Radio Buttons to
accommodate their functionality when in a GridPanel or a form. There is also a
Checked Value property specific to checkboxes. Refer to GridPanel Function for more
information on how to use these objects in a GridPanel.

Property Function

Id Read-only. By default, it is automatically generated. Id=GridPanel1 for the
first inserted GridPanel, Id=GridPanel2 for the second, and so on.

Name Read-only. The value of this property is set to Static control.

BackgroundColor Specifies a background color for the object. Select a color from one of the
tabs in the drop-down list. Note that you can specify a custom color. If you
change this value, you can restore the default value specified for the parent
object by right-clicking the property and clicking Reset on the context
menu.

BackgroundImage Specifies an image to appear in the background of the object. The image
always appears as a tiled image.

BorderStyle Specifies the width or type of border to draw around the GridPanel.
3–158 3826 5823-008

Developing Applications
Image Object Properties

You can add images with the following file formats: GIF (standard and animated), JPEG
(standard and progressive), BMP (Windows and OS/2), TIFF, TGA, RAS, EPS, PCX, PNG,
and WMF. The formats that are generally used for forms are GIF, JPEG, and PNG.

An image can optionally be bound to an attribute.

ControlType Read-only. Specifies GridPanel as the type of object added to the form.

Font Specifies font attributes that are applied directly to the text appearing in the
object. If you change this value, you can restore the default value specified
for the parent object by right-clicking the property and clicking Reset on
the context menu.

ForegroundColor Specifies a foreground color for the object. Select a color from one of the
tabs in the drop-down list. Note that you can specify a custom color. If you
change this value, you can restore the default value specified for the parent
object by right-clicking the property and clicking Reset on the context
menu.

Location Specifies the point in pixels that represents the upper-left corner of the
object relative to the upper-left corner of its container as an X and Y
location.

Size Specifies the size of the object representing the height and width in pixels.

TabIndex Specifies the index that defines the tab order for the object.

The TabIndex value of a GridPanel object defines the position of the
GridPanel as a whole within the overall form tab order, relative to the other
controls on the form outside the GridPanel. The TabIndex value of controls
within the GridPanel defines the tab order within that GridPanel only. As
you tab through a form, the tab order moves in the GridPanel according to
the TabIndex value of the GridPanel object. Focus initially goes to the
control within the GridPanel with the lowest TabIndex value, and the tab
order then moves through all controls within the GridPanel in the TabIndex
sequence. The tab order then moves outside the GridPanel to the control
on the form with the next highest TabIndex value to the GridPanel object.

ToolTip Specifies an optional tooltip to appear when the user at runtime hovers the
mouse over a control in Winforms. To view the tooltip in the Presentation
Client, the user has to hover over the control and press the F1 key. This
tooltip is visible only at runtime.

Property Function

Id Read-only. By default, it is automatically generated. Id=Image1 for the
first inserted Image, Id=Image2 for the second, and so on.

Name Read-only. The value of this property is set to Static control.

BorderStyle Specifies the width of the border to draw around the object.

ControlType Specifies Image as the type of object added to the form. To change the
ControlType, choose from the list of available types.

Property Function
3826 5823-008 3–159

Developing Applications
Radio Button Object Properties

When you want a user to select one option in a group, add radio buttons to your form.
Only one radio button in a group can be selected at a time. Radio buttons enable the user
to provide a value that is returned to the application when a transaction occurs at runtime.
Radio buttons have special characteristics when added to a GridPanel or form.

When you add radio button to a form, it has a label attached to it automatically. The label
can have its text properties specified for that particular combined object.

ImageSource Specifies the file name of the image used.

Location Specifies the point in pixels that represents the upper-left corner of the
object relative to the upper-left corner of its container as an X and Y
location.

Size Specifies the size of the object representing the height and width in
pixels.

TabIndex Specifies the index that defines the tab order for the object.

ToolTip Specifies an optional tooltip to appear when the user at runtime hovers
the mouse over a control in Winforms. To view the tooltip in the
Presentation Client, the user has to hover over the control and press the
F1 key. This tooltip is visible only at runtime.

Sizing ResizeImage and ResizeBox are the two options available.

By default, the value is ResizeImage.

When an image is loaded with the ResizeImage option set, then the
loaded image fits the size of the box set in the Painter. On toggling to
ResizeBox, the box stretches to fit the original image size.

When an image is loaded with the ResizeBox option set, then the box
stretches to fit the original image size. Resizing of the image is not
allowed in this mode.

Property Function

Direction Read-only. Specifies the value of the Direction property of the attribute
associated with the RadioButton object.

Id Read-only. By default, it is automatically generated. Id= RadioButton1 for
the first inserted RadioButton, Id=RadioButton2 for the second, and so
on.

Length Read-only. Specifies the Length of the attribute associated with the
RadioButton object.

Name Read-only. Specifies the name of the attribute associated with the
RadioButton object.

Primitive Read-only. Specifies the value of the Primitive property of the attribute

associated with the RadioButton object.

Property Function
3–160 3826 5823-008

Developing Applications
BackgroundColor Specifies a background color for the object. Select a color from one of the
tabs in the drop-down list. Note that you can specify a custom color. If you
change this value, you can restore the default value specified for the
parent object by right-clicking the property and clicking Reset on the
context menu.

BackgroundImage Specifies an image to appear in the background of the object. The image
always appears as a tiled image.

Checked Specifies the initial state of the radio button. When set to True, any other
radio button in the same group is set to False.

ControlType Specifies RadioButton as the type of object added to the form. To change
the ControlType, choose from the list of available types.

Font Specifies font attributes that are applied directly to the text appearing in
the object. If you change this value, you can restore the default value
specified for the parent object by right-clicking the property and clicking
Reset on the context menu.

ForegroundColor Specifies a foreground color for the object. Select a color from one of the
tabs in the drop-down list. Note that you can specify a custom color. If you
change this value, you can restore the default value specified for the
parent object by right-clicking the property and clicking Reset on the
context menu.

Location Specifies the point in pixels that represents the upper-left corner of the
object relative to the upper-left corner of its container as an X and Y
location.

Size Specifies the size of the object representing the height and width in pixels.

TabIndex Specifies the index that defines the tab order for the object.

Text Specifies the text to be displayed on the object.

TextAlign Specifies whether the text in the object is left-aligned, right-aligned,
center-aligned, or justified.

TextPosition Specifies the position of the label relative to the object. The choices are
Left and Right (default).

ToolTip Specifies an optional tooltip to appear when the user at runtime hovers the
mouse over a control in Winforms. To view the tooltip in the Presentation
Client, the user has to hover over the control and press the F1 key. This
tooltip is visible only at runtime.

Value Specifies the value to be displayed on the object. This value is returned to
the application when a transaction occurs at runtime.

Property Function
3826 5823-008 3–161

Developing Applications
TextField Object Properties

When you want to accept one line of information from a user, add a one-line Text Field to
your form.

Property Function

Direction Read-only. Specifies the value of the Direction property of the attribute
associated with the TextField object.

Id Read-only. By default, it is automatically generated. Id=TextField1 for the
first inserted TextField, Id=TextField2 for the second, and so on.

Length Read-only. Specifies the Length of the attribute associated with the
TextField object.

Name Read-only. Specifies the name of the attribute associated with the TextField.

Primitive Read-only. Specifies the value of the Primitive property of the attribute

associated with the TextField object.

BackgroundColor Specifies a background color for the object. Select a color from one of the
tabs in the drop-down list. Note that you can specify a custom color. If you
change this value, you can restore the default value specified for the parent
object by right-clicking the property and clicking Reset on the context
menu.

BorderStyle Specifies an attributes to control the border of the container that surrounds
the object. Options are None, FixedSingle, or Fixed3D or UnderBar.

When the property is set to None, the selected control appears without a
border.

When the property is set to FixedSingle, the selected control has a single
line border.

When the property is set to Fixed3D, the border of the selected control has
a three-dimensional appearance.

When the property is set to UnderBar, only the bottom line appears for the
selected control. The other three border lines do not appear.

ControlType Specifies TextField as the type of object added to the form. To change the
ControlType, choose from the list of available types

Font Specifies font attributes that are applied directly to the text appearing in the
object. If you change this value, you can restore the default value specified
for the parent object by right-clicking the property and clicking “Reset” on
the context menu.

ForegroundColor Specifies a foreground color for the object. Select a color from one of the
tabs in the drop-down list. Note that you can specify a custom color. If you
change this value, you can restore the default value specified for the parent
object by right-clicking the property and clicking Reset on the context
menu.

Location Specifies the point in pixels that represents the upper-left corner of the
object relative to the upper-left corner of its container as an X and Y location.

ReadOnly Specifies whether the content of the object is read-only.
3–162 3826 5823-008

Developing Applications
Submit Button Properties

Add a Submit button as a static control to cause the form to be transmitted to the
application at runtime.

Size Specifies the size of the object representing the height and width in pixels.

TabIndex Specifies a number value that indicates the tab order for the object.

TextAlign Specifies whether the text in the object is left-aligned, right-aligned, center-
aligned, or justified.

ToolTip Specifies an optional tooltip to appear when the user at runtime hovers the
mouse over a control in Winforms. To view the tooltip in the Presentation
Client, the user has to hover over the control and press the F1 key. This
tooltip is visible only at runtime.

Value Specifies the value to be displayed in the field. This value is returned to the
application when a transaction occurs at runtime.

Visible Specifies if the object is visible to the user at runtime, options are True
(default) and False.

Property Function

Id Read-only. By default, it is automatically generated. Id=SubmitButton1 for
the first inserted SubmitButton, Id=SubmitButton2 for the second, and
so on.

Name Read-only. The value of this property is set to Static control.

BackgroundColor Specifies a background color for the object. Select a color from one of the
tabs in the drop-down list. Note that you can specify a custom color. If you
change this value, you can restore the default value specified for the
parent object by right-clicking the property and clicking Reset on the
context menu.

BackgroundImage Specifies an image to appear in the background of the object. The image
always appears as a tiled image.

ControlType Read-only. Specifies SubmitButton as the type of object added to the form.

Font Specifies font attributes that are applied directly to the text appearing in
the object. If you change this value, you can restore the default value
specified for the parent object by right-clicking the property and clicking
Reset on the context menu.

ForegroundColor Specifies a foreground color for the object. Select a color from one of the
tabs in the drop-down list. Note that you can specify a custom color. If you
change this value, you can restore the default value specified for the
parent object by right-clicking the property and clicking Reset on the
context menu.

Location Specifies the point in pixels that represents the upper-left corner of the
object relative to the upper-left corner of its container as an X and Y
location.

Property Function
3826 5823-008 3–163

Developing Applications
PasswordField Object Properties

When you want a user to enter a password on the form, add a password field to the form.
A password field is just a one-line text box. When a user types in this field, most Web
browsers display the password as asterisks to protect confidentiality.

Size Specifies the size of the object representing the height and width in pixels.

TabIndex Specifies the index that defines the tab order for the object.

Text Specifies the text to be displayed in the object.

TextAlign Specifies whether the text in the object is left-aligned, right-aligned,
centered, or justified.

ToolTip Specifies an optional tooltip to appear when the user at runtime hovers the
mouse over a control in Winforms. To view the tooltip in the Presentation
Client, the user has to hover over the control and press the F1 key. This
tooltip is visible only at runtime.

Property Function

Direction Read-only. Specifies the value of the Direction property of the attribute
associated with the PasswordField object.

Id Read-only. By default, it is automatically generated. Id=PasswordField1
for the first inserted PasswordField, Id=PasswordField2 for the
second, and so on.

Length Read-only. Specifies the Length of the attribute associated with the
PasswordField object.

Name Read-only. Specifies the name of the attribute associated with the
PasswordField object.

Primitive Read-only. Specifies the value of the Primitive property of the attribute
associated with the PasswordField object.

BackgroundColor Specifies a background color for the object. Select a color from one of
the tabs in the drop-down list. Note that you can specify a custom color.
If you change this value, you can restore the default value specified for
the parent object by right-clicking the property and clicking Reset on
the context menu.

Property Function
3–164 3826 5823-008

Developing Applications
BorderStyle Specifies an attributes to control the border of the container that
surrounds the object. Options are None, FixedSingle, or Fixed3D or
UnderBar.

• When the property is set to None, the selected control appears
without a border.

• When the property is set to FixedSingle, the selected control has a
single line border.

• When the property is set to Fixed3D, the border of the selected
control has a three-dimensional appearance.

• When the property is set to UnderBar, only the bottom line appears
for the selected control. The other three border lines do not appear.

ControlType Specifies PasswordField as the type of object added to the form. To
change the ControlType, choose from the list of available types.

Font Specifies font attributes that are applied directly to the text appearing in
the object. If you change this value, you can restore the default value
specified for the parent object by right-clicking the property and clicking
“Reset” on the context menu.

ForegroundColor Specifies a foreground color for the object. Select a color from one of
the tabs in the drop-down list. Note that you can specify a custom color.
If you change this value, you can restore the default value specified for
the parent object by right-clicking the property and clicking “Reset” on
the context menu.

Location Specifies the point in pixels that represents the upper-left corner of the
object relative to the upper-left corner of its container as an X and Y
location.

Read Only Specifies whether the content of the object is read-only.

Size Specifies the size of the object representing the height and width in
pixels.

TabIndex Specifies the index that defines the tab order for the object.

TextAlign Specifies whether the text in the object is left-aligned, right-aligned,
center-aligned, or justified.

ToolTip Specifies an optional tooltip to appear when the user at runtime hovers
the mouse over a control in Winforms. To view the tooltip in the
Presentation Client, the user has to hover over the control and press the
F1 key. This tooltip is visible only at runtime.

Value Specifies the value to be displayed in the field. This is the value, which is
returned to the application when a transaction occurs at runtime.

Property Function
3826 5823-008 3–165

Developing Applications
TextArea Object Properties

Add a text area to your form when you want to accept multiple lines of text from a user.

Property Function

Id Read-only. By default, it is automatically generated. Id=TextArea1 for the
first inserted TextArea, Id=TextArea2 for the second, and so on.

Length Read-only. Specifies the Length of the attribute associated with the TextArea
object.

Name Read-only. Specifies the name of the attribute associated with the TextArea.

Primitive Read-only. Specifies the value of the Primitive property of the attribute

associated with the TextArea object.

BackgroundColor Specifies a background color for the object. Select a color from one of the
tabs in the drop-down list. Note that you can specify a custom color. If you
change this value, you can restore the default value specified for the parent
object by right-clicking the property and clicking Reset on the context menu.

BorderStyle Specifies an attributes to control the border of the container that surrounds
the object. Options are None, FixedSingle, or Fixed3D or UnderBar.

• When the property is set to None, the selected control appears without
a border.

• When the property is set to FixedSingle, the selected control has a single
line border.

• When the property is set to Fixed3D, the border of the selected control
has a three-dimensional appearance.

• When the property is set to UnderBar, only the bottom line appears for
the selected control. The other three border lines do not appear.

ControlType Specifies TextArea as the type of object added to the form. To change the
ControlType, choose from the list of available types.

Font Specifies font attributes that are applied directly to the text appearing in the
object. If you change this value, you can restore the default value specified
for the parent object by right-clicking the property and clicking “Reset” on
the context menu.

ForegroundColor Specifies a foreground color for the object. Select a color from one of the
tabs in the drop-down list. Note that you can specify a custom color. If you
change this value, you can restore the default value specified for the parent
object by right-clicking the property and clicking “Reset” on the context
menu.

Location Specifies the point in pixels that represents the upper-left corner of the
object relative to the upper-left corner of its container as an X and Y location.

ReadOnly Specifies whether the content of the object is read-only.

Size Specifies the size of the object representing the height and width in pixels.

TabIndex Specifies the index that defines the tab order for the object.

TextAlign Specifies whether the text in the object is left-aligned, right-aligned, center-
aligned, or justified.
3–166 3826 5823-008

Developing Applications
Rectangle Object Properties

You can add a Rectangle to a page, for example to visually group other objects on a form.
After you add a rectangle, you can modify its properties to change its appearance.

List Contents Editor

Use the List Contents Editor dialog box to enter and edit a list of options displayed in a
List box or Combo box on a form.

To display this dialog box, select a ListBox or ComboBox object on a form and click the
ListContents property from the Property window for the selected object.

The dialog box allows you to create a list of selectable options, which are displayed at
design time and runtime, and possible values that the selection returns.

Runtime Created Contents

List name – This field specifies the name of the list that is created at runtime by using
the SENDLIST logic commands. The format of the name of the list object must be one of
the following:

ToolTip Specifies an optional tooltip to appear when the user at runtime hovers the
mouse over a control in Winforms. To view the tooltip in the Presentation
Client, the user has to hover over the control and press the F1 key. This
tooltip is visible only at runtime.

Value Specifies the value to be displayed in the field. This value is returned to the
application when a transaction occurs at runtime.

Property Function

BackgroundColor Specifies a background color for the object. Select a color from one of the
tabs in the drop-down list. Note that you can specify a custom color. If you
change this value, you can restore the default value specified for the parent
object by right-clicking the property and clicking Reset on the context
menu.

BorderStyle Specifies the style of the border of the object. Choose from the list of
available types to change the border style.

ControlType Read-only. Specifies Rectangle as the type of object added to the form.

ForegroundColor Specifies a foreground color for the object. Select a color from one of the
tabs in the drop-down list. Note that you can specify a custom color.

Location Specifies the point in pixels that represents the upper-left corner of the
object relative to the upper-left corner of its container as an X and Y
location.

Size Specifies the size of the Rectangle object representing the height and
width in pixels.

Property Function
3826 5823-008 3–167

Developing Applications
ispec.attribute (LBX; in previous versions of Developer)

.attribute (LBX; in previous versions of Developer)

file name (specifies the file name that contains the list items).

Object name from host – This field specifies the object name that is sent to the form
by the host application program at runtime.

Item displayed in list – This field specifies which column from the data file is
displayed in the list.

Value sent to host – This field specifies which column in the data file is sent to the
host when you select the associated list item at runtime

Start line – This field specifies the number of the first displayable line in the file. This
field applies only to List box controls.

Fixed Contents

Text – Specifies the literal string displayed for an option within this box, and allows you to
edit existing option texts.

Value – Specifies the value returned when an option is selected, and allows you to edit
existing option values.

Insert – Inserts a new blank line in the list box after the line currently highlighted.

List – Displays the options that this list includes currently. To modify an existing option,
select the options in the list, and then edit the values in the Text and Value fields.

Up and Down Arrows – Changes the order in which Options appear in the List box or
Combo box.

Delete – Removes an Option from the List box or Combo box.

To add properties in the dialog, perform the following:

1. Enter the literal string that you want to display in the Text field.

2. Enter a value in the Value field.

3. Click Insert to add to the list.

Note: The data for static list boxes is stored in a data file named
<RuntimeDatabaseName>_<DeployedApplicationName>_listbox.dat in the
..\NGEN\DATA\Private folder, which is created at the time of installation of Developer.
This file is created whenever you run a report or execute logic by using the
SendListStatic command. You may wish to backup this file periodically.
3–168 3826 5823-008

Developing Applications
Color Picker

Use the Color Picker to select the color that you want to apply to the Background or
Foreground. You can click any one of the three tabs to select a color.

Custom Colors

There are 48 preset basic colors that cannot be modified.

To select one of these basic colors, perform the following:

1. Click the square of the basic color that you want.

2. Click OK to close the dialog box.

You can fill 16 custom color squares with colors of your choice. You can fill an empty
square or replace the color in a square with a new color.

To create a custom color, perform the following:

1. To create a custom color, right-click one of the available custom color squares. The
Define Color dialog box appears.

This dialog box modifies the red, green, blue, hue, saturation and luminance values of
the current color.

2. To adjust these values, click inside the color spectrum box or drag the crosshair
pointer to the desired position.

The thin color ribbon box modifies the red, green, blue, and luminance values of the
current color.

To adjust these values, click inside the color ribbon box or drag the pointer on the right
of the box up or down. The Color/Solid display box changes as you move the pointer.

The controls affect the contents of the Color/Solid display box, which displays the
currently selected color.

3. Click Add Color to add the custom color to the previously selected custom color
square.

4. Click OK to close the Color Picker dialog box.

To change a custom color, right-click or double-click the custom color square in the lower
section of the dialog box and repeat steps 1 through 4 for creating a custom color.

Web Colors

The Web tab displays the standard 216 safe colors. These safe colors are composed of
combinations of the values 00, 33, 66, 99, CC, and FF for red, green, and blue, and they
should be correctly displayed by any browser.

To select one of these colors, perform the following:

1. Click the box of the color you want.

2. Click OK to close the dialog box.
3826 5823-008 3–169

Developing Applications
System Colors

The System tab displays the system colors that are set in the Windows Display Control
Panel.

To select one of these colors, perform the following:

1. Click the box of the color you want.

2. Click OK to close the dialog box.

Graphical Objects and Attributes

Unless the graphical object is a static object and has a specific and unique purpose such
as a Line, it requires binding to an existing attribute as a data source to be functional.

The following objects are static objects and cannot be bound to an attribute:

• GridPanel

• Line

• Rectangle

• Submit Button

The following objects are optionally dynamic and may be bound to an attribute, but are
not required to be:

• Label

• Image

• List Box

These optional dynamic objects when bound to an attribute cause the attribute to be of
the type Usage Inquiry. This enables an attribute value to be displayed on the screen, but
not receive input from the screen or write to the database. Usage Inquiry is only used to
display data values on the screen.

Usage Inquiry Attributes can be receiving fields only. They may not be used as source
fields for arithmetic or data manipulation in Logic.

An example where an image could be bound to a Usage Inquiry attribute is where you
may want to change the image displayed on a form depending on a previous input action
of a form, say a warning sign appears if an error occurred in an input transaction.

The relationship between dynamic graphical objects and an attribute exists to enable the
user to interact with the attribute so that records in the underlying database can be read,
created, modified, and deleted by the user (where applicable). The interaction is carried
out by the user manipulating the objects on the form with the actions permitted by a
given object, for instance a Button can be clicked and an item in a List box can be
selected.
3–170 3826 5823-008

Developing Applications
Special consideration needs to be made for the GridPanel functionality when populated
with Radio Button, check box, or Button objects.

Group Control Function

The graphical objects that are grouped together to represent one attribute are called
Group Controls. The graphical objects button, check box, and radio button are called
Group Controls. For example, check boxes can be used as the multiple choice answers
for one question.

Group Controls do not leave their container and cause attribute disassociation. For
example, if a Button is dragged from the Toolbox onto the Graphical Painter Form, then
the parent of the Button is always the Form. If the Button is dragged into a GridPanel,
then the parent of the Button is always the GridPanel.

Moving an Object in Graphical Painter

Moving an object in the Graphical Painter Form does not change the container of an
object. It only changes the location of the object. For example, if you move an object into
the region of a GridPanel, the GridPanel does not become the container of the object.
Instead the GridPanel and object overlap each other.

If you want to change the container of controls, such as label, text field, list box, you must
press the Ctrl key while moving them.

Group Controls within the same container associate with the same attribute. To change
the container for Group Controls, you must:

1. Select all the Group Controls that associate with the same attribute. Since Group
Controls never leave their container that associate to the same attribute, changing
container for a few Group Controls results in attribute dissociation, which is not
permitted.

2. Press and hold the Ctrl key when selecting multiple Group Controls.

Note: You should move the Group Controls to a container that does not have the
same kind of Group Controls.

For example, moving Group Control buttons from the GridPanel:

1. Add four buttons, Button1, Button 2, Button 3, and Button 4, to a GridPanel in the
Painter.

Note: All the buttons associate with attribute 1.

2. Try to change the container of Button1, Button 2, and Button 3 by selecting and
moving them.

The change container operation is not allowed.
3826 5823-008 3–171

Developing Applications
To change the container of the buttons, you should select all the four buttons and move
them.

For example, to move a Text Field to the Grid Panel:

1. Add a Text Field and a Panel to the Painter.

2. Select the Text Field and press and hold the left mouse button.

3. Press and hold the Ctrl key and then move the selected Text Field into the Panel.

The boundary of the GridPanel gets highlighted and the GridPanel now becomes the
container of the Text Field.

Since the Ctrl key is also used for multi-selection, the steps to move the controls with the
Ctrl key is as follows:

1. Select the controls that you want to move.

2. Press and hold the left mouse button.

3. Press and hold the Ctrl key and then move the controls in the Form.

Panel Function

The GridPanel performs a secondary function in the Painter. In addition to acting as a
container for objects, it has a special relationship with Buttons, Check Boxes, and Radio
Buttons when they are added to a GridPanel.

Each object type shares the same characteristics in relation to its default Id and Attribute
Name properties as follows.

Adding a Button Object to a GridPanel

When a button is initially added to a GridPanel, its default Id is Button1. It also creates a
default attribute with the name Attribute 1. When a second button is added to the same
GridPanel, it receives a default Id Button2 but retains its binding with the attribute created
by the addition of the first button, which is Attribute1. This continues for all buttons that
are added to the same GridPanel.

Adding a Radio Button Object to a GridPanel

Adding a radio button to a GridPanel follows the same rules as adding a button object,
with the exception that the default Id for each radio button is RadioButton followed by the
number of the button. Each radio button is bound to the same attribute as the first radio
button that is added.

Adding a Checkbox Object to a GridPanel

Adding a checkbox to a GridPanel follows the same rules as adding a button object, with
the exception that the default Id for each checkbox is CheckBox followed by the number
of the checkbox. Each checkbox is bound to the same attribute as the first checkbox that
is added.
3–172 3826 5823-008

Developing Applications
When moving a button or a checkbox from one group to another, the button is re-
assigned to the attribute of the new group.

Value Property of a Button or Radio Button

Though each button (or radio button) within a group is bound to the same attribute, each
object maintains a different Value property. This allows the user to return a different value
to the same attribute when the transaction is completed. One example of the use of this
is where a GridPanel contains several buttons, each of which can return a different value
to the MAINT field of an attribute when clicked.

Checked and Unchecked Value Properties of a Checkbox

The value of a checkbox differs from other objects. Instead of the Value property, a
checkbox has the Checked Value property that specifies a string value to be sent to the
application when the object is checked and the form is transmitted at runtime. There is
also an Unchecked Value property that specifies the value to be sent to the application
when the control is unchecked. These properties are only available for a single checkbox;
when there are multiple checkboxes, these properties do not exist.

Multiple checkbox objects within the GridPanel are considered to be a group and are
assigned to one attribute in the same way as buttons and radio buttons. At runtime, a
representation of the state of the checkboxes in the group is sent to the application. For
example, a representation of 1010 means the first and third checkboxes are selected and
the second and fourth checkboxes are clear.

GridPanel Behavior

The behavior of the GridPanel varies with the movement of objects in it. For example:

• In a GridPanel, you can change the location of objects by moving them. This changes
the location of objects only in the GridPanel without disturbing the location of the
GridPanel. To do this, select the objects in the GridPanel and move them. The
GridPanel does not move but the objects within it move. However, it may impact the
size of the GridPanel.

Note: To select multiple objects, press and hold the Ctrl key.

• In a GridPanel, if you move some of the objects out of the boundary, the GridPanel
area expands to include all the objects. If you move some of the objects within the
boundary, the location of the objects changes within the boundary without expanding
the GridPanel area. The location of the GridPanel does not change.

• In a GridPanel, when you try to move the objects out of the boundary, the boundary of
the GridPanel is highlighted.
3826 5823-008 3–173

Developing Applications
Tool Tips at Design Time

At design time, information about an attribute that is bound to a graphical object can be
displayed in a Tool Tip when the mouse hovers over an object. The tool tip can display the
following information:

• Attribute name

• Edit type

• Length

• Caption

Note: If an object, which requires an attribute, has been added to the form by
dragging it from the Toolbox, but the form has not yet been saved, the tooltip displays
the text “Attribute not assigned.” To display the tool tip for such an object, you must
first save the form to create an attribute for the object.

Graphical objects that cannot be bound to an attribute display the text “Static Control” in
the tooltip. Objects for which an attribute is optional and that have been added to the
form by dragging from the Toolbox are treated as static controls and they display the
same tooltip.

Synchronizing Form Objects

The Synchronize Class View option selects an element in the Class View that is
associated with a form or a form object. You can select any graphical object on a form and
instantly determine its corresponding data attribute in the Class View hierarchy.

To synchronize a form object with its data attribute in the Class View, right-click the
object, and select Synchronize Class View.

This highlights the data attribute that is associated with the graphical object on the form.
If the Properties window is open, you can also edit the properties of the associated
attribute that is selected in the Class View. For form objects that are not associated with
any data attribute, the class that contains the form is selected. The Synchronize Class
View option on a form, or a multiple selection of objects, selects the class in the Class
View that contains the form.

The Properties window also displays certain Design properties of form objects associated
with primitive data types. The properties that are displayed depend on the type of form
object and are read-only, such as Length, Primitive, Direction, Decimals, and Constraint.
This provides a quick view of some of the properties of the primitive data type associated
with the selected form object. The changes that are made to the Design properties of
data attributes associated with form objects, such as Button, CheckBox, Radiobutton,
TextField, PasswordField, or TextArea, are automatically reflected in the Design properties
of the form object.
3–174 3826 5823-008

Developing Applications
You can also synchronize objects that are inherited from a form of a parent class. For
example, if an attribute with Direction other than None inherits from a class that contains
a form, the form objects of the parent class are added to the current form as a movable
GridPanel.

Note: If an attribute in an Ispec or Class with a Fixed Presentation inherits from an
Insertable class with a Fixed Presentation, the form objects of the parent class are
added to the current form as an immovable GridPanel. In such instances, you cannot
synchronize the inserted form objects.

Creating Fixed Screens

A Fixed mode screen (green screen painter) is designed by using the Fixed mode Painter
for different runtime platforms. These platforms require character-based interfaces;
therefore, you need to paint fixed width (use a font that is not proportional to the width of
the characters) objects to display text and fields.

You can use only the following graphical objects to paint on a character screen: Pointer,
Labels, Textfields, and Password field. The Label and Textfield object properties for a
character screen differs from those for the graphical screen.

You can also generate presentations for the Insertable Stereotypes, Aggregated
Presentations, and CopyIspec or CopyEvent Stereotypes on a green screen. For
CopyIspec/CopyEvent Stereotypes, the Character Mode Painter defines the number of
copies based on the IsCopied property.

All overlapping of fields or characters on a Fixed screen are prevented. In addition, if the
available space for placing a field is less than the defined length of the attribute, then that
field is truncated.

When control is initially created, the size is equal to the corresponding attribute's length.
When you increase the control's size, the corresponding attribute's length is adjusted
accordingly. When the control's size is reduced, the corresponding attribute's length is
not adjusted.

You can set the properties of the data entry fields on a character screen to CR, DR, +, and
-.

To create a Character mode screen, perform the following:

1. Follow the instructions in Adding New Items.

2. Select an element and provide a name for it.

3. Once the element has been added, select it from Solution Explorer or Class view.

4. Click the Painter tab to open the form.

5. Select Fixed from the drop-down list above the form.

6. Add the required objects to design the interface.
3826 5823-008 3–175

Developing Applications
Label Object Properties in Fixed Screens

Add a Label as a static label object used for entering static text to the Character screen or
as a dynamic label control. To display the value of an attribute in a Character screen at
runtime, the following properties can be selected for each label object.

Property Function

BackgroundColor Specifies a background color for the object. Select a color from the drop-
down list. Note that you can specify only one of the following colors for
character screens: Black, White, Red, Green, Blue, Yellow, Cyan, and
Magenta.

Big Specifies whether the selected object is printed in large characters; that are
in pitch 66, about 50 percent taller than normal. Not displayed at design
time, but only at runtime.

Note: The changes you apply to this property do not affect the display
of a report.

Blink Specifies whether to display the selected object in blinking video.

Box Specifies whether to surround the selected item with a box.

Bright Specifies whether the selected object is highlighted.

Note: If two controls overlap on setting this property, then an overlap
error is reported. Property remains False.

ControlType Specifies the type of object selected. This property is read-only from within
the Painter document window and is always a Label.

Foreground Color Specifies a foreground color for the object. Select a color from the drop-
down list. Note that you can specify a custom color.

Id Read-only. Generated by the software.

Location Specifies the point in pixels that represents the upper-left corner of the
object relative to the upper-left corner of its container as an X and Y location.

Reset Specifies that all current highlighting and color attributes are reset after the
selected object.

Reverse Specifies whether the selected object is displayed with reverse video
highlighting.

Underline Specifies whether the selected object is underlined. Not displayed at design
time, but only at runtime.

Underscore Specifies whether the selected object is displayed with a horizontal
delimiter beneath. Not displayed at design time, but only at runtime.

Upperscore Specifies whether the selected object is displayed with a horizontal
delimiter above. Not displayed at design time, but only at runtime.
3–176 3826 5823-008

Developing Applications
Text Field Object Properties in Fixed Screens

When you want to accept one line of information from a user, add a one-line Text Field to
your form. To display the value of an attribute in a Character screen at runtime, the
following properties can be selected for each Text Field object.

Property Function

BackgroundColor Specifies a background color for the object. Select a color from the drop-
down list. Note that you can specify only one of the following colors for
character screens: Black, White, Red, Green, Blue, Yellow, Cyan, and
Magenta.

Big Specifies whether the selected object is printed in large characters; that are
in pitch 66, about 50 percent taller than normal. Not displayed at design time,
only at runtime.

Note: The changes you apply to this property do not affect the display of
a report.

Blink Specifies whether to display the selected object in blinking video.

Box Specifies whether to surround the selected item with a box.

Bright Specifies whether the selected object is highlighted.

Note: If two controls overlap on setting this property, then an overlap
error is reported. Property remains False.

ControlType Specifies the type of object selected. This property is read-only from within
the Painter document window and is always a TextField.

Foreground Color Specifies a foreground color for the object. Select a color from the drop-down
list. Note that you can specify a custom color.

Id Read-only. Generated by the software.

Location Specifies the point in pixels that represents the upper-left corner of the
object relative to the upper-left corner of its container as an X and Y location.

Name Specifies an attribute to which the object is bound. This property is read-only
from within the Painter document window, though it can be renamed from
any other window that displays existing attributes.

Reset Specifies that all current highlighting and color attributes are reset after the
selected object.

Reverse Specifies whether the selected object is displayed with reverse video
highlighting.

TabIndex Specifies the index that defines the tab order for the object.

Underline Specifies whether the selected object is underlined. Not displayed at design
time, but only at runtime.

Underscore Specifies whether the selected object is displayed with a horizontal delimiter
beneath. Not displayed at design time, but only at runtime.

Upperscore Specifies whether the selected object is displayed with a horizontal delimiter
above. Not displayed at design time, but only at runtime.
3826 5823-008 3–177

Developing Applications
Creating Teach Screens

A Teach Screen in a system displays help information, which you create for your user,
about an element. Many teach screens can be associated with a single element.

Use the Painter to enter the text for a teach screen. The teach screen painter allows you
to define teach screens and translate them into any available language. When the Painter
is used to create teach screens, it provides a subset of the functionality provided by the
screen painter.

All controls from the Tool Box can be dropped onto a teach screen, and all painter
operations can be performed on the objects.

Only the following exceptions exist:

• No object can be bound to an attribute.

• Attributes cannot be dragged and dropped onto a teach screen.

• Attributes cannot be created when a teach screen is saved.

To add a teach screen, perform the following:

1. Follow the instructions in Adding New Items.

2. Select a Teach Screen class and provide a name for it.

3. Once the teach screen has been added, select it from Solution Explorer or Class view.

4. Click the Painter tab to open the Painter window and begin adding objects.

Designing User Interfaces for Client Framework
Applications

Before creating an interface for AB Suite Client Framework applications, you must add an
IGraphicalPresentation interface node to an ispec or a class. This ispec or class is exposed
as a set of corresponding DataModels that can then be used by various popular client
development tools to create desktop, web, mobile, and service based applications. When
the IGraphicalPresentation interface node is added to the ispec or the class, the
PresentationType property of the ispec or class is set to Graphical and is read-only. You
can add attributes or drag attributes from an ispec definition to the ispec or class with the
IGraphicalPresentation interface node. The DataViewModel definitions and an empty
XAML View appears for each ispec or class, which has an IGraphicalPresentation
interface node, when you generate the necessary Access Layer projects from the Build
menu. For WPF/XAML client type, the Data Sources project is also generated. You can
now design the XAML View for the ispec or class that has the IGraphicalPresentation
interface node.

Note: The Data Sources are created in the
<ApplicationName.TechnologyFolderName>.Views project.
3–178 3826 5823-008

Developing Applications
You can now design the user interface by using the Microsoft WPF Designer in Visual
Studio. To design the user interface open the Solution Explorer window, and then double-
click the <IspecName or ClassName>.Xaml file in the Stereotyped or Classes folder.

Note: You can design the user interface by using Microsoft WPF Designer in Visual
Studio if you have set the Client Technology option to WPF.

This opens the View in the WPF Designer window along with the Common WPF Controls
Toolbox and the All WPF Controls Toolbox.

You can now add attributes to the View from the corresponding Data Source or add
controls from the Toolbox to design Views for a specified client technology. To access the
Data Sources window, on the Views menu, point to Other Windows, and then click
Data Sources.

Note: Always ensure that the View matches the corresponding Data Source from
where you add the attributes.

Refer to Client Framework - Working with the WPF/XAML Designer Using Data Sources
in the Documentation Libraries page on the Product Support site for more information on
designing the Views for a WPF application.

Manipulating Graphical User Controls

The following points highlight the usage of WPF Designer interface and manipulation of
various graphical user controls:

• The default view of WPF Designer interface contains a user control, a top-level grid
control, and a canvas control. The WPF Designer shows a split view with the design
view at the top and the XAML window at the bottom. The XAML window can be
collapsed if required. The canvas control is the container for all other controls placed
on the view. To increase the size of the design surface, you must adjust the size of
the user control. You can select the user control from the Document Outline tab, and
then drag the handles on the sides or the corner of the control to the desired size.
Alternatively, you can set the Height and Width properties of the user control in the
XAML. You can search any control by using the Document Outline tab. The Document
Outline tab displays a hierarchy of all the user controls for a selected <IspecName or
ClassName>.Xaml.

• The WPF graphical user controls that are added to the View from a Data Source
appears in a composite grid control containing a label and a user control, which is
automatically bound to an attribute in ViewModel. If you do not need the label
automatically created, you can drag the user control outside the grid and then delete
the grid containing the label. You can change the position of a control, or multiple
controls, incrementally by pushing the selected object with the Up, Down, Left, or
Right arrow keys. Select one or more controls and press the appropriate arrow key.

• To associate a control with a grid, select the control and drag it onto the grid. A blue
highlighted text, “Press Alt to place inside [Grid]” appears on the interface. Now, you
can press the Alt key and the control is associated with the new grid.

• You can make one or more graphical controls invisible on a view at runtime. To do
this, set the Visibility property of a user control to Hidden or Collapsed.
3826 5823-008 3–179

Developing Applications
• The Properties Editor in the WPF Designer can be used to configure the properties
ofa user control. In some instances, you might need to access the advanced options
fora specific property, such as DataBinding. These advanced properties can be
identifiedby a small square toward the right of the property. You can click this square
to select the required option from the context menu.

• You can have some classes that are aggregated into an ispec. This enables the
creation of separate ViewModels and Views for these classes when the Access Layer
is built. So, you can design these classes separately and reuse them by inserting as
user controls in the Views for other ispecs.

• An image control can be optionally dynamic and a Convertor is required to resolve the
location and type of the image control for dynamic controls.

• The user controls that are grouped together to represent one attribute are called
Group User Controls. The graphical user controls, such as button, checkbox, and radio
button are called Group User Controls. All buttons in a group user control can be
associated with an attribute. For example, check boxes can be used for selecting
answers to multiple choice questions.

• Combo box and list box controls can be bound to a ListModel that is generated from a
List attribute in System Modeler. The ListModel is created when the Access Layer is
generated and is available as a ViewModel in the ViewModels project. You can then
bind the ItemsSource property of the combo box or list box to the ListModel. At
runtime, the list sent from the AB Suite system is displayed in the combo box or list
box.

• All Copy.From fields are generated as a CopyFromItems collection that can be bound
to a DataGrid control type, so you do not need to place each copied field separately
on the View.

Creating Reports

The Painter is not only used for creating screen interfaces and Teach Screens, but is also
used for creating reports and report frames. A report is part of a system that is generated
and used to produce output or to carry out specialized batch processing of a Database. It
consists of report frames and report methods, and a number of options that define the
output of the report.

To add a report, perform the following:

1. Follow the instructions in Adding New Items.

2. Select a Report class and provide a name for it.

To add a report frame, perform the following:

1. Follow the instructions in Adding New Items.

2. Select a Frame class and provide a name for it.

3. Once the frame has been added select it from Solution Explorer or Class view.

4. Set the Multiplicity property to 1.
3–180 3826 5823-008

Developing Applications
5. Set the PresentationType property to Print to create a Painter tab on the
document window.

6. Click the Painter tab to open the Painter window and begin adding labels.

Report Options

Global options for the text font size, type, and foreground color can be set for all reports
from the Tools, Options menu. Refer to Document Windows in System Modeler for
more information on how to do this. The Form Grid setting is based on the font size either
selected from the Tools, Option setting or overridden at the Frame level from the Report
Frame Properties window.

Report Frame Properties

To set the properties of a Report Frame using the Properties window, perform the
following:

1. On the Class view, select the Report Frame.

2. On the View menu, click Properties to open the Properties window.

3. Select the property that you want to specify and select it from, or type it in, the edit
box.

The following properties are available for the Report Frame.

Add Labels to a Report Frame

Only a limited amount of painter functionality is available for report frames, as it simply
provides the functionality to use a character-based font (fixed fonts). The only object
which can be added to a report frame is a Label, whose behaviors depend on the
methods used to add the label to the form.

Property Function

Foreground Color Specifies a foreground color for the object. Select a color from the drop-
down list.

Line Length Specifies the line length for a report, which determines the Report page
size. By default, it is 132 characters in width with a minimum of 80 and a
maximum of 260. The height is set at 100 characters and cannot be change.

Note: The changes you apply to this property affect the display of a
report. To get a desired output in a printed report, you can configure the
print properties by using AB Suite Runtime Administration Tool.

Refer to the Agile Business Suite Runtime for Windows®Operating
System Administration Guide for more informatioin.

Show Grid Specifies whether forms display the sizing grid. By default, the grid is turned
on.

Snap to Grid Specifies whether forms snap objects to the grid.
3826 5823-008 3–181

Developing Applications
To drag a label from the Toolbox and drop it onto a form, perform the following:

1. Click the Painter tab available at the bottom of the document window.

The Form appears.

2. If it is not already open, click the Class View window.

The Class View window appears.

3. Click the Class View menu item.

4. Sort the hierarchical list into the most appropriate form to locate the attribute you
wish to use.

5. If necessary, click the plus (+) symbol next to the appropriate node.

6. Select the attribute that you wish to assign to a label, and drag it onto the form.

7. Drop the attribute onto the form to create a default dynamic Label object.

When adding a Label in this method, the Label is added as a static label object, and is
used for entering static text into the report.

Note: You can specify a qualified object name as the value to make this object a
dynamic Label object.

To drag an attribute from the Class View window and drop it onto a form, perform the
following:

1. Open the form by clicking the Painter tab available at the bottom of the document
window.

2. If it is not already open, open the Class View window by clicking the View, Class
View menu item.

3. Sort the hierarchical list into the most appropriate form to locate the attribute you
wish to use.

4. If necessary, click the plus (+) symbol next to the appropriate node.

5. Select the attribute you wish to assign to a label, and drag it onto the form.

6. Drop the attribute onto the form by releasing the mouse button to create a default
dynamic Label object.

When dropping an attribute from the Class view onto a report frame, a dynamic Label
object is added to the report. A dynamic label control is used to specify where to insert
the value of an attribute in the report at runtime.

Note: This differs from dragging an attribute onto a form in the screen painter,
where it adds a Text Box.
3–182 3826 5823-008

Developing Applications
Label Properties in Report Frames

Add a Label as a static label object that is used for entering static text to the report, or as
a dynamic label control. To display the value of an attribute in the report at runtime, the
following properties can be selected for each label object.

Property Function

Big Specifies whether the selected object is printed in large characters; that is
in pitch 66, about 50 percent taller than normal. Not displayed at design
time, but only at runtime.

Note: The changes you apply to this property do not affect the display
of a report.

BlankWhenZero Specifies whether spaces are to be printed if the value of the Frame
Attribute is zero. Options are True and False.

Bright Specifies whether the selected object is printed with highlighting.

Note: If two controls overlap on setting this property, then an overlap
error is reported. Property remains False.

Control Codes Specifies output control codes into your model. Not displayed at design
time, but only at runtime. Click the ellipses button to open the Control
Codes dialog box.

ControlType Specifies the type of object selected. This property is read-only from
within the Painter document window and is always a Label.

Foreground Color Specifies a foreground color for the object. Select a color from the drop-
down list.

Id Read-only. Generated by the software.

IsFloatingSign Specifies whether the sign is to be printed immediately before the first
significant digit. Options are True and False.

Location Specifies the point in pixels that represents the upper-left corner of the
object relative to the upper-left corner of its container as an X and Y
location.

(Name) Specifies the type of object. This property is read-only from within the
Painter document window and is either Static Label or Dynamic Label.

Pitch Specifies the number of characters to be printed per line for the selected
object.

Note: The changes you apply to this property do not affect the display
of a report.

PrintFormat Specifies how to present numbers and zeros in reports. Values are Blank,
CR, -, +, $, *, and None. Refer to the PrintFormat Property for more
information on these values.

Reset Specifies that all current highlighting and color attributes are terminated
after the selected object.

Reverse Specifies whether the selected object is printed with reverse video
highlighting.
3826 5823-008 3–183

Developing Applications
PrintFormat Property

The PrintFormat property is only available for a Label that is bound to an attribute with a
Primitive Type of Number or Signed Number. The following table describes the values and
identifies the Primitive Type to which they are applicable:

Control Codes Dialog Box

Use the Control Codes dialog box to add Output Control codes into your model. The
control codes are used to associate user-defined highlighting characteristics for report
data or display items that are directed to terminal printers, video devices, or ROC remote
printers.

Note: Control Codes are ignored if the Default Device for your Report is an
Enterprise Output Manager generated Report.

Underline Specifies whether the selected object is underlined. Not displayed at
design time, but only at runtime.

Underscore Specifies whether the selected object appears and print with a horizontal
delimiter beneath. Not displayed at design time, but only at runtime.

Upperscore Specifies whether the selected object is displayed and printed with a
horizontal delimiter above. Not displayed at design time, but only at
runtime.

Value Specifies the value to be displayed in the object. Note that you can specify
a qualified object name to make this object a dynamic Label object.

Value Description Primitive

Blank Print nothing if value is zero Signed Number

CR Signed (CR or DR) numeric, default CR Signed Number

- Signed (CR or DR) numeric, default - Signed Number

+ Signed (CR or DR) numeric, default + Signed Number

$ Signed numeric, print nothing if the value is zero, print
floating $ if non zero

Signed Number

* Signed numeric, print asterisks if the value is zero Signed Number

None No formatting is applied Number

DR Defaults to DR Signed Number

Z Suppress leading zeros, print 0 if the value is zero Number

X Print nothing if the value is zero Number

Property Function
3–184 3826 5823-008

Developing Applications
To enter or change control codes, perform the following:

1. Enter the required code in the Control Code edit box.

2. Click Insert to add the control code to the list.

3. To add additional control codes repeat steps 1 and 2. Each additional control code is
added to the end of the list.

4. To change an existing control code, select the code from the list to display it in the
edit box.

5. Enter the required changes.

6. Click Change.

To delete a control code, select the code in the list and click Delete.

Add Logic to Report Frames

Logic is added to report frames from the Agile Business Suite Developer Logic Editor. You
can enter the logic by selecting and opening the method for a report frame in a Logic
Editor Window from the Class View.

Using the Windows Communication
Foundation (WCF) Gateway

The AB Suite Client Framework WCF Gateway acts as a single access point for different
client technologies. It allows remote clients, such as .NET, Silverlight, Windows 8 (WinRT)
Store Apps, and others, that do not support direct COM/DCOM connectivity to
communicate with the runtime system by using the Client Framework access layer
infrastructure. The WCF gateway exposes a WCF service that allows client applications to
communicate with the AB Suite runtime system over the network by using Windows
Communication Foundation.

The WCF Gateway is installed as a service with the AB Suite Runtime software. It can
also be executed within a self-hosted application named Client Framework WCF Gateway
Host, which is supplied with the AB Suite Developer software. This allows developers to
use the WCF Gateway service on a machine that does not have the AB Suite Runtime
software installed. It exposes the same service on a development machine so that you
can develop and test your client applications.

The WCF Gateway exposes an endpoint named AccessServiceEndPoint. This endpoint
implements the IGateway interface that offers a full-duplex asynchronous pattern
allowing you to run colon commands, report, and receive unsolicited messages from the
runtime system. In conjunction with the Remote Access Layer API, you can use this WCF
service to implement rich client applications by using technologies that support a full-
duplex WCF binding. For example, .NET Framework applications, Windows Store apps,
Silverlight, and others.
3826 5823-008 3–185

Developing Applications
To interface with the Gateway service you must use the Client Framework Remote
connector assemblies that expose the same Access Layer API as the direct connect
assemblies. You can install the Remote connector assemblies by using the Client
Framework Remote Connect NuGet package.

FileStoreGateway Service

The Client Framework also provides a WCF Service named FileStoreGateway. It exposes
an endpoint named AccessServiceFileStoreEndPoint that implements the
IFileStoreService interface. This allows the remote client application to download files
from a file repository on the server where the FileStoreGateway Service is running. You
can also upload files if you have the required permissions.

The FileStoreGateway Service exposes a more basic interface than the Gateway Service
and does not require a duplex channel for its operation. The FileStoreGateway can be
installed as a service with the AB Suite Runtime software or can be hosted by the WCF
Gateway Host application on a development machine for testing purpose.

Running the WCF Gateway

To host the WCF Gateway on a machine with AB Suite Developer installed, perform the
following:

• Point to the bottom-left corner of the screen to enable the Start icon, click Start >
Apps > Agile Business Suite 6.1 > Development Environment > Client
Framework WCF Gateway Host.

This starts the WCF Gateway Service Host application and displays the following
services in the Hosted Service pane:

• Gateway – for connecting to the Runtime system

• FileStoreGateway – for downloading and uploading files

Refer to the Agile Business Suite Installation and Configuration Guide for more
information on the Client Framework WCF Gateway Host application.

When the gateways start, the Gateway Server Console and Service Host window
displays the machine details and the endpoint addresses in the Trace Output pane.

To connect a client with this gateway, perform the following:

1. Create a client application that you want to connect to the gateway.

Note: You can create a console application, WPF application, Windows 8 apps,
Windows Service application, or others as required.

As an example, we can use a WPF application to reference the Portable DataModels
by using the Remote Access Layer API and connect to the WCF Gateway with the
Remote.DotNET connection.
3–186 3826 5823-008

Developing Applications
2. Add the following references to your project:

• Your portable DataModels assembly generated from the AB Suite solution for the
specified technology folder (for example,
Sample.Remote.DataModels.Portable.dll)

• The Gateway Service Interface assembly
(Unisys.ABSuite.AccessLayer.GatewayServiceInterface.dll) that defines the
Service Contract with the WCF Gateway.

• The Remote Core assembly
(Unisys.ABSuite.AccessLayer.Connector.Remote.Core.dll) that implements the
Access Layer API for remote connections through the WCF Gateway.

• The Connector assembly for establishing connections to the WCF Gateway from
a Windows application, such as WPF
(Unisys.ABSuite.AccessLayer.Connector.Remote.DotNet.dll).

3. In your Connection processing, create a Remote connection instance by using the
ABSuite.AccessLayer.Remote.DotNet.Connection class, by passing an IspecFactory
instance for your Portable DataModels.
ABSuite.AccessLayer.Connector.Remote.Core.Connection RemoteConnection = new

ABSuite.AccessLayer.Connector.Remote.DotNet.Connection(new
Sample.Remote.DataModels.Portable.Core.IspecFactory());

Note: In this example, we are using a WPF application that uses the full .NET
Framework. Hence, we can employ the Connection class in the
Unisys.ABSuite.AccessLayer.Connector.Remote.DotNet assembly. If you were
developing a Windows 8 Store application, then you must use the Connector class
in the Unisys.ABSuite.AccessLayer.Connector.Remote.Windows assembly.

4. Set up a ConnectionDetails object.
ConnectionDetails cDetails = new ConnectionDetails()
{
 // The name or IP Address of the host machine the
 // WCF Gateway will connect to:
 Host = "localhost",
 // Is it an anonymous connection?

 IsAnonymous = true,
 // The name of the deployed runtime system (usually the
 // segment name)
 System = "Sample",
 // The name or IP Address of the machine where the WCF
 // Gateway is running
 GateWayAddress="localhost",
 // The location where the .NET DataModels can be found for
 // the WCF Gateway to use.
 // This must be a folder that is accessible by the WCF
 // Gateway process on the machine where the WCF Gateway is
 // running.
 DownLoadURI = @"C:\Gateway Applications\Sample\Access Layer API Deploy",
 // This is a list of assemblies that the WCF Gateway needs to
 // process the transactions for a particular application. In
 // this case, the .NET DataModels are specified
DownLoadFiles = new string[] { "Sample.Remote.DataModels.dll" },
// Do we want to override any existing connections for the
// same user?
 ForceLogin = true
};
3826 5823-008 3–187

Developing Applications
Once the ConnectionDetails is established, you can pass this to the Connect()
method of your Remote Connector instance

TransmissionObject trObj = null;
trObj = RemoteConnection.Connect(cDetails, null);

if (trObj != null && (trObj.State == TransmissionReturnCode.Ok ||
trObj.State == TransmissionReturnCode.OkWithSwitch))
{
 CurrentIspecName = trObj.ObjectClassName;
 CurrentTO = trObj;
 SessionConnected = true;
}
else
SessionConnected = false;

5. The Remote Connector establishes a full-duplex TCP/IP channel to the WCF Gateway
and makes requests to the Gateway by using the Access Layer API Remote interface
that exposes the same interface as the Direct Connect approach. The difference here
is that the messages are being passed through an intermediary gateway by using a
WCF endpoint.

Custom Gateway

You can create your own custom WCF gateway by using the WCF Service Library option
in the <Technology Folder Name> Property Pages window. This builds a basic WCF
Service that can transmit requests and receive responses in a synchronous manner. It
does not expose the full Access Layer API. Therefore, it does not implement callbacks,
nor does it require a full-duplex asynchronous session.

The WCF Service Library technology option generates two projects

• A WCF Service library project that defines a WCF service. The WCF service can be
exposed through various hosting options, such as an IIS Web application, a Windows
Service, or a Windows Self-Hosting Service.

• A WCF Service Gateway project that allow you to host the Service Library.

Note: If you do not want to use this Service Gateway, then you can choose to host
the Service Library in the Service Gateway supplied with the AB Suite software.

Due to its relatively simple interface, this WCF Service is ideal for use by remote clients
where callbacks and duplex channels cannot be used (for example, mobile devices, Java,
Web Service client, and others). It does not allow you to execute colon commands and
other asynchronous operations, such as running reports or receiving unsolicited
messages. However, with these client types, such operations are typically not required.

To create a custom service library, perform the following:

1. Create an AB Suite Client Framework application.

2. Right-click the Technology folder, and then select Properties.

The <Technology Folder Name>Property Pages window appears.

3. From the Client Technology list, select WCF Library (Windows
Communication Foundation).
3–188 3826 5823-008

Developing Applications
4. Click OK.

This creates two projects in the solution

• The WCF Service library project named <SegmentName>.<FolderName>Library
(for example, Sample.MyWCFServiceLibrary).

This project creates the WCF Service Library that can be hosted.

• A default WCF Hosting project named
<SegmentName>.<Foldername>Gateway (for example,
Sample.MyWCFServiceGateway).

This project creates hosting application that hosts your service library. It can be run
as an application or can be installed as a Windows Service.

Refer to the Agile Business Suite Installation and Configuration Guide for more
information on installing the WCF Hosting application as a Windows Service.

5. In the Solution Explorer window, right-click the <Project
Name>.<FolderName>Library project, and then select Start New Instance.

The WCF Service Host application starts and displays the generated service being
hosted (for example, Sample.MyWCFServiceLibrary.SampleMyWCFService). The
Microsoft WCF Test Client window also appears, which allows you to discover the
hosted service and perform operations on it for testing purposes.

To connect a client with this gateway, perform the following:

1. Create an application in Visual Studio.

Note: You can create a console application, WPF application, Windows Service
application, Windows Store application, or others as required.

2. Right-click the project, point to Add, and then click Service Reference from the
context menu.

The Add Services References dialog box appears.

3. In the Address box, enter the endpoint address. You can either discover the
endpoint address or copy it from the left pane of the WCF Test Client window

4. Click Go.

The methods available as part of the endpoint are listed in the Operations box.

5. In the Namespace box, enter a name; for example, SampleRef.

6. Click OK to close the Add Services References dialog box.

The name you entered in the Namespace box appears under the Service Reference
folder in Solution Explorer window.

7. Double-click the Service Reference to open the Service definition in the Object
Browser window

8. Add code in your application class to create and use the service. For example, the
following code is executed when a button is pressed in a WPF Client application:

private void Button_Click(object sender, RoutedEventArgs e)
{
 // Create an instance of the Service

SampleMyWCFClient svc = new SampleMyWCFClient("WSHttpBinding_ISampleWcfService");
3826 5823-008 3–189

Developing Applications
or

SampleMyWCFClient svc = new SampleMyWCFClient("BasicHttpBinding_ISampleWcfService");
 MessageData messageData;
 // Perform the Connect operation on the service
 messageData = svc.Connect();

 // The fireup ispec is a type of MENUmodel
 MENUModel menu = (MENUModel) messageData.Data;
 menu.ACTION2 = "PROD"; // Navigate to the PROD ispec

 // Transmit the MENUModel
 messageData = svc.Transmit(menu);
 PRODModel prod = (PRODModel)messageData.Data;
 prod._UserMAINT = "FIR"; // Set the UserMaint field

 // Tranmit the PRODModel
 messageData = svc.Transmit(prod);
 prod = (PRODModel)messageData.Data;

 // Extract the Name information for the first record
 string name = prod.NAM;
 // Check the Status information
 string status = messageData.Status;
 }

In your logic, you can call the operations that the service provides.

In the example above

• The service is created.

• (WSHttpBinding_ISampleWcfService) and (BasicHttpBinding_ISampleWcfService)
are two endpoints for service reference. The interface reference, ISampleWcfService
is I<SegmentName><webservice foldername>.

• The Connect() operation is performed that returns the fireup ispec.

• The MENUModel is populated and sent using the Transmit() operation.

• The PROD ispec is returned and the PRODModel is populated.

• The PRODModel is sent using the Transmit() operation and the data is extracted from
the information returned.

• The Status message is also extracted from the returned MessageData.

Debugging Applications
You can debug your application logic interpretively using Debugger in Agile Business Suite
System Modeler. Debugger performs JIT (Just-In-Time) compilation of the components
being debugged (and other required components), and thus does not require a full
generate of the application. JIT compilation is only for Winforms and WPF Containers.
The reason a full generate is not required is because most things are never generated –
they are interpreted. The only things that are generated are interfaces to mimic the
Windows® runtime interface for the system so that the Windows infrastructure can
provide services to the Debugger. Debugger also allows the components being debugged
3–190 3826 5823-008

Developing Applications
to be run against a test database, rather than your production database. In this way,
Debugger helps you to rapidly develop robust applications that can be tested in a
controlled manner.

Note: You cannot debug parts of an application that contain Unresolved elements.
Unresolved elements must be resolved before debugging.

To use Debugger, you must first specify a configuration to run, and then set the
configuration to Debug Mode.

Specify a configuration using the Configuration Manager. Refer to Configuration Manager
Dialog Box in the Microsoft Visual Studio Online Help for more information on using the
Configuration Manager.

To set a configuration to Debug Mode, perform the following:

1. Right-click the project in Class View and select Properties.

2. Set the Debug Mode configuration property to the type of debug session you want to
run:

• Online System

An Online System debug session runs a segment through a Windows Forms
interface for an AB Suite application. It also runs a client application through a
Designer interface for an AB Suite Client Framework application.

• Report Call

A report debug session runs a report.

• Method Call

A method call debug session runs a public method of a segment that would be
exposed through the generated interface.

• External Application

An external application debug session runs methods on classes that would be
exposed by the Windows generated system, as they are called from an external
application. This can be used for scripting a test run.

When the Debug Mode configuration property is set to Off, none of the Debugger
settings are available.

Note: The External Application option is not available when you debug an AB
Suite Client Framework application, as the Online System option runs the
external client applications supported by Client Framework.

• Messenger

A Messenger debug session runs a segment through a Messenger cycle interface
for an AB Suite application. The Messenger Client program starts and allows you
to submit XML messages for processing by Messenger classes.

3. Specify other configuration properties as required.

Note: The Debug Mode configuration properties are stored in the Visual Studio
Solution files and not the database. Hence, these properties cannot be exported.
3826 5823-008 3–191

Developing Applications
Accessing an Existing Runtime Database to Debug an AB
Suite Application

Existing runtime database can be used for AB Suite debug session in the following ways:

• Local

• Remote Server (Distributed environment)

• Backup / Restored Runtime Data base

To access locally deployed runtime database, perform the following:

1. In the Administration Tool on the Developer workstation, create a Database Server
Registration to LOCAL HOST.

2. Right-click on the Database Server Registration, and then select All Tasks >
Attach > Existing Database.

3. Select the Runtime Development Database, and then click OK.

4. Setup the Debug Configuration to specify the Database Server Registration and
Database Name under Test Database. Set Reorganise Database to NO.

5. Perform a build for the Debug Configuration:

It adds the Debugger System name under the Database Name in the Administration
Tool.

To access remotely deployed runtime database, perform the following:

1. In the Administration Tool on the Development Runtime Server, right-click the Dev AB
Suite Runtime System, and select Change DB Password. Set the DB Password,
and then select Apply this password change to the schema.

2. In the Administration Tool on the Developer workstation, create a Database Server
Registration to the AB Suite Development Runtime Server.

3. Right-click the Database Server Registration, and then select All Tasks > Attach
Existing Database.

4. Select the Runtime Development Database, and then click OK.

5. Setup the Debug Configuration to specify the Database Server Registration and
Database Name under Test Database. Set Reorganise Database to NO.

6. Perform a build for the Debug Configuration.

It adds the Debugger System name under the Database Name in the Administration
Tool.

7. In the Administration Tool, right-click the Debugger System Name, and
selectChange DB Password. Set the DB Password to the same value set in Step
1. Deselect Apply this password change to the schema, and then click OK.

You can run the Debugger session, and it connects to the shared Development
Runtime Database.
3–192 3826 5823-008

Developing Applications
To use backup or restored runtime database for debug session, perform the following:

1. In case, the backup or restored runtime database using another name is too huge it is
required to set Reorganise Database Flag to YES.

2. Set the same Database Schema Name as the one initially used while deploying
the runtime database for each involved user or configuration by using the debugger
for restored runtime database.

Debugger Configuration Properties

The following tables list configuration properties that affect debugging.

• Client Properties

• Misc Properties

• Start Options Properties

• Test Database Properties

• Test Report Output

Refer to Running a Debug Session for more information on using these properties.

Client Properties

Property Values Function

Application To Start Application path Specifies the external application to run.

This property is only available if Debug
Mode is set to Online System.

Command Line
Arguments

String literal Specifies the command line arguments to
run the specified application.

This property is only available if Debug
Mode is set to Online System.

Working Directory Directory path Specifies the working directory to run the
specified application.

This property is only available if Debug
Mode is set to Online System.
3826 5823-008 3–193

Developing Applications
Note: The Client Properties are available only when you debug an AB Suite Client
Framework application.

Misc Properties

Start Options Properties

Client Package Folder Path to Client
Application folder

Specifies the Client Technology folder
created for the AB Suite Client Framework
application.

This property is only available if Debug
Mode is set to Online System.

Note: If you enter an invalid value, in the
Client Package Folder field, an alert
message “Property value is not valid”
appears. When you click Details in the
alert message box the following message
appears:

“The name <Invalid Value Entered> could
not be resolved as a valid Client Package
Folder for <Segment Name>. Please enter
the full qualified name or use the element
picker dialog window for selecting a valid
item”.

Property Values Function

Debug Mode {Off, Online System, Report,
Method Call, External Application,
Messenger}

Specifies whether to debug this
configuration, and if so, the type of
debug session to run.

Value of
Glb.Machine

Host Specifies the type of host on which
an application is running.

If you specify As Per Host the host is
set to A for MCP or the host is be set
to N for Windows (NT).

If you specify P for Debugger the
host is set to P.

Property Values Function

Application To Start Application path Specifies the executable file to run.

This property is only available if Debug
Mode is set to External Application.

Note: This property is not available in
Start Options properties, when you debug
an AB Suite Client Framework application.

Property Values Function
3–194 3826 5823-008

Developing Applications
Segment To Debug Qualifier Specifies the segment to run if Debug Mode
is set to Online System.

This property is only available if Debug
Mode is set to Online System.

Note: This property is not available when
you debug an AB Suite Client Framework
application.

Command Line
Arguments

String literal Specifies the command line arguments to
run the specified application with.

This property is only available if Debug
Mode is set to External Application.

Note: This property is not available when
you debug an AB Suite Client Framework
application.

Deployment Folder Qualifier Specifies the Builder configuration settings
folder.

This property is not available if Debug Mode
is set to Off.

File Name Qualifier Specifies the file containing the data to be
sent to the Messenger when starting the
debug session.

This property is only available if Debug
Mode is set to “Messenger”.

Language Qualifier Specifies the defined language (one of a set
of defined languages in a multiple language
environment) to run.

This property is not available if Debug Mode
is set to Off.

Messenger To Debug Qualifier Specifies the Messenger to run if Debug
Mode is set to Messenger. If this property is
left blank you can submit XML messages to
any Messenger class.

This property is only available if Debug
Mode is set to “Messenger”.

Method To Debug Qualifier Specifies the public method to run.

This property is only available if Debug
Mode is set to Method Call.

Parameter Values Comma-delimited list
of parameters

Specifies the parameter values to pass to
the specified method.

This property is only available if Debug
Mode is set to Method Call.

Property Values Function
3826 5823-008 3–195

Developing Applications
Test Database Properties

Report To Debug Qualifier Specifies the report to run if Debug Mode is
set to Report.

This property is only available if Debug
Mode is set to Report.

Report Parameter String literal Specifies the parameter to pass to a report.

This property is only available if Debug
Mode is set to Report.

Working Directory Directory path Specifies the working directory to run the
specified application with.

This property is only available if Debug
Mode is set to External Application.

Note: This property is not available in
Start Options properties, when you debug
an AB Suite Client Framework application.

Client Language Mode Language Mode Specifies the type of client language to use.

Specify Locale if you want to simulate MCP
host behavior using SQL Database.

Specify MCP Slot for MCP host application.

Note: This property is only available if
Debug Mode is set to External Application
for MCP Configuration, and is not available
when you debug an AB Suite Client
Framework application.

Property Values Function

Alternate Name String literal Set a unique value for the Alternate Name segment
property, which have not been used in any other debug
configuration. This property value overrides the
segment alternate name property.

Database Name String literal Specifies the name of the database to run the debug
session against.

Refer to the Administration Tool Online Help for more
information on running against a database.

This property is not available if Debug Mode is set to
Off.

Database Server
Registration

String literal Specifies the database server registration of the server
hosting the database to run the debug session against.

Refer to the Administration Tool Online Help for more
information on running againts a database.

This property is not available if Debug Mode is set to
Off.

Property Values Function
3–196 3826 5823-008

Developing Applications
Enable Host
Database Access

Boolean Specifies whether to access the host database or not.

By default, the value is False.

This property is only available for MCP configuration.

Note: This property is not available when you debug
an AB Suite Client Framework application.

Enable User
Maintained Tables

Boolean Specifies whether to enable User Maintained Tables for
the debugger database or not, if the structure is
configured as User Maintained.

By default, the value is False.

This property is only available for Windows
configuration.

Host Name String literal Specifies MCP host details.

This property is only available for MCP Configuration.

Note: This property is not available when you debug
an AB Suite Client Framework application.

Password String literal Specifies MCP user code password.

This property is only available for MCP configuration.

Note: This property is not available when you debug
an AB Suite Client Framework application.

Port Number Numeral Specifies HDBA port number. By default, the value is
1871.

This property is only available for MCP configuration.

Note: This property is not available when you debug
an AB Suite Client Framework application.

Allow Recovery from
Failed Reorganization

{Yes, No} Specifies whether a backup of the database must occur
before the reorganization. By default, this property is
set to ‘Yes’. If this property is set to ‘Yes’ the
database is restored on failure of the database
reorganization.

Note: It is recommended to set this property to
‘Yes’ as a failure may lead to the non-usability of the
database. This property is not available if Debug
Mode is set to ‘Off’.

Reorganize Database {Yes,No} Specifies whether the database is reorganized when
starting the debug session.

If this property is set to No, and the model does not
match the schema of the physical database, logical
reorganization occurs.

This property is not available if Debug Mode is set to
Off.

Property Values Function
3826 5823-008 3–197

Developing Applications
Refer to Test Database Issues for more information on Debugger interaction with
databases.

Test Report Output

Running a Debug Session

To initiate a debug session for an AB Suite application, perform the following:

1. Select the desired configuration.

2. Select Start Debugging from the Debug menu or Start from the toolbar.

To initiate a debug session for an AB Suite Client Framework application, perform the
following:

1. Select the desired configuration.

2. Select Start Debugging from the Debug menu or Start from the toolbar.

Note: Ensure that you set the AB Suite model project as the Startup project
before starting the Debug session. To set the AB Suite model project as the
Startup project, you can right-click the AB Suite model project in the Solution
Explorer window, and then select Set as Startup Project.

Alternatively, you can right-click the AB Suite model project in the Solution Explorer
window, point to Debug, and then select Start New Instance.

If the Reorganize Database property of the configuration is set to Yes, a warning
message is displayed, allowing you to continue the debug session with or without
reorganizing the database as required. If the Reorganize Database property is set to No,

User Name String literal Specifies MCP user name.

This property is only available for MCP configuration.

Note: This property is not available when you debug
an AB Suite Client Framework application.

Property Values Function

Output Location (Output Window,
Use ROC)

Specifies the location of the report output.

By default, the value is the Output window.
However, users who have installed the Windows®
Runtime and the ROC system for Windows can also
set the output location as Use ROC.

The Use ROC option is not available for MCP
configurations, and the report is always sent to the
Output Window.

Property Values Function
3–198 3826 5823-008

Developing Applications
the debug session is started without reorganizing the database. Refer to Logical
Reorganization for more information on debug session behavior when the database is not
reorganized.

According to the Debug Mode property of the configuration:

• If Debug Mode is set to Online System, the initial user interface is invoked in the
language specified by the Language property. Refer to Multiple-Language
Environments for more information on Debugger language use.

The initial user interface is specified by the Class To Debug property of the
configuration. If it is set to a segment, it is the user interface of the ispec specified by
the Fireup property of that segment. If the Fireup property of the segment is not
specified, a message is displayed, allowing you to select the initial ispec user
interface.

• If Debug Mode is set to Report, the report specified in the Report To Debug
property is run with a parameter specified in the Report Parameter property. The
report is invoked in the language specified by the Language property.

• If Debug Mode is set to Method Call, the qualified public segment method specified
by the Method To Debug property is called, and passed the parameters specified
by the Parameter Values property of the configuration.

• If Debug Mode is set to External Application, the application specified by the
Application To Start property is invoked using the working directory specified by
the Working Directory property, with the arguments specified by the Command
Line Arguments property of the configuration.

• If Debug Mode is set to “Messenger” the system is started up for use through the
Messenger Client. XML messages can be opened and submitted to any Messenger
class through the Messenger Client interface. The Language property affects the
translated values of attributes within logic execution. The Messenger To Debug
property defines a Messenger class that is pre-loaded into the Messenger Class field
when the Messenger Client first comes up. The Messenger To Debug property
can be left blank. This allows you to debug any Messenger class

To run a debug session, perform the following:

Once started, a debug session can be controlled using the commands listed in the
following table, which are available from the Debug menu or toolbar.

Command Description

Break All Halts logic execution before interpreting the next logic statement.

Stop Debugging Terminates the debug session.

Continue Resumes logic execution.

Step Into Interprets the next logic statement, or enters a method call in the
statement, before stopping logic execution.

Step Over Interprets the next logic statement, including logic in any methods called by
that logic statement, before stopping logic execution.
3826 5823-008 3–199

Developing Applications
Debugger Windows

The following Microsoft Visual Studio Windows display information about the current
debug session:

Call Stack

The Call Stack window displays methods currently on Debugger's call stack.

Breakpoints

The Breakpoints window displays all defined breakpoints for the solution.

Autos

The Autos window displays all variables referenced in the current method logic, including
the executing object ('this'). It also displays the owning component (the segment) of the
executing object. This includes Glb, providing access to the Glb.Status and Glb.Error built-
in segment attributes.

To edit the value of a listed variable, type the required value directly in the Value field of
the variable.

Locals

The Locals window displays local variables and parameters of the current method,
including the executing object ('this').

To edit the value of a listed variable, type the required value directly in the Value field of
the variable.

This

The This window displays the executing object ('this'). It also displays the owning class
(‘owner’) of the executing object if there is one, and of the owning component (the
segment) of the executing object. Note in all these sections, ‘component’ is a keyword
like ‘this’ and ‘owner’

To edit the value of a listed variable, type the required value directly in the Value field of
the variable.

Step Out Interprets logic until the current method returns, before stopping logic
execution.

Run To Cursor Interprets logic until the logic statement on the selected line in the logic
editor is reached, before stopping logic execution.

Command Description
3–200 3826 5823-008

Developing Applications
Watch1, Watch2, Watch3, Watch4

The four Watch windows display user-specified variables. You can use the Watch
windows to monitor or manipulate your choice of variables.

For example,

• To add a variable to a Watch window, type its name directly in the Watch window. You
can also drag-and-drop or copy-and-paste a variable into the Watch window.

Note: When you drag-and-drop or copy-and-paste a variable, you might notice
that the fully qualified name of the variable appears instead of only the attribute
in the Watch window. The AB Suite Debugger cannot read the attribute from the
fully qualified variable. Therefore, you need to manually edit the variable name to
display only the attribute and its value.

For example,

– After a fully qualified variable is copied to Watch window, the value of variable is
not displayed as shown below.

– After editing the name of the variable to display only the attribute, the value is
displayed as shown below.

• To remove a variable from a Watch window, select the variable in the Watch window,
right-click, and select Delete Watch.

• To edit the value of a listed variable, type the required value directly in the Value field
of the variable.

Search Debugging User Interface Reference in the Microsoft Visual Studio Online Help
for more information on Debugger windows.

Breakpoints

Breakpoints halt logic execution at specified points, allowing observation and analysis of
logic execution and variable and parameter values.

The model can be edited when logic execution is stopped. Refer to Edit a Model for more
information.
3826 5823-008 3–201

Developing Applications
Debugger supports Function and File breakpoints. Function breakpoints halt logic
execution at a specified location within a specified method. File breakpoints halt logic at a
specified location within a file or logic editor window. Effectively, both these types of
breakpoints act the same since each method has its own editor.

Refer to Working with Breakpoints for more information on breakpoint use.

Working with Breakpoints

To create a breakpoint, perform the following:

1. Select New Breakpoint from the Debug menu or Breakpoints window toolbar
to display the New Breakpoint dialog box.

2. To create a Function breakpoint, in the Function field on the Function tab, enter the
name of the breakpoint in the following format:

<model name>.(<class name>.)*<method name>

To create a File breakpoint, in the File field on the File tab, enter the name of the
breakpoint in the following format:

<server>\<model name>.(<class name>.)*<method name>

Search New Breakpoint Dialog Box in the Microsoft Visual Studio Online Help for
more information on this dialog box.

Alternatively, to create a File breakpoint on the current line in the logic editor, click in
the left margin or right-click and select Insert Breakpoint.

To modify a breakpoint, perform the following:

1. Select the desired breakpoint in the Breakpoints window.

2. Select Properties from the Breakpoints window toolbar, or right-click and select
Properties.

To remove a breakpoint, perform the following:

1. Select the desired breakpoint in the Breakpoints window.

2. Select Delete from the Breakpoints window toolbar, or right-click and select
Delete.

Alternatively, click the desired breakpoint glyph in the logic editor or right-click and
select Remove Breakpoint.

To remove all breakpoints, select Clear All Breakpoints from the Debug menu or
Breakpoints window toolbar.

To disable or enable a breakpoint, perform the following:

Clear or select (as required) the check box corresponding to the desired breakpoint in the
Breakpoints window.

Alternatively, right-click in the logic editor and select Disable Breakpoint or Enable
Breakpoint (as required).
3–202 3826 5823-008

Developing Applications
To disable or enable all breakpoints, select Disable All Breakpoints or Enable All
Breakpoints (as required) from the Debug menu or Breakpoints window toolbar.

Saving breakpoints

Breakpoints are automatically stored and loaded on a per user basis, and are persistent
between Visual Studio sessions.

Restrictions

The following restrictions apply to the use of breakpoints:

• Address and Data breakpoints are not supported by Debugger.

• The Hit Count breakpoint property is not supported by Debugger.

• Place Function or File breakpoints at each reference to the required variable for
Reference Breakpoints.

• Condition breakpoints in Agile Business Suite are not supported.

Search Breakpoints in the Microsoft Visual Studio Online Help for more information on
the use of breakpoints, including a description of breakpoint glyphs.

Edit a Model

The model can be edited during a debug session, when logic execution is halted.

The debug session responds differently, depending on the nature of the change to the
model:

Logic Changes

Logic changes to the model are not saved upon resumption of logic execution, they must
be saved manually. Logic is validated before a method is called. If the logic changes are
not successfully validated, you can choose to correct the error (if the method is already on
the call stack or called from within another method being debugged), skip the method
call, or terminate the debug session.

User Interface Changes

For user interfaces that have already been displayed during the debug session, user
interface changes to the model are not applied immediately upon resumption of logic
execution, or even when the changed user interface is next displayed (recalled). User
interface changes are displayed only after the debug session is restarted.

For user interfaces that have not yet been displayed during the debug session, user
interface changes to the model are displayed during the debug session. However, adding
or removing a field leads to a mismatch between the user interface and the debug
session. Only display changes such as color and position is applied.
3826 5823-008 3–203

Developing Applications
Database Changes

Logical reorganization occurs if database changes to the model result in a model that
does not match the schema of the physical database.

Multiple-Language Environments

In a multiple-language environment, debug sessions can be run in one of the set of
defined languages. The Language property specifies the language in which to invoke the
debug session. However, Visual Studio continues to run in the language defined by the
Windows User Locale setting.

For all of the following examples, assuming that the Windows User Locale is set to
English, the Visual Studio debug interface runs in English:

• If the Debug Mode is set to Online System, and the Language property is set to
French, the application interface is invoked in French.

• If the Debug Mode is set to Report, and the Language property is set to Russian, the
report is invoked in Russian.

• If the Debug Mode is set to Method Call, and the Language property is set to
German, the method for the class is invoked in German.

• If the Debug Mode is set to External Application and the language property is set to
Italian, the external application is invoked in the language it is configured for, but
methods called on the classes are invoked in Italian.

• If the Debug Mode is set to “Messenger” and the language property is set to
“Spanish”, the application runs with the Language set to Spanish. This affects the
translated values of attributes in logic

For further details on the Debug Mode and Language properties, see Running a Debug
Session and Configuration Properties.

Switching between Applications

If the SwitchTo logic command is invoked during a debug session, the solution for the
target segment is launched in a new Visual Studio instance, and a new debug session is
initiated. Switching back uses the original Visual Studio instance.

Note: The registered value of the Debug Mode property of the target segment(its
value when the segment was most recently built) must be any value other than Off,
otherwise the new debug session isnot initiated. The language and database settings
at this build time isalso used by Debugger.

The target segment must have been built with a debug build. If the segments are in
different models, the user hasto create their own configuration file for Winforms and run
Winforms via External Application to be able to switch (this is automatically handled if the
segments are in the same model). The build of the second segment needs to be manual
and done with the correct deployment folder if the segments are in different deployment
folders. But this is automatic if they are in the same folder.
3–204 3826 5823-008

Developing Applications
Run Multiple Concurrent Debugging Sessions

Concurrent debugging implies that multiple users can concurrently debug the same AB
Suite application, running on a Windows Terminal Server machine.

To perform concurrent debugging, perform the following:

1. Connect to the Windows Terminal Server machine as User 1.

2. Open an AB Suite application.

3. Create a new debug configuration for User 1 in the model.

4. Set the following model properties:

• Debug Mode

• Class To Debug

• Deployment Folder

• Database Server Registration

• Database Name

5. Set the following deployment folder properties:

• Deployable

• Deploy Application Components

6. Set the following segment properties:

• Com Prog Id

• Alternate Name

• Database Schema Name

Notes:

• Ensure that you set unique values for the Com Prog Id and Alternate
Name segment properties, which have not been used in any other debug
configuration.

• If different data is to be entered in the same database, then a unique value
should be set for the Database Schema Name segment property, which
has not been used in any other debug configuration.

7. Start the debugging process.

8. Connect to the Windows Terminal Server machine as User 2 and perform step 2
through step 7.

This enables multiple users to concurrently debug the same AB Suite application.
3826 5823-008 3–205

Developing Applications
Testing Dynamic Attributes with Component Enabler

Component Enabler (CE) clients such as Presentation Client, ASP.NET, and VB.NET
support the Dynamic Presentation Attribute feature.

To view the Dynamic Presentation Attributes in Debugger, you can use a CE client with
Debugger via RATL. You can create a new configuration or use the configuration that you
used for deployment. If you have already deployed the system on the Windows® platform
and plan to run debugger on the same machine, then you need to provide different values
for COM ProgID, database schema name, and Alternative name in Segment level
property to avoid a compilation error.

Note: Developer and CE must be installed on the same workstation. Alternate Name
field in Configuration property dialog box must be blank or same as segment name.

To use Debugger to Test Dynamic Attributes with CE, perform the following:

1. Ensure that the Debug Mode configuration property is set to Off.

2. Configure the properties for the Bundle for any of the CE clients.

3. Generate the Bundle.

4. Setup the Virtual Directory, and other setting for the bundle.

Refer to the Agile Business Suite Component Enabler User Guide for more
information.

5. Open the Model configuration property dialog box of the model and set the following
configuration properties:

• Set the Debug Mode configuration property to External Application.

• Set the Application to Start configuration property value to RatlSocket.exe. For
example, C:\Program Files\Unisys\AB Suite 6.1\Bin\ratlsocket.exe.

• Set the Working Directory configuration property value to point to the Bin
directory. For example, C:\Program Files\Unisys\AB Suite 6.1\Bin.

• Set the Database name and Database Server Registration name configuration
properties.

6. Open the Deployment folder configuration property dialog box and set the Deployable
and Deploy Application Components (and Deploy reports, if required) configuration
properties to true.

7. Open the Segment configuration property dialog box and ensure that all the
properties are set in the Component Enabler User Interface section.

Refer to the Agile Business Suite Component Enabler User Guide for more
information on setting the properties for Component Enabler User Interface.

8. Create a View using Administration Tool and:

• Specify the View Name.

• Specify the System Name.

• Specify the Server Name as localhost.
3–206 3826 5823-008

Developing Applications
• Specify the Protocol (RATL over TCP/IP or MSMQ).

• Click RATL Login Settings and specify the required login details.

9. Stop the AB Suite 6.1 Protocol Adapter - RATL service(s) from the Services
management console (if running).

You can access the Services management console from Control Panel >
Administrative Tools > Services or you can type Services.msc in the Run
command on Start menu.

10. Start the Debugger.

Debugger starts the RATL application and a message box Click to exit ratlsocket6.1 is
displayed.

11. Start the CE client.

12. Select the required debug option to continue. For example, F5, F10, F11, and so on.

After the debug session is established, the Dynamic Presentation Attributes are
displayed in the Debugger.

13. After testing the application, to stop debugging either select Stop Debugging from
the Debug menu or click the Click to exit ratlsocket6.1.

Using a Test Database on a Host Machine

From Debugger, you can connect to a database deployed on a host machine. This allows
you to test a fully functioning application with a complete set of data. You can still use the
local test database for unit testing and audit and recovery purposes.

Preparing Your Application in Developer

Before you can connect to a test database on a host machine you must configure and
generate your system.

In order for Debugger to access the deployed system database there are several
configuration properties options you must set. Refer to the Agile Business Suite
Developer User Guide for more information on how to set configuration properties
options and generating systems.

Caution
This facility is for testing purposes only. Do not use it with your deployed
production databases. Applying untested code to a production database could
destroy the integrity of the database, risk loss of data, and risk database
corruption.
3826 5823-008 3–207

Developing Applications
Preparing to Connect to a Test Database on a Host Machine

Refer to the Agile Business Suite Runtime for Windows® Operating System
Administration Guide for your respective platform.

Test Database Issues

Refer to Test Database Properties for more information on configuration properties
related to the Debugger test database.

Test Database Migration

Test databases used should be migrated before Debugger is run against them. Refer to
the EAE to Agile Business Suite Migration Guide for more information on Test
Database Migration.

Logical Reorganization

Logical reorganization of the database occurs during a debug session that refers to a
model that does not match the schema of the physical database.

During logical reorganization:

• Database-only members are ignored during the debug session.

• Model-only members are accessible during the debug session, but they are not read
from or saved to the database.

• Array members that do not match are accessible during the debug session, but they
are not read from or saved to the database. They are only session-persistent and are
created with a default value, corresponding to their Initial Value property.

• Non-primitive members (that is, composite members that are stored as a single
column in the database) that do not match are not read from or saved to the
database. They are only session-persistent and are created with a default value,
corresponding to their Initial Value property.

• Members with a primitive property that does not match the database are accessible
during the debug session, but they are not read from or saved to the database. They
are only session-persistent and are created with a default value, corresponding to
their Initial Value property.

• Members with a length property and/or decimals property that do not match the
database are accessible during the debug session, and are read from and written to
the database, but they are truncated to shorter of the model-defined and database
schema-defined lengths and/or decimals.

If the model-defined length is shorter than the database schema-defined length or
decimals, the value written to the database is padded with spaces or zeros, as
appropriate.
3–208 3826 5823-008

Developing Applications
Database Security

To run debug sessions against a database, it is necessary to grant access to the Windows®
user running the debug session (the Debugger user).

Using the Administration Tool, the Debugger user should be made a member of the
Secure Users role, as described in the Administration Tool Online Help.

Note: Administrators of the machine are automatically given access by the
installation process.

Restrictions

The execution of application logic by Debugger is subject to the following restrictions:

Determine Actual

The SQL script variant of the Determine Actual logic command is ignored. Debugger
disregards any Determine Actual logic statements that specify SQL scripts that it
encounters, and continues execution at the logic statement following the End or EndExit
logic statement terminating the Determine Actual loop. Other Determine Actual variants
(the database and extract file variants) are not ignored and are executed normally.

SQL Scripts

SQL script methods are ignored. Debugger disregards any invocations of SQL script
methods it encounters, and continues execution at the logic statement following the
method invocation.

Performance and Resource Usage

The first time a Winform is shown in the Debugger it performs JIT (Just-In-Time)
compilation of the components being debugged (and other required components). Also,
Debugger interprets the model such that it can pick up changes and validation is done
during a debug session. These actions dictate the performance. Consequently, the
performance of the segment during a debug session is not an indicator of the
performance of the deployed application. Runtime performance should generally be much
better, as it is executing compiled native code.

Memory requirements during a debug session vary, as memory is dynamically allocated
as objects are accessed. Allocated memory is not released until the segment caller no
longer requires the owning object. Therefore although initial memory requirements are
relatively small, the memory requirements may grow to become quite significant,
especially for debug sessions accessing many parts of a large segment.
3826 5823-008 3–209

Developing Applications
Debugger Administration

When a debug build occurs, wrapper COM DLLs are optionally built for the Segments
and/or Reports being built. The choice of whether to build these are determined by the
setting of Deploy Application Components and Deploy Reports in the Build Target Filter
categories of the Folder Configuration Properties, being True or False.

When built, these COM DLLs are registered in the Windows registry with the same
ProgId as for the same objects in the Generated Windows® Runtime if the same
configuration is used to build them. To unregister and remove them, the Debugger
Administration utility can be used.

The Debugger Administration utility is accessed from the Debugger Administration sub
menu item of the Development Environment program menu.

When the Debugger Administration dialog box displays, it contains a list of all the
<<Segment>> and <<Report>> Class interfaces which are registered with the
Debugger. The Name column of the list contains the name of the <<Segment>> Class in
the Model, or the name of the <<Report>> Class qualified from its owning
<<Segment>> Class in the Model. The COM ProgId column of the list contains the
ProgId which was used to register the Class' interface.

To unregister any of the interfaces in the list, select them and click Remove. You can
refresh the list at any time by clicking Refresh.

Debugging through EBCDIC Tool

A Debugger Extended Binary Coded Decimal Interchange Code (EBCDIC) tool allows you
to interact with EBCDIC data. You can access the Debugger EBCDIC tool menu by
selecting the EBCDIC tool under Agile Business Suite Developer. The options of the
Debugger EBCDIC tool menu are also available on the Debugger EBCDIC Toolbar.

To open the EBCDIC debugger tool, perform the following:

1. Point to the bottom-left corner of the screen to enable the Start icon, click Start >
Apps > Agile Business Suite 6.1 > Development Environment > EBCDIC
Tool.

2. Click EBCDIC Tool.

The Debugger EBCDIC Tool window appears

Alternatively, you can perform the following:

1. Point to the bottom-left corner of the screen to enable the Start icon, click Start,
type and select EBCDIC Tool on the desktop.

Note: If the EBCDIC Tool is not present on the desktop, pin the application to the
desktop.

2. Click EBCDIC Tool.

The Debugger EBCDIC Tool window appears.
3–210 3826 5823-008

Developing Applications
Use the Debugger EBCDIC Tool

The Debugger EBCDIC tool enables you to

• Access databases in EBCDIC format

• Convert text files

• Change Languages

• Access various windows by using the Windows menu option

Access Databases in EBCDIC Format

Data sets are encoded in EBCDIC format for all AB Suite applications built on the MCP
platform. The EBCDIC tool enables you to

• View EBCDIC data sets in ASCII format.

• Add data sets directly to a database.

• Update/modify data in a database.

• Delete data sets directly from a database.

• Query data sets present in a database.

Viewing EBCDIC Data Sets in ASCII Format

To view data sets from the Debugger EBCDIC tool menu, perform the following:

1. Open the Debugger EDCDIC Tool.

The Debugger EBCDIC tool menu appears.

2. Select Open Table on the Database menu option of the EBCDIC tool menu.

The Open Table dialog box appears.

3. Select a server from the Server Name list of the Open Table dialog box.

Note: By default, the server is local.

4. Select a database from the Database list of the Open Table dialog box.

5. Select a table from the Table list of the Open Table dialog box.

6. Click Open.

The selected table appears in ASCII format.

Adding Data

To add data sets directly to a database, perform the following:

1. Open the Debugger EDCDIC Tool.

The Debugger EBCDIC tool menu appears.

2. Select Open Table on the Database menu option of the EBCDIC tool menu.

The Open Table dialog box appears.
3826 5823-008 3–211

Developing Applications
3. Select a server from the Server Name list of the Open Table dialog box.

Note: By default, the server is local.

4. Select a database from the Database list of the Open Table dialog box.

5. Select a table from the Table list of the Open Table dialog box.

6. Click Open.

The selected table appears.

7. Select Add on the Database menu option of the EBCDIC tool menu, or click on
the Debugger EBCDIC Toolbar.

A new row is added to the open table.

8. Enter data directly into the table.

9. Select Save on the Database menu option of the EBCDIC tool menu or click on
the Debugger EBCDIC Toolbar.

The newly added data is saved in the database.

Updating/Modifying Data

To update/modify data sets in the database, perform the following:

1. Open the Debugger EDCDIC Tool.

The Debugger EBCDIC tool menu appears.

2. Select Open Table on the Database menu option of the EBCDIC tool menu.

The Open Table dialog box appears.

3. Select a server from the Server Name list of the Open Table dialog box.

Note: By default, the server is local.

4. Select a database from the Database list of the Open Table dialog box.

5. Select a table from the Table list of the Open Table dialog box.

6. Click Open.

The selected table appears.

7. Select the row that you wish to update/modify in the open table.

8. Update/modify the necessary data.

9. Select Save on the Database menu option of the EBCDIC tool menu or click on
the Debugger EBCDIC Toolbar.

The updated data is saved in the database.
3–212 3826 5823-008

Developing Applications
Deleting Data

To delete data sets directly from a database, perform the following:

1. Open the Debugger EDCDIC Tool.

The Debugger EBCDIC tool menu appears.

2. Select Open Table on the Database menu option of the EBCDIC tool menu.

The Open Table dialog box appears.

3. Select a server from the Server Name list of the Open Table dialog box.

Note: By default, the server is local.

4. Select a database from the Database list of the Open Table dialog box.

5. Select a table from the Table list of the Open Table dialog box.

6. Click Open.

The selected table appears.

7. Select one or more rows that you wish to delete in the open table.

8. Select Delete on the Database menu option of the EBCDIC tool menu, or click
on the Debugger EBCDIC Toolbar.

The selected rows are deleted.

9. Select Save on the Database menu option of the EBCDIC tool menu, or click
on the Debugger EBCDIC Toolbar.

The changes are saved in the database.

Querying the Database

To query data sets present in a database, perform the following:

1. Open the Debugger EDCDIC Tool.

The Debugger EBCDIC tool menu appears.

2. Select New Query on the Database menu option of the EBCDIC tool menu.

The Connect to Database dialog box appears.

3. Select a server from the Server Name list of the Connect to Database dialog
box.

4. Select a database from the Database list of the Connect to Database dialog
box.

5. Click Connect.

A database connection is established.

6. Enter the query in the Query window.

7. Select Execute SQL on the Database menu option of the EBCDIC tool menu, or
click on the Debugger EBCDIC Toolbar.

The result set of the query appears on the Query window.
3826 5823-008 3–213

Developing Applications
Converting Data Files

The EBCDIC tool enables you to

• Create a new text file.

• Update/Modify an existing text file.

• Convert text files from EBCDIC to ASCII/Unicode and vice-versa.

Note: If you create a text file by using the EBCDIC tool, by default the file is saved
in the EBCDIC format. To view the contents of the file in ASCII, you must open the
relevant file using the EBCDIC tool.

Creating a New Text File

To create a new text file, perform the following:

1. Open the Debugger EDCDIC Tool.

The Debugger EBCDIC tool menu appears.

2. Select New File on the Extract File menu option of the EBCDIC tool menu.

A new window appears.

3. Enter text in the editor.

4. Select Save as on the Extract File menu option of the EBCDIC tool menu, or click
 on the Debugger EBCDIC Toolbar.

5. Enter a file name in the File Name list of the Save File as dialog box.

The new file is saved in the default location.

Note: To save a file in a different location, browse to the desired location and save
the file.

Updating/Modifying an Existing Text File

To update/modify an existing text file, perform the following:

1. Open the Debugger EBCDIC tool.

The Debugger EBCDIC tool menu appears.

2. Select Open on the Extract File menu option of the EBCDIC tool menu.

3. The Open EBCDIC Extract File dialog box appears.

4. Browse to the location and select the file.

5. Click Open.

The content of the selected file appears on the editor.

6. Modify the content and select Save on the Extract File menu option of theEBCDIC
tool menu, or click on the Debugger EBCDIC Toolbar.

The updated content is saved.
3–214 3826 5823-008

Developing Applications
Converting Text Files

Text files can be converted from one format to another by using the EBCDIC Debugger
tool or the Command line interface.

Note: The following is the list of input and the output file formats:

• EBCDIC V24-K

• UNICODE

• ASCII

• EBCDIC V24+K (Japanese)

Using the EBCDIC Debugger Tool

To convert files by using the EBCDIC Debugger Tool, perform the following:

1. Open the Debugger EBCDIC Tool.

The Debugger EBCDIC Tool menu appears.

2. Select Convert File on the Extract File menu option of the EBCDIC tool menu.

The Convert Extract File dialog box appears.

3. Click Browse to select the Input Extract File.

4. Select the Input file format.

5. Click Browse to specify a location and file name where the Output Extract file is
available.

6. Select the Output file format.

7. Click Convert to convert the file.

The converted file is saved in the Output Extract file location

8. Click Close.

The converted text file is saved.

Using the Command Line Interface

To convert files by using the Command line Interface, perform the following:

1. Point to the bottom-left corner of the screen to enable the Start icon, click Start, and
then click Run.

2. Type cmd in the Run dialog box and press Enter to open a Command Prompt.

3. In the command prompt, change the working directory to the folder where the text
files are present.

4. Run the following command to convert the files:
EBCDICTool.exe /c <InputFile> <InputCharSet> <OutputFile> <OutputCharSet>
3826 5823-008 3–215

Developing Applications
Where:

• InputCharSet and OutputCharSet can be in any one of the following formats:

– EBCDIC V24-K

– UNICODE

– ASCII

– EBCDIC V24+K(Japanese)

• InputFile is the file to be converted.

• OutputFile is the converted file.

The converted text file is saved.

Setting a Language

The EBCDIC tool enables the user to set a language by using the Options menu option of
the EBCDIC tool menu. The two available languages are EBCDIC (V24-K) and Japanese
(V24+K).

To change to a specific language, perform the following:

1. Open the Debugger EBCDIC Tool.

The Debugger EBCDIC Tool menu appears.

2. Select Settings on the Options menu option of the EBCDIC Tool menu.

The Settings dialog box appears.

3. Select a language from the displayed Character Set Mode.

Note: By default, the language is V24-K (EBCDIC).

4. Click OK.

The new language is set.

Accessing the Windows Menu Option

The windows menu option enables you to navigate to various open windows. It also
enables you to close all the windows instantly. The windows menu option allows you to

• Close all the windows.

• Activate and close the opened windows.

Closing all Windows

To close all windows, perform the following:

1. Select Close All Windows on the Window menu option of the EBCDIC Tool
menu.

All open windows are closed.

Note: The application does not exit and only the opened windows are closed.
3–216 3826 5823-008

Developing Applications
Activating and Closing the Opened Windows

To activate and close the opened windows, perform the following:

1. On the Window menu option of the EBCDIC Tool menu, select Windows….

The Windows dialog box appears.

2. To open a particular window, select a window from the Windows dialog box and
click Activate.

3. To close a window, select a window from the Windows dialog box and click Close
Window(s).

4. To close the Windows dialog box, click OK.

EBCDIC Tool User Interface

The EBCDIC tool comprises the following,

• The Debugger EBCDIC Tool Menu.

• The Debugger EBCDIC Toolbar.

Debugger EBCDIC Tool Menu

The EBCDIC Tool menu is available on the Debugger EBCDIC Tool menu bar. The options
available on the EBCDIC Tool menu enable you to access the various functionalities of the
Debugger EBCDIC tool. The EBCDIC menu options are also available on the Debugger
EBCDIC Toolbar. The various menu options are explained in the following sections.

EBCDIC Toolbar

The toolbar provides quick access to the various EBCDIC tool functionalities. The
following table describes the toolbar options:

Database Toolbar

The following table describes the toolbar options available for the database menu.

Option Icon Description

Execute SQL Executes the SQL query.

Add Adds a new row in the selected table.

Delete Deletes the selected row.

Save Saves data entered in a database.

Move next Moves cursor to the next record.

Move previous Moves cursor to the previous record.

Move last Moves cursor to the last record.

Move first Moves cursor to the first record.
3826 5823-008 3–217

Developing Applications
Extract File Toolbar

The following table describes the toolbar options available for the extract file menu.

Building Applications
This section focuses on building AB Suite applications, AB Suite Client Framework
applications, and AB Suite XML Framework applications.

Building is the process of producing the database definition language, the program source
code and other files necessary to deploy your system from the business model that you
have developed. This process is a one button operation that initiates a number of steps
that Builder automatically completes without any further user intervention.

Builder is invoked from a Developer workstation and executes on that workstation. Note
that the ‘Developer workstation’ could be an instance of Developer installed on a single-
CPU or multi-CPU server. It is also possible that the platform hosting Developer could be
the server upon which the application is deployed (Applicable only to Windows runtime).

Builder Overview

Builder in Agile Business Suite Developer builds and deploys applications based on the
structure and contents of your Developer model, and creates or updates database
schemas.

Note: You must build the AB Suite Client Framework applications after generating
the Client Framework projects for a specific client technology. Refer to Generating
Client Framework Projectsfor more information on generating the Client Framework
projects.

There are four phases to building an application:

• Configuration – Where a user creates a set of properties or options associated with
the application model which defines the deployment characteristics of the runtime
application. These properties are directly analogous to the Generate Set capability
maintained in the System View of previous Enterprise Application Developer
releases.

Option Icon Description

Save File Saves the changes made to an existing file.

Save As Saves the newly created file in the specified
location.

Add Column Definitions Adds column definitions to a text file.
3–218 3826 5823-008

Developing Applications
• Generation (also Building) – The process of constructing (generating) the necessary
source files from the structure and contents of the application model and then
compiling and linking those files to create a set of executable components. This also
includes the creation of a new or updated database schema in an appropriate format
for deployment.

• Deployment – The process of configuring and installing the generated executable
components onto a target server environment. This also includes the creation or
reorganization / restructuring / migration of the application database.

• Access – When an AB Suite application is built, you can access an application through
the Windows Forms Container on the host machine (for Windows operation), host
terminal screens (MCP), Component Enabler interface (Windows, MCP). When an AB
Suite Client Framework application is built, you can access an application through the
WPF Client Container on the host machine, if the Client Technology property of the
Technology folder is set to WPF. When an AB Suite XML Framework application is
built, you can access it through MessengerClient.exe and submit individual XML
messages to the application.

Configuration

Before building and deploying your application for the first time you need to configure
Builder with the details of what to build and where to deploy it. You do this by placing the
model elements you want to deploy in a deployable Element. You then specify
configuration properties for the folder and the segment elements.

Note: For a Windows platform, you need to first set up the Runtime database.

Configure a Runtime Database Server for Windows

Before you attempt to build your application, you need to set up the database server that
it uses.

Runtime for the Windows® operating system includes an Administration Tool, which
provides an integrated interface to help you manage and control all the components that
your application uses. You can use the Administration Tool to create a new database. This
creates a basic database on the server. Other Runtime platforms which are available in
Agile Business Suite use the proprietary tools for each platform. Refer to the Agile
Business Suite Installation and Configuration Guide for each particular platform.

It is recommended, however, that you create your own database using the tools that
come with your database software. This enables you to fully control the preparation,
deployment, and configuration of the database. You must then use the Administration
Tool to prepare the database you have created. Refer to the Agile Business Suite
Runtime for Windows® Operating System Administration Guide for more information
on how to do this.

To fully configure a system for deployment, the target host name, database name and the
database server registration alias names must be known.
3826 5823-008 3–219

Developing Applications
Creating a Set of Configuration Properties

You can create more than one set of configuration properties for your model. To create a
new set of configuration properties, perform the following:

1. On the model's Property Pages dialog, click the Configuration Manager... .

2. From the Active Solution Configuration drop-down list, select <New...>.

3. Enter a Solution Configuration Name. Ensure that the Create new project
configurations check box is selected.

4. From the Platform drop-down list select a platform for the deployment, or add a
new platform to use. You can also remove an existing platform by selecting
<Edit…>.

Note: Having too many multiple configurations impacts the performance of Visual
Studio especially in a multi user environment. You should delete unwanted
configurations from the project at regular intervals. In a multi user environment, only
one user should delete all the unwanted configurations across all the projects. After
that, other users should delete their Visual Studio project folders only. After deleting
the unwanted configurations, all users should copy the project folder to their
respective locations.

To delete multiple configurations, perform the following:

1. Select Configuration Manager from the Solution Configurations drop-down
list on the standard toolbar.

The Configuration Manager window opens.

2. Select Edit from the Active solutions configuration drop-down list.

The Edit Solutions Configuration window opens.

3. Select the unwanted configurations from the Name list and click Remove.

You can delete only one configuration at a time.

4. Click Close to close the Edit Solutions Configuration window.

5. Select Edit from the Configuration drop-down list in the Project contexts list.

The Edit Project Configurations window opens.

6. Select the unwanted configurations from the Name list and click Remove.

You can delete only one configuration at a time.

7. Click Close to close the Edit Project Configurations window.

8. Click Close to close the Configuration Manager window.

9. Save the project file and distribute the project folder to other users.
3–220 3826 5823-008

Developing Applications
Creating and Configuring a Deployment Folder

To create and configure a deployment folder for an AB Suite model, perform the
following:

1. Add a folder to the model that contains the segment you want to deploy.

2. Drag the segment you want to deploy into this folder.

3. Right-click the folder and select Properties from the context menu.

The Property Pages dialog box appears.

4. Set the Deployable property to True. Thisenables all the relevant properties for
editing.

5. Specify the deployment properties for the folder.

You can either create nested deployable elements so that parts of your application can be
deployed separately for an AB Suite application. For example, you may need to deploy
some reports separately from the main application. In Windows® runtime each deployable
folder is built as a separate installation package. It is important that each deployable
element has a unique package name within a project, particularly if you have multiple
segments within a project.

To create and configure a deployment folder for an AB Suite Client Framework model,
perform the following:

1. Add a folder to the model that contains the segment you want to deploy.

2. Drag the segment you want to deploy into this folder.

3. Right-click the folder and select Properties from the context menu.

The Property Pages dialog appears.

4. Set the Deployable property to True.

5. Set the Deploy Application Components property to True.

6. Set the Deploy Database property to True.

7. Set the Deploy SQL Views property to True.

8. Enter the Package Name of the MSI file in which you want to package the
deployable elements.

By default, the value is the name of the folder.

9. Enter the Deployment Host name.

10. Browse to and select the Package Installation Directory where the
deployableunit should be installed on the Runtime server.

11. Browse to and select the Package Intermediate Directory where the installer
files should be transferred before the installation process starts.
3826 5823-008 3–221

Developing Applications
Configuring the Segment

There are additional configuration properties that need to be set on the segment.

To configure a segment for an AB Suite application, perform the following:

1. Right-click the segment you want to deploy. It should already be in the configured
deployable Element.

2. Select Properties from the context menu.

The <Segment Name> Property Pages dialog box appears.

3. For Windows® platform, configure Target Database and Database Server
Registration with the names used when the Runtime database was created.

To configure a segment for an AB Suite Client Framework application, perform the
following:

1. Right-click the segment that you want to deploy. It should already be in the
configured deployable Element.

2. Select Properties from the context menu.

The <Segment Name> Property Pages dialog box appears.

3. Configure the Database Schema Name, Database Server Registration, and
Database Name with the names used when the runtime database was created.

There are additional segment properties that can be changed at this point. Review the
settings to ensure they are correct.

Generation

The overall sequence of events to generate the completed application model is as
follows:

• The generation process is initiated from Developer when you select the Build
command or the Rebuild command. Refer to Build Options for more information on
Build Options.

• Builder first checks for any model structure validation error. If there are no errors,
build proceeds to the next logic validation phase. In logic validation phase, Builder
ensures that all the methods are validated. If any method is not validated, Builder
performs the validation now. If the logic contains any errors, the generate process is
cancelled. If model structure validation errors exists;

– in any system component such as Ispecs or events, generation process is
aborted.

– in reports, builder excludes those reports and proceeds to the next logic
validation process.

• Builder determines what files/code needs to be generated by reference to the
previous deployment (if any) of the application using the selected configuration to the
targeted server If change analysis detects that the element has changed since it was
last built, Builder generates the source files for the element.
3–222 3826 5823-008

Developing Applications
In Windows® platform, builder performs the following additional steps during generation:

• When all the elements have been validated and all the source files have been
generated, the compilation phase begins. The generated C# source code files are
input to the compiler to be compiled and linked to produce the deployable executable
components. Compilation creates dynamic link libraries (DLLs), executable files, a
configuration XML file for AB Suite models, a configuration RTXML file for AB Suite
Client Framework models, and other files.

• A deployment package is constructed containing all of the deployable elements. This
file is placed in a temporary location, specified in the Package Intermediate Directory
configuration property. If this property is empty, by default, the Builder Output
directory is used.

• The deployment service is remotely invoked and retrieves the deployment package
from the package intermediate directory and deploys the application, making any
necessary database changes.

Notes:

• When the user selects the Rebuild option instead of the Build option, Builder
performs a complete rebuild of the selected model--no change analysis is
performed. Refer to Build Options for more information.

• If you are not able to build an AB Suite application, check whether the smbca.exe
process is running in the task manager. You should stop the smbca.exe process
manually to continue with the build process.

Reports may be generated and deployed separately to the Segment generation and
deployment or in conjunction with it.

No matter whether reports are generated and deployed separately or with the segment,
you may choose to generate and deploy:

• A single report

• A group of reports

• All reports

Each report is generated and deployed as a separate component. However, if multiple
reports are being generated and deployed at the same time they are batched up and
deployed in a group.

The following table mentions the Build details for various platforms, which is applicable
for an AB Suite application and AB Suite Client Framework application:

Field Description

Start Deployment With Set this field to Generate from the drop-down list. The build starts
from the build phase specified.

Note: This is applicable for Windows® platforms.
3826 5823-008 3–223

Developing Applications
Stop Deployment After Set this field to Install from the drop-down list. The build ends after
the build phase specified.

Note: This is applicable for Windows® platforms.

Retain Existing
Database

Unchecking causes a new database to be created.

Note: This is applicable for Windows® and MCP platforms.

Host Name of the deployment server.

Note: This is applicable for Windows® and MCP platforms.

User Name Name of the user.

Note: This is applicable for Windows® platforms.

Domain Name By default, the domain name is set to dot (.).

Note: This is applicable for Windows® platforms.

Password The password set for the user name or user code.

Note: This is applicable for Windows® and MCP platforms.

MultiThreaded
Compilation

Checking this option enables the build process in large applications to
identify the compilation streams that can be executed in parallel to
speed up the overall build time on multi-CPU build machines. By
default, this option is enabled and can be disabled in cases where an
application must be compiled serially. In most small test
applications, only a single compilation stream may be available. In
these cases, the multithread compilation option does not effect on
compilation times.

Notes:

• This is applicable for Windows® platforms.

• Multi-thread builds might result in a build operation failure
with structured exception errors. This occurs in a few models
for particular environment. If you experience such structured
exception errors during multi-thread builds, you can work
around the problem by running the build with a single-thread.
For this, go to Visual Studio and set Tools > Options >
System Modeler > Builder > Number of Build Threads
to 1.

Field Description
3–224 3826 5823-008

Developing Applications
Check for
Inconsistencies
between Online and
Reports

You can select this option that allows you to check for inconsistencies
of any methods, classes, attributes defined in a segment, which are
used by a report. You can select this option only if you want to
introduce this additional verification.

If the elements defined in a segment are used by a report and these
elements have been modified after the last online system build, a
warning message appears in the build log. The warning message
warns you that the elements in the segment that are referenced by
the report have been modified, so building the report might fail or may
result in report runtime errors.

If any inconsistencies are detected then the build stops after
completing this verification. You can deselect this option, if you want
to continue with the build despite these warnings then you can
submit this build again. Alternatively, you can build and deploy the
online system toresolve these inconsistencies.

Note: This is applicable for Windows® platforms.

Folder is This is the deployable Element of the model.

Note: This is applicable for the MCP platform only.

User Code Name of the user code. This is the same as the User Name.

Note: This is applicable for the MCP platform only.

Access Code The access code set for the target host installation.

Note: This is applicable for the MCP platform only.

Access Password The password set for the Access Code.

Note: This is applicable for the MCP platform only.

Charge Code The charge code for the systems user code.

Note: This is applicable for the MCP platform only.

Use host Details for FTP Checking the box takes the default User Code name and password as
mentioned in the User Code and password fields.

Note: This is applicable for the MCP platform only.

FTP User Code Name of the User code. This is the same as the user name.

Note: This is applicable for the MCP platform only.

FTP Password The password set for the FTP User Code.

Note: This is applicable for the MCP platform only.

FTP Charge Code The charge code for the FTP user code.

Note: This is applicable for the MCP platform only.

Delay Compile and
Deploy

Checking this box allows you to set the date and time when you want
the system to generate.

Note: This is applicable for the MCP platform only.

Field Description
3826 5823-008 3–225

Developing Applications
Build Options

Builder provides four build options, namely, Build, Rebuild, Clean, and Preview. The
following table describes when to use each of these build options and what happens
when they are used.

Deploy Date The date on which you want the generate to commence.

Note: This is applicable for the MCP platform only.

Deploy Time The time at which you want the generate to commence.

Note: This is applicable for the MCP platform only.

Build Options When to Use What Happens

Build Used when you only want to
generate the changed
components.

Change analysis works out which of the
components configured to be built need to
be rebuilt due to changes to the model.
Files associated with these components
are generated in the Builder Cache.

Rebuild Used when you want
everything to be regenerated.

All components configured to be built are
rebuilt. Files associated with these
components are generated in the Builder
Cache.

Clean Used when you want
everything to be removed
before a subsequent Build.

Note: Clean option can be
used only on Model Nodes.

All files associated with the components
configured to be built are removed from
the Builder Cache, Builder output, and
change analysis tables are cleaned. .
Products of a build that may be in use, for
example installed system, installed reports,
Component Enabler files, Winform dlls are
not removed with a clean. These files do
not exist in the builder cache.

If the selected model contains multiple
segments with multiple top level folders,
Builder cache, Builder output, and change
analysis table for all the segments and
folders are removed irrespective of the
deployable option.

Field Description
3–226 3826 5823-008

Developing Applications
Notes:

• The Build/Rebuild/Preview <Folder> menu options are enabled only when
Deployable = True. These items are not visible when Deployable = False. In
addition you must ensure that the outer folder containing the segment is
deployable and Deploy Application Components is enabled.

• The Builder Cache Directory is used to store all files generated by a Build or
Rebuild. It retains files generated by previous Builds or Rebuilds for use in
subsequent Builds. In a multi-user environment it needs to be shared between
the users. When the Build starts, the files that do not exist in Builder Output
directory are copied from the Builder Cache folder. For efficiency purposes, it is
recommended to install RoboCopy.

• The Builder Output directory is the location where files are generated to before
they are compressed and moved to the Builder Cache Directory.

• While building the ABSuite application in Windows runtime, you must enable 8.3
name creation on the drive for which the Builder Output and Builder Cache are
configured.
To enable 8.3 name creation, perform the following:

1. Open the Registry Editor.

2. Browse to the following location:
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\FileSystem.

3. Right-click NtfsDisable8dot3NameCreation and select Modify....
The Edit DWORD Value dialog box appears.

4. In the Value data field, enter 0.

5. Click OK to close the dialog box.

Preview Used to view details of
elements that were modified
since the last build along with
the percentage of the build
impact. A Preview is also used
to determine if database
reorganization is required.

Displays a list of model elements that are
modified and require regeneration since
the last time the application was
generated. When built using Visual Studio,
it also displays the percentage of the build
impact for a full or partial build of the
selected deployable folder. The output
detail of this option helps you to analyze
the impact of the current development on
your deployed application.

Note: For MCP and CLR Configurations,
this option is available as the Preview
option via the Build menu.

Build Options When to Use What Happens
3826 5823-008 3–227

Developing Applications
Following are the Build options for AB Suite applications and AB Suite Client Framework
applications:

• The Build options for AB Suite applications can be categorized into Folder Only and
normal Build options (non-Folder Only Build options). These are described as follows:

During a Folder Only Build the target components (defined by the folder configuration
properties) associated with the elements contained in the folder are built.

A normal Build (non-Folder Only Build) can be viewed as a collection of Folder Only
Builds, that is, a Folder Only Build of the selected folder and a Folder Only Build of all
deployable folders contained within that folder. When the deployable targets of the
outer folder and the subfolder are the same, then the element contained in the
subfolder is built twice, because the elements that are members of subfolders are
also members of the outer folders.

For example, an outer folder has the Deploy Reports property set to true and its
subfolder also has the Deploy Reports property set to true. When a build of the outer
folder is initiated, it results in building the report twice: once in relation to the outer
folder and again in relation to the subfolder.

The following example explains the difference between a Folder Only and a normal
Build in Windows for an AB Suite model.

OuterFolder contains Segment1, and Segment1 contains an InnerFolder. The
InnerFolder contains Ispec1, Ispec2, and Ispec3.

OuterFolder is configured to deploy general application components, database
components, and Windows Forms components, but not Component Enabler
components. InnerFolder is configured to deploy Component Enabler components.
3–228 3826 5823-008

Developing Applications
If you select OuterFolder and select Build or Rebuild from the context menu, the
deployable outputs for both OuterFolder and InnerFolder are deployed as follows:

– General application components for Segment1, Ispec1, Ispec2, and Ispec3.

– Database components for Segment1, Ispec1, Ispec2, and Ispec3.

– Windows Forms components for Segment1, Ispec1, Ispec2, and Ispec3.

– Component Enabler components for Ispec1, Ispec2, and Ispec3.

If you select OuterFolder and select Folder Only, then select Build or Rebuild, the
deployable outputs for OuterFolder are deployed, but not the deployable outputs
(Component Enabler components) for InnerFolder, as follows:

– General application components for Segment, Ispec1, Ispec2, and Ispec3.

– Database components for Segment, Ispec1, Ispec2, and Ispec3.

– Windows Forms components for Segment, Ispec1, Ispec2, and Ispec3.

• The Build options for AB Suite Client Framework applications can be categorized into
Generate Access Layer and normal Build options. Refer to Generating Client
Framework Projects for more information on generating the Technology folder.

A normal build is a collection of Technology folders build and deployable folders build.

The following example explains the difference between a Technology folder and a
normal build in Windows® Runtime.

DeploymentFolder contains Segment1, and Segment1 contains a
WPFTechnologyFolder. WPFTechnologyFolder contains Ispec1 and Class1, and the
Ispec1 contains an IGraphicalPresentation node.

DeploymentFolder is configured to deploy general application components, database
components, and WPF Client components. WPFTechnologyFolder is configured to
generate Client Framework projects for user interface development.

If you select DeploymentFolder and select Build or Rebuild from the context menu,
the deployable outputs for both DeploymentFolder and WPFTechnologyFolder are
deployed as follows:

– General application components for Segment1

– Database components for Segment1, Ispec1, and Class1

Any changes identified by Change Analysis are also generated for the Technology folder.
3826 5823-008 3–229

Developing Applications
Deployment

The deployment process is responsible for ensuring that the generated application is
deployed with minimum disruption to your operation and at the time specified by you.
The deployment process is normally initiated by the Configuration Builder after the
generation and construction of the deployment package. You may also independently
invoke the deployment service to re-deploy the generated application, for instance
following a server failure, a server re-configuration, or to deploy the generated application
to a different server.

Input to the deployment process comprises of the following:

• Generated and compiled programs/components.

• Database schema.

• Deployment instructions and configuration data.

• Information about the already deployed application if it has been previously deployed.

The deployment process performs the following operations:

• Verify that the deployment package is complete.

• If the application has previously been deployed, extract the database schema for
comparison against the new database schema to determine if anything has changed.

• If the database has changed prepare and execute a strategy to change the database
to the new format and migrate the existing data to it, if necessary, otherwise if it is a
new database create the database using the generated schema.

• Install the generated executable components.

• Notify the Configuration Deployer that deployment is complete.

During the entire process, the build progress and error messages are displayed in the
Output window. The user who initiates the build can monitor the process with progress
indications for each stage, and obtain error reports, if an error occurs that halts the
process.

Access

In Windows® platform deployment creates an application that clients can access. If the
Stop Deployment After configuration property is set to Run, the application is
automatically started on the runtime host as soon as deployment is complete. However, it
may be necessary to back up the database after the application is deployed, so you may
want to stop the build after the install stage.

Component Enabler

The standard application components that are deployed from Visual Studio run on
Windows® platforms only. Component Enabler adds the ability to access standard Agile
Business Suite applications from non-Windows platforms by using a graphical user
interface.
3–230 3826 5823-008

Developing Applications
To generate Component Enabler components, set the Deploy Component Enabler
User Interface configuration property to True. Select the appropriate language for the
Default Translation segment configuration property. The Component Enabler
generator takes your ispec interface definitions and builds standard JavaBeans
components and sample Java user interface applets.

Component Enabler sessions are established as TCP/IP connections using the Remote
Access Server interface. This allows most client applications on most platforms to easily
access your application.

Web-Enabling with Component Enabler

Component Enabler supports many ways of enabling access to user systems from Web
browsers. One way is to run the generated sample interface application as an applet from
a Web browser. More complex and dynamic Web pages can be built by using scripting
languages and the Component Enabler component interfaces to access remote Agile
Business Suite applications. Web servers can use server-side scripting and Component
Enabler components to dynamically build Web pages that include live data from Agile
Business Suite applications.

The ASP Generator can also be used to automatically generate Active Server Pages
(ASPs) from an application defined in System Modeler. The ASPs that are generated are
designed to create HTML pages that are similar to the graphical forms defined in the
Painter. To provide the widest possible browser type and version support, some attributes
of a graphical form are not included (for example, combo boxes). However, the customer
can choose to modify the source of the ASP Generator directly, using the ASP Generator
Customization Kit. This allows a customer to develop their own ASP generator that suits
their specific needs.

Using the Winform Container for Windows® Platform

The WinForm Container operates through the WinForm Container executable file, and is
controlled by an XML configuration file. The WinForm Container executable is run from a
shortcut, or from the command line with the name of the XML file appended as a
parameter. The XML file is read by the WinForm Container and the instructions in the
XML file to direct the WinForm Container to the correct location and system. If the
shortcut does not specify an XML configuration file, the WinForm Container executable
returns an error message “Unable to find a CLSID for corresponding to the system
name.”

The Agile Business Suite Developer installation includes a default XML file called
config.xml which is located in the bin folder of the installation path, along with the
WinForm Container executable. Also, a pre-configured XML file called ispec.xml is
generated when each system is built by Builder. This file is located in your systems
installation Bin folder.

A different XML configuration file can be specified by entering a path or URI after the
WinForm Container.exe from a command line, or in a shortcut.

For example, “WinForm Container.exe” c:\AgileBusinessSuite\payroll.xml
3826 5823-008 3–231

Developing Applications
If you specify a URI, the WinForm Container accesses the configuration file from a central
location.

For example, “WinForm Container.exe” http://tardis/payroll.xml

You can setup a different shortcut for each system you may access, and for users who
are required to access certain ispecs, reports and commands.

If you only access one system at a time, the configuration file should only have one
system defined in it. If you access multiple systems via the SWITCH.TO command, you
must include all systems that you may switch between in the one configuration file.

Creating the XML Configuration File

When a system is built by Builder, the generated files include an XML configuration file
called ispec.xml, which is located in the Bin folder under the Package Installation
Directory as specified in the Folder Properties, Installation category.

For example, <Installation Folder>\Release_Windows\SAMPLE\Core\Bin for 32-bit and
<Installation Folder>\Release_Windows\SAMPLE\Core\Bin64 for 64-bit. This file is
configured with most tags defined and includes all the ispecs and reports in the system.

You have two options for creating a custom XML configuration file for your users:

• Use the default config.xml file mentioned previously and using a text editor, remove
the small number of existing sample entries and then add your own for your
generated system.

• Use the generated ispec.xml file and using a text editor, modify the entries to suit
your requirements. For instance you may wish to limit the number of ispecs or
reports which can be accessed by a group of users and by removing some of the
existing entries to create an individual XML file for that group.

Either of the above methods is acceptable, the decision depends entirely on which is
most convenient. Once you have created your customized version of the XML
configuration file, save it using a suitable name, for example SalesConfig.XML, and
append the file name to the WinForm Container shortcut or command line.

Here is an example of a configuration file with a single system defined in it.

<?xml version="1.0" encoding="UTF-16"?>
<configuration xmlns="http://tempuri.org/config.xsd" version="1.0">

<startupSystem name="Sample"></startupSystem>
<system name="Sample">

<componentName>SAMPLE</componentName>
<runtimeServer>localhost</runtimeServer>

<downloadServerURI>file://
C:\MySystem\Sample\Release_Windows\Sample\Interfaces\WinForms\Bin</
downloadServerURI>

<localDownloadDirectory>.\</localDownloadDirectory>
<defaultImageType>.jpg</defaultImageType>
<defaultImageSubDirectory>images\</defaultImageSubDirectory>
<defaultListType>.xml</defaultListType>
<defaultListSubDirectory>lists\</defaultListSubDirectory>
<disableConsole>true</disableConsole>
<GIWCompatibleBehaviour>false</GIWCompatibleBehaviour>
3–232 3826 5823-008

Developing Applications
<enableLogging>true</enableLogging>
<logFile>.\client.log</logFile>
<windowState>Normal</windowState>

 <clientSize>800,600</clientSize>
 <useComputerNameForStation>false</useComputerNameForStation>
 <stationName></stationName>

<ispecs>
<ispec name="Menu" description="The description for the Menu class">
</ispec>

</ispecs>
<reports>
<report name="Report1" description="The description for the Report1 class">
</report>
<report name="Report2" description="The description for the Report2 class">
</report>
</reports>
<commands>
</commands>
<languages>
</languages>

</system>
</configuration>

Note: For 64-bit, you need to modify the <downloadServerURI> entry with the
following:

<downloadServerURI>
 file://C:\ROC\Release\ROC18\Interfaces\WinForms\Bin64
 </downloadServerURI>

Refer to the table which describes the meaning of the XML tags.

Meaning of the XML Tags

The following table describes all the XML tags used in the XML configuration file:

XML Tag Pair Description

<?xml version=”1.0”
encoding=”UTF-8”?>

Do not modify this line, it contains information about the level
and type of the xml format.

<configuration xmlns=”http://
tempuri.org/config.xsd”

version=”1.0”>

Do not modify this line as it contains information about the
level and type of the xml format.

<startupSyste”
name=”Sample”></
startupSystem>

Identifies the <system> that should be started when the
WinForm Container is run. If this line is omitted, then the first
<system> block that is encountered is run. The name entered
here must match the name given in one of the <system>
blocks in the configuration file. Change it to be the same as
the “system name” of the system you want to start up with.
This is to allow for SWITCH.TO, where multiple systems are
in one config file.

<system name=”Sample”> Is the start of the block of data for the named system. In this
case, MySystem. This 'name' is displayed on the title bar of
the WinForm Container, and should be a user friendly name.
The actual name of the runtime system is identified in a
different line. Change this to the name of your system.
3826 5823-008 3–233

Developing Applications
<componentName>SAMPLE

</componentName>

This is the deployed COM+ system name of the generated
runtime. The simplest way to find this is to open the
'component services' management console on the machine
that the runtime was generated to, then Component Services/
Computers/My Computer/COM+ Applications. Find your
generated system. The name of your COM+ application is
what you should enter here.

Note: This name is case sensitive and must correspond to
the case of the actual name of the folder.

</componentName>

<runtimeServer>localhost</
runtimeServer>

Identifies the machine name that the runtime system was
deployed to. This can also be the IP address of the server.

<downloadServerURI>file://
C:\MySystem\

Sample\SampleDeploy\Release\
Sample\

Interfaces\WinForms\Bin

</downloadServerURI> for 32-
bit

or

<downloadServerURI>file://
C:\MySystem\

Sample\SampleDeploy\Release\
Sample\

Interfaces\WinForms\Bin64

</downloadServerURI> for 64-
bit

The name of the computer the client should look to for
updated or missing files. Language numbers are added
automatically and do not need to be included as part of this
entry. This can be left blank, but you need to manually copy
the form control files to each end user computer. This may be
a http: reference, or a file: reference. For example, http://
myWebServer/myAppFiles/

<localDownloadDirectory>.\</
localDownloadDirectory>

Identifies the directory on the local computer where the
WinForm Container expects to find the individual forms,
images and external list boxes. This is also the location that
forms are downloaded to. This is normally the current
directory. For example, .\

<defaultImageType>.jpg</
defaultImageType>

Identifies the file extension to use if an image name does not
include one. This is generally the .jpg or .gif .jpg is best for
photo type images, but .gif are better for graphic type images.

<defaultImageSubDirectory>im
ages\

</defaultImageSubDirectory>

The sub-directory under the 'localDownloadDirectory' in
which to place the images.

<defaultListType>.xml</
defaultListType>

Controls the file extension to use when downloading
'external' list files. External list files are list data files that are
not created by the sendlist.static or sendlist.dynamic
command, but are created by hand.

<defaultListSubDirectory>imag
es\</defaultLis

tSubDirectory>

The sub-directory under the 'localDownloadDirectory' in
which to place external lists.

XML Tag Pair Description
3–234 3826 5823-008

Developing Applications
<disableConsole>true</
disableConsole>

Prevents a user for accessing the console dialog, and issuing
colon commands. This option must be set to false if you want
the end user to be able to run reports, or interact with reports.
If this item is set to true, the Command Console, Select
Commands and Run Reports menu items are disabled.

<GIWCompatibleBehaviour>tru
e

</GIWCompatibleBehaviour>

Alters the behavior of the WinForm Client to be more like that
of a Graphical Interface Workbench client. This alters the way
push button groups are handled, from a Windows standard
way (no data sent unless a button in that group is pressed) to
a GIW way (data is sent for every button group, unless a
button in a different button group is pressed).

<enableKanji>true</enableKanji Enables the correct handling of Kanji data in a Segment that
has NationalString Nodal property under the National Support
category set to “MultiByte”. In particular, it ensures that Kanji
data sent to the Winform clients via the SendListDynamic and
SendListStatic commands are properly encoded and
displayed in list boxes.

<enableLogging>true</
enableLogging>

Controls logging. This is a diagnostic log, and should only be
enabled when you are trying to track down a particular
problem.

<windowState>Normal</
windowState>

Specifies the initial state of the Winform window upon the
Winform Container being started. Valid values are “Normal”,
“Maximized”, and “Minimized”.

<clientSize>800,600</
clientSize>

Specifies the initial size of the Winform window upon the
Winform Container being started.

<useComputerNameForStation
>false

</
useComputerNameForStation>

Determines whether to use the local computer name as the
station name for the Winform client session. By default, the
Winform user’s Windows user ID is used as the station name.

<stationName> Specifies the station name to use. If specified, this value
overrides the default station name and/or the
<useComputerNameForStation> setting above if True.

<logFile>.\client.log</logFile> Identifies the location of the WinForm Container log file if the
enableLogging tag is true in the config.xml file.

The log file also contains masked data for attributes that have
the EnableMaskDefinition property set to true and for
attributes that have the ControlType property set to
PasswordField.

<ispecs> Do not modify. This tag identifies an <ispecs> block. It
surrounds a list of the ispecs shown in the 'Open Form'
dialog. If the <ispecs> block is empty, the select forms menu
item is disabled in the WinForm client.

<ispec name=”Menu”
description=”

The description for the Menu
class”>

Each <ispec> item identifies an ispec and description that
appears in the list of forms in the WinForm Container. Add
additional ispecs as required.

XML Tag Pair Description
3826 5823-008 3–235

Developing Applications
</ispec> Note: The individual closing tag for each ispec may be
omitted if each <ispec tag is terminated with the closing
character of />.

 </ispecs> Do not modify, as this tag identifies an <ispecs> block. It
surrounds a list of the ispecs shown in the 'Open Form'
dialog. If the <ispecs> block is empty, the select forms menu
item is disabled in the WinForm client.

<reports> Do not modify. This tag identifies a <reports> block. This
block encompasses a list of reports the user is shown in the
Report dialog. If the <reports> block is empty, the run reports
menu item is disabled in the WinForm client.

<report name=”report1”
description=

“The description for the report1
report”>

Each <report> item identifies a report and description that
appears in the run reports dialog. Add additional reports as
required.

</report> Note: The individual closing tag for each report may be
omitted if each <report tag is terminated with the closing
character of />.

<report name=”report2”
description=

“The description for the report2
report”>

Each <report> item identifies a report and description that
appears in the run reports dialog. Add additional reports as
required.

</report> Note: The individual closing tag for each report may be
omitted if each <report tag is terminated with the closing
character of />.

</reports> Do not modify. This tag identifies a <reports> block. This
block encompasses a list of reports the user is shown in the
Report dialog. If the <reports> block is empty, the run reports
menu item is disabled in the WinForm client.

<commands> Do not modify. This tag identifies a <commands> block.If the
<commands> block is empty, the System Commands menu
item is disabled in the WinForm client.

<command name=”who”
description=”list of who is on
the system”>

Each <command> item identifies a colon command, and a
description that appears in the System Command dialog. Add
additional commands as required.

</command> Note: The individual closing tag for each command may be
omitted if each <command tag is terminated with the
closing character of />.

</commands> Do not modify. This tag identifies a <commands> block. If the
<commands> block is empty, the System Commands menu
item is disabled in the WinForm client.

XML Tag Pair Description
3–236 3826 5823-008

Developing Applications
Using the WPF Client Container for Windows Platform

The WPF Client Container operates through a WPF Client executable file and is controlled
by an RTXML configuration file.

The WPF Client executable requires a start parameter to be supplied that contains the
location of the executable file and the location of the RTXML file. A default version of the
RTXML file is generated with each WPF Technology folder specified in the System
Modeler. The RTXML file is placed in the “Access Layer API Deploy” folder, which is
located under the Project folder for the WPF project, and is named
<TechnologyFolderName>_Config.rtxml.

When the WPF Client executable starts, it reads the content in the
<TechnologyFolderName>_Config.rtxml file and establishes a session with the host
application.

The WPF Client Container executable is run through either of the following:

• A desktop shortcut

• A System Modeler solution

<languages> Do not modify. This tag identifies a <languages> block.

If this block is empty, the Change Language menu item is
disabled. This block is only required if your end users need to
change between languages.

<language name=”English”
ID=”1033” / >

The languages must reflect the languages that you have
defined in your AB Suite system. The name and ID should
match the names and IDs of the languages you have defined
in your runtime system. Add additional languages as required.

</language> Note: The individual closing tag for each language may be
omitted if each <language tag is terminated with the
closing character of />.

</languages> Do not modify. This tag identifies a <languages> block.

If this block is empty, the Change Language menu item is
disabled. This block is only required if your end users need to
change between languages.

</system> Defines the end of this particular system.

If you switch between more than one system using the
SWITCH.TO command in you runtime logic, you must define
a <system> block for each system that may be switched into.

</configuration> Identifies the end of the configuration block.

XML Tag Pair Description
3826 5823-008 3–237

Developing Applications
To run the WPF Client Container executable by using the desktop shortcut, perform the
following:

1. Create a shortcut of the WPF Client Container executable on your desktop by
performing the following,

a. Right-click the WpfClient.exe file located in the Bin folder.

b. Select Create Shortcut from the context menu that appears.

The WPF Client Container shortcut icon appears on your desktop.

2. Right-click the shortcut and select Properties.

The Properties window appears.

3. In the Target box, enter the location of the WPF Client executable and the location of
the <TechnologyFolderName>_Config.rtxml file.

For example, “<WPFClient Installation Path>\WpfClient.exe”
“C:\Users\<UserName>\Documents\Visual Studio
2015\Projects\<TechnologyFolderName>\Access Layer API
Deploy\WpfClient_Config.rtxml”

Note: If you do not specify the location of the WPF Client executable and the
RTXML configuration file in the desktop shortcut, the error message
“Configuration file missing the minimum required settings! Closing down...”
appears.

4. Click OK.

You can setup different shortcuts for each system you may access or for accessing only a
certain ispec, report, or command.

To run the WPF Client Container executable using the System Modeler solution, perform
the following:

1. Right-click the <SystemName>.<TechnologyFolderName>.Views project in
the Solution Explorer window, and then select Properties.

The <SystemName>.<TechnologyFolderName>.Views tab page appears.

2. From the left pane, select Debug.

3. Select the Start external program option, and then enter the location of the
WPFClient.exe file in the corresponding box.

For example, C:\Program Files (x86)\Unisys\AB Suite 6.1\Bin\WpfClient.exe.

4. In the Command line segment box, enter the location of the RTXML file.

For example, C:\Users\appadminuser\Documents\Visual Studio
2015\Projects\<Project_Name>\Access Layer API
Deploy\<TechnologyFolderName>_Config.rtxml
3–238 3826 5823-008

Developing Applications
5. Right-click the <SystemName>.<TechnologyFolderName>.Views project in
the Solution Explorer window, and then select Set as StartUp Project.

6. Right-click the <SystemName>.<TechnologyFolderName>.Views project,
point to Debug, and then select Start New Instance.

If you access only one system at a time, the RTXML configuration file should only
have one “system” defined in it. If you access multiple systems, a switch directive is
sent from a host application, which necessitates you to configure the required
systems. This loads the required DataModel, DataViewModel, and Views assemblies
that are configured for the system that you want to switch to. You must include all
systems that you may switch between in the configuration file. Refer to the Agile
Business Suite Client Framework Programming Reference Manual for more
information on the WPF Client Container and the functions with the WPF Client.

When the WPF Client starts, it reads the specified
<TechnologyFolderName>_Config.rtxml file to set up the connection parameters required
to connect to the runtime system through the Access Layer API. The RuntimeServer
locates the machine where the runtime system is deployed. The DownloadServerUrl and
Assemblies configuration information locates the required DataModel, DataViewModel,
and Views assemblies and dynamically loads them into the WPF Client application.

After a connection has been made to the runtime system, the toolbar controls and the
Selection dialog box appear. The Selection dialog box displays a list of the available ispecs
that you can select. Selecting an ispec from this dialog box executes a recall of the ispec
in the host application, and then the corresponding screen appears in the WPF Client
Container.

Customizing the RTXML Configuration File

You can create a custom RTXML configuration file by opening the default
<TechnologyFolderName>_config.rtxml file by using a text editor, modifying the default
entries that are generated for the AB Suite system, and saving the configuration file with
a different name.

Note: If you make custom changes to the RTXML file, it is important to save the file
with a different name, because subsequent builds of the AB Suite system regenerates
the file with default values and the custom changes made by you is lost. If there are
changes in the AB Suite model that introduce additional content into the generated
configuration file, you must merge these changes into your custom configuration file.

The following is an example of the RTXML configuration file with a single system defined
in it:

<?xml version="1.0" encoding="UTF-8"?>
<Configuration xmlns="http://tempuri.org/config.xsd" Version="1.0">
 <StartupSystem Name="Sample" />
 <System Name="Sample">
 <ComponentName>SAMPLE</ComponentName>
 <RuntimeServer>localhost</RuntimeServer>
 <DownloadServerURI>C:\Users\Administrator\documents\visual studio
2015\Projects\WPF_Test\Access Layer API Deploy</DownloadServerURI>
 <DownLoadCredentials>
</DownLoadCredentials>
 <FileRepositoryDirectory>WPF_Test\Images</FileRepositoryDirectory>
3826 5823-008 3–239

Developing Applications
 <Assemblies>WPF_Test.WPFClient.DataModels.dll,
WPF_Test.WPFClient.DataViewModels.dll, WPF_Test.WPFClient.Views.dll</Assemblies>
 <LocalDownloadDirectory>
 </LocalDownloadDirectory>
 <EnableKanji>false</EnableKanji>
 <DisableConsole>false</DisableConsole>
 <!--Valid values are Error, Info, Debug-->
 <LogLevel>Error</LogLevel>
 <LogFolder>c:\temp</LogFolder>
 <UseComputerNameForStation>false</UseComputerNameForStation>
 <StationName>WIN-IQFR1DJ10U5</StationName>
 <SupportAutoTabbing>true</SupportAutoTabbing>
 <OffLine>false</OffLine>
 <IsAnonymous>false</IsAnonymous>
 <ForceLogin>false</ForceLogin>
 <UseGateway>false</UseGateway>
 <GateWayAddress>127.0.0.1</GateWayAddress>
 <ShowClosingDownMessageForBye>true</ShowClosingDownMessageForBye>
 <Reports />
<Languages>

<Language Name="English" Locale="1033">
<Language Name="Dutch" Locale="19">

</Languages>
<ATTRecord Enable="false" Mode="connect" Server="127.0.0.1" Port="8888">
 <File>C:\Temp\Recordings\Testcase.smtest</File>
 <RecordDynamicLists>false</RecordDynamicLists>
 </ATTRecord>
 </System>
</Configuration>

Meaning of the RTXML Tags

The following table describes all the RTXML tags used in the RTXML configuration file:

RTXML Tag Pair Description

<?xml version=”1.0”
encoding=”UTF-8”?>

Do not modify this line as it contains information about the
level and type of the rtxml format.

<configuration xmlns=”http://
tempuri.org/
config.xsd”version=”1.0”>

Do not modify this line as it contains information about the
level and type of the rtxml format.

<startupSystem
Name=”Sample” />

Identifies the <system> that should start when the WPF
Client Container is run, if there are multiple systems declared
in the config file. If this line is omitted, then the first
<system> block that is encountered is run. The name entered
here must match the name given in one of the <system>
blocks in the configuration file. Change the name to the
“system name” of the system that you want to start.

<system Name=”Sample”> This is the descriptive name of the system and appears on the
title bar of the WPF Client Container window. It marks the
start of the block of data for the named system. Change this
to your system name.

<componentName> SAMPLE
</componentName>

This is the name of the component installed in COM+ for the
deployed system. It is typically the name of the segment
defined in System Modeler.

Note: This name is case-sensitive and must correspond to
the actual name of the folder.
3–240 3826 5823-008

Developing Applications
<runtimeServer>localhost </
runtimeServer>

This is the machine name that the AB Suite application has
been deployed to. This can also be the IP address of the
server.

<downloadServerURI>C:\Users\
Administrator\documents\visual
studio
2015\Projects\WPFClient\Acces
s Layer API Deploy</
downloadServerURI>

This is the location that specifies from where the dependent
components, such as DataModels, DataViewModels, or
Views assemblies, are downloaded.

<downLoadCredentials> </
downLoadCredentials>

This allows you to specify the FTP usercode and password, if
you are using the FTP Server location for the
DownloadServerURI.

<fileRepositoryDirectory>WPFC
lient\Images</
fileRepositoryDirectory>

Specifies the location from where the dependent files such as
images are retrieved. It can be on the same machine or on a
remote server. The FileRepository interface of the Access
Layer API transfers the dependent files from the specified
location.

<assemblies>
WPFClient.WPFClient.DataMod
els.dll,
WPFClient.WPFClient.DataView
Models.dll,
WPFClient.WPFClient.Views.dll
</assemblies>

This defines the dependent assemblies required by the WPF
Client application. This tag is pre-filled with the names of the
DataModels, DataViewModels, and Views assemblies for a
WPF Technology folder.

<localDownloadDirectory>

C:\ProgramData\Unisys\ABSuite
\6.1\WpfContainer
Downloads\Sample

</localDownloadDirectory>

This specifies the location of the local machine to which the
dependent files are downloaded for use by the WPF Client
application.

<enableKanji> false

</enableKanji>

Enables the correct handling of Kanji data in a segment that
has NationalString Nodal property under the National Support
category set to “MultiByte”. In particular, it ensures that Kanji
data sent to the WPF Clients through the SendDynamic and
SendStatic commands are properly encoded and displayed in
list boxes.

<disableConsole>false

</disableConsole>

Prevents a user from accessing the console processing
window in the WPF Client application. This option must be set
to False if you want the end user to be able to run reports, or
interact with reports. If this item is set to True, the Command
Console, Select Commands, and Run Reports menu items
are disabled.

<logLevel>Error</logLevel> Sets the log level for the Access Layer API component. The
valid values are Error, Info, and Debug.

<logFolder>C:\Temp

</logFolder>

Specifies the location of the log file created by the Access
Layer API logging process. By default, the location of the log
file is C:\Temp.

RTXML Tag Pair Description
3826 5823-008 3–241

Developing Applications
<useComputerNameForStation
> false

</
useComputerNameForStation>

Determines whether to use the local computer name as the
station name for the runtime system. By default, the value is
False.

<stationName>WIN-
IQFR1DJ10U5</stationName>

Allows you to specify a station name for a machine running
the WPF Client application. If specified, this value overrides
the default station name (which is the current users Windows
user name) and/or the <useComputerNameForStation>
setting, if it is set to True.

<supportAutoTabbing>false

</supportAutoTabbing>

Specifies whether the focus should move to the next field in
the tab order when a field is filled according to the defined
field length. By default, the value is False.

<offLine>false</offLine> This allows you to run the WPF Client application in offline
mode. It does not try to establish a connection with the
runtime system if this tag is set to True. By default, the
value is False.

<isAnonymous>false

</isAnonymous>

Specifies whether the connection should be made
anonymously. This allows you to run multiple WPF Client
sessions to the runtime system simultaneously on the same
machine. By default, the value is False.

<forceLogin>false

</forceLogin>

An existing session for the same user can be overridden
with a new connection to the runtime system if this tag is
set to True. By default, the value is False.

<useGateway>false

</useGateway>

Allows you to connect to the runtime system using the AB
Suite WCF Gateway service, instead of using the COM/
DCOM directly from the WPF Client application. By default,
the value is False.

<gateWayAddress>127.0.0.1

</gateWayAddress>

Specifies the address of the machine where the WCF
Gateway is running.

<showClosingDownMessageFo
rBye> true </
showClosingDownMessageFor
Bye>

Specifies whether a message box should appear when an
application is closed due to a Bye request received from the
runtime system. By default, the value is True.

<reports> </reports> Do not modify this tag as it identifies a <reports> block. This
lists the reports generated for an application. The reports can
be initiated from the WPF Client. If the <reports> tag is
empty, the run reports menu item is disabled in the WPF
Client.

<languages> </languages> Do not modify this tag as it identifies a <languages> block. If
this block is empty, the Change Language menu item is
disabled. This block is only required if you need to switch
between languages.

<language name=”English”
ID=”1033” / >

Specifies the languages that you have defined in your AB
Suite Client Framework application.

RTXML Tag Pair Description
3–242 3826 5823-008

Developing Applications
Using the WPF Client Container User Interface

The WPF Client Container displays the designed Views based on the DataViewModels
generated by System Modeler when the Access Layer components are built for the WPF/
XAML Client technology. The Views can be designed by using the WPF Designer (or
Blend) and deployed for use by the AB Suite WPF Client application, which is a WPF
Container solution provided by Unisys. The designed Views are compiled into a Views
assembly that is loaded by the WPF Client at runtime. When a response is received from
the host application for an ispec, the corresponding user interface is displayed in the
Content Control of the WPF Client Container.

</language> Defines the end of language block.

Note: The individual closing tag for each language may be
omitted if each language tag is terminated with the closing
character of /.

</languages> Defines the end of languages block.

<ATTRecord Enable=”false”
Mode=”connect”
Server=”127.0.0.1”
Port=”8888”>

This allows you to define the ATT Recording options to
capture the ATT Test cases by using the WPF Client. The
recorded test cases can be replayed using ATT through the
Access Layer API.

<file>C:\Temp\Recordings\Testc
ase.smtest</file>

Specifies the path and name of the file to which the Test Case
is recorded when ATT is in the Disconnect mode. For
example, C:\Temp\Recordings\Testcase.smtest.

<recordDynamicLists> false </
recordDynamicLists>

Specifies whether ATT record is Dynamic List Data or not.
By default, the value is False, because this recording option
adds an overhead to the ATT test case processing and
should only be turned on if required.

</ATTRecord> Defines the end of the ATT record block.

</system> Defines the end of this particular system.

If you switch between more than one system by using the
SWITCH.TO command in your runtime logic, you must define
a <system> block for each system that may be switched to.

</configuration> Defines the end of the configuration block.

RTXML Tag Pair Description
3826 5823-008 3–243

Developing Applications
The following figure shows a sample WPF Client Container:

The WPF Client Container comprises a title bar, a tool bar, and a status bar.

Title Bar

The title bar of the WPF Client Container displays

• The WPF Client icon

• The WPF Client Container name

This name can be localized in the string resources of the WPF Client application.

For example, The WPF Client Container name can be AB Suite Container.

• The runtime system name

This is the system name that is specified in the
<TechnologyFolderName>_Config.rtxml file. The name of runtime system in the
above image is TestListSeg.
3–244 3826 5823-008

Developing Applications
Toolbar

The toolbar displays various icons and menus that you can use to perform operations,
such as opening or closing a session, running a report, and selecting a theme.

The icons present on the WPF Client Container tool bar along with their respective
description are listed in the following table:

Icon Name Description

Open Session Displays this icon when the WPF Client is connected
to the runtime. This allows you to close the session.

Close Session Displays this icon when you close the session. This
allows you to open a new session for one of the
systems configured in the config.rtxml file. When
you open a session the Selection dialog box appears
listing all the configured systems that are available.

To initiate the connection with the host application,
select a system from the Selection dialog box, and
then click OK.

Note: When the WPF Client is not connected to a
host system, all other Toolbar icons are hidden.

Select a Screen Allows you to display a specific screen in the WPF
Client Container.

When you click this icon a Selection dialog box
appears listing the screens that you can display.

The Selection dialog box contains two tabs

• Screen – This tab displays the list of ispecs
specified for a WPF Client Technology folder. To
open an ispec listed in the Screen tab, select an
ispec, and then click OK. The selected ispec
appears in the WPF Client Container window.

• Teach – This tab displays the list of Help screens
associated with the WPF Client Technology
folder. To open a screen listed in the Teach tab,
select a Help screen, and then click OK. The
selected Help screen appears in a new window.
You can use the Search box in the Selection
dialog box to search for a specific ispec or Help
screen.
3826 5823-008 3–245

Developing Applications
Show Console Displays the Console window.

The Console window contains two tabs

• Cmd Output/Responses – This tab displays
colon commands that can be sent to the runtime
system.

• Report Output – This tab displays the report
output that arrives asynchronously from the
runtime system. It displays video reports sent to
the WPF Client.

Note: If you do not want to provide access to the
console window you can choose not to display the
Show Console icon by setting the DisableConsole
tag to True in the
<TechnologyFolderName>_Config.rtxml file.

Run Report Displays the Selection dialog box with a list of
reports that you can execute at runtime.

This dialog box also allows you to

• Search for a specific report in the list.

• Set the device type for the report output.

• Select a language for the report.

• Enter report parameters required by the report.

To run a report, select a report from the Selection
dialog box, and then click OK. The report output
appears in the Console window.

Note: The list of reports is currently extracted
from the report entries configured in the
<TechnologyFolderName>_Config.rtxml file.

Print Screen Allows the user to print the screen in the current
WPF Client Container window.

Snap to Designed Size Allows you to change the screen size back to the
dimension of the originally designed View.

The ContentControl that displays the View inside the
WPF Client Container is contained within a ViewBox
control. This allows you to resize the WPF Client
Container window. When the WPF Client Container
window is resized, all controls inside the ViewBox
are automatically scaled so they appear larger or
smaller, depending on the new dimensions of the
window.

Note: If you resize the WPF Client Container
window to a certain dimension, and then close and
reopen the window, it appears with the resized
dimension.

Icon Name Description
3–246 3826 5823-008

Developing Applications
The menus present on the WPF Client Container tool bar along with their respective
description are listed in the following table:

Menu Name Description

Language Allows you to select a language that has been
implemented for an AB Suite Client Framework
application.

When you select a specific language, a request is
sent to the runtime to switch to the specified
language. The WPF Client application also switches
to use resources specific to that language based on
the locale of the specified language.

The Language menu displaying the languages are
created dynamically to show the languages included
in the application.

Note: If you have configured only one language
for the application, then the Language menu does
not appear on the toolbar.
3826 5823-008 3–247

Developing Applications
Themes Allows you to select a theme for the WPF Client.
Selecting a theme loads the stylesheet associated
with the theme. This formats the control types and
other attributes in the screen as specified in the
stylesheet.

The WPF Client includes built-in themes for Dark and
Light color combinations, which you can apply when
running the application.

When developing the Views for the WPF Client or
when converting the AB Suite model to the AB Suite
Client Framework model, you must customize the
themes to suit your requirement or create new
themes.

To customize the Dark or Light themes, you must
manually update the Theme_Dark.xaml or
Theme_Light.xaml file.

For example, if you want to apply the Light theme to
the text box graphic control,

1. In the Solution Explorer window, go to
WpfClient (WPF(Windows Presentation
Foundation)) > Sample.WpfClient.Views
> Themes.

2. For the location, open the Theme_Light.xaml
file.

3. Specify a value for background (for example,
Blue) as shown in the following code snippet:

<!- - Style for TextBox Controls- - >
<Style x:Key = "TextBox_Style_01" Target
Type = "{x:Type TextBox}" BasedOn =
"{StaticResource BaseTextBox }">
<Setter Property = "Background"
Value="Blue" />

The textbox color changes to blue when you build
the model and select the Light theme from the
Themes menu.

Note: You need not customize the themes in the
Sample Client Framework model as the selected
theme loads the stylesheet associated with it and
formats the graphic controls in the View as
specified in the stylesheet.

The Themes menu displaying the themes are
created dynamically to show the themes included in
the Resources dictionary.

Note: If you have included only one theme in the
Resources dictionary, then the Themes menu is
not displayed on the toolbar.

Menu Name Description
3–248 3826 5823-008

Developing Applications
Status Bar

The status bar displays status text and error messages sent by the host application. If the
host application sends multiple error messages, the status bar displays the message
“Multiple Errors Received…”, and an Expand icon appears on the status bar. This
allows you to expand the status bar upwards and view the error messages. However, if
the host application sends a single error message, the Expand icon does not
appear.

Note: The status bar also displays unsolicited messages.

Using the Messenger Client for Windows Platform

The Messenger Client operates through a Messenger Client executable file. The
Messenger Client executable file is a simple program that you can use to submit
individual XML messages to the runtime system. The Messenger Client allows you to
test the processing of XML messages during development.

You can run the Messenger Client either through a Graphical User Interface (GUI) or a
command line interface.

The Messenger Client appears automatically when you build the XML Framework
application after setting the debugger configuration property to either Messenger or
External Application. You can also run the Messenger Client from the Start menu by
pointing to Start > Programs > Agile Business Suite 6.1 > Development
Environment > Messenger Client.
3826 5823-008 3–249

Developing Applications
The AB Suite Messenger Client window appears.

To initiate a connection to the runtime system, perform the following:

1. In the System Name box, enter the system name.

2. In the Host Name box, enter the host name.

3. Select the Connect to Debugger check box if you have set the debugger
configuration property to Messenger or External Component.

4. Click OK.
3–250 3826 5823-008

Developing Applications
The AB Suite Messenger Client window appears.

You can now submit XML messages. To submit XML messages, perform the following:

• In the File Name box, enter the location of the XML file or browse to and select the
location of the XML file by clicking <add button>.

The Messenger Name box defaults to the name of the root node when you open a
file containing an XML message. This may or may not be the name of the Messenger
class that you want to use.

You can directly input the XML message by performing the following:

1. In the text area of the Input tab, enter the XML message.

Note: You can edit the message before submitting it, if required.

2. In the Messenger Name box, enter the Messenger class name.

3. Click Transmit.

Note: Click Clear to clear the text area. Click Close to close the Messenger
Client window.
3826 5823-008 3–251

Developing Applications
The success of the transaction appears in the status bar of the AB Suite Messenger
Client window. If the Messenger class returns a response XML message it appears in
the Response tab.

You can run the MessengerClient.exe from the command line to submit XML messages
without using the GUI interface. When the MessengerClient.exe is run from the
command line all the input parameters can be supplied as command line parameters.

The syntax for running the MessengerClient.exe from the command line is as follows:

MessengerClient /s <System Name> /c <Class Name> /f <File Name>

You can include the following parameters:

• /s <System Name> – Name of the deployed system

• /h <Host Name> – Machine name of where the system is deployed

• /c <Class Name > – Name of the Messenger class to transmit

• /f <File Name> – File containing the data to transmit

• /d – Use Debugger

• /? – Show Help

Builder Functions

Builder is responsible for the following functions:

• Validate the consistency and semantics of the model.

• Verify that all applicable logic in the model has been validated and is error free.

• Determine what has changed in the model since the last time it was generated to the
selected configuration.

• Schedule and execute the generation of the necessary files.

• Invoke the compilation process for the generated source code.

• In Windows® platform, builder transfers the deployment package to the target server.

To accomplish these tasks, Builder:

• Interacts with the Model database via the Model component.

• Interacts with the Developer (Visual Studio) environment via the Configuration Builder
component.

• Interacts with the deployment service via the Configuration Deployer component.
3–252 3826 5823-008

Developing Applications
Builder Architectural Elements

Builder contains the following architectural elements:

• Model validation

• Logic validation

• Change analysis

• Code optimization

• Generation management

• Task list management

• Code generation

• Database schema generation

• Deployment control-file generation as needed

• Compilation management and monitoring

• Deployment initiation and monitoring

While the general approach to the design of Builder is similar to Direct Generate in
previous releases of Enterprise Application Builder, and uses many of the ideas used in
that component, a new design builds on those ideas and introduces other concepts.

The most important of these design concepts is:

• Abstraction and separation of all specific language constructs to be generated from
the code which generates them. This allows the generation process to become more
generalized thus allowing easier adoption of new runtime processing paradigms and/
or generation of different intermediate languages.

The design of the Generation process is based on a combination of our previous
experience in generation and the results of investigations, which were carried out to
determine a more effective ways to generate. Of significance is the need to target
multiple languages and run-time technologies (in separate Generates). This is done using
a single generate ‘engine’ by clear separation and enforcement of the boundaries
between the target language code to be generated and the generation process.

The following principles guide the generation design:

• No target language code or assumptions are contained in the generate engine.

• Code to be generated is as minimal as possible.

• The same output artifact is not generated more than once in any generate.

• In association with the Parser, and other components which use it, a ‘smart’ Abstract
Syntax Tree (AST) is designed which provides a more efficient means of generating
and executing (debugging/testing) user logic.
3826 5823-008 3–253

Developing Applications
MCP Builder

The MCP Builder is invoked when an AB Suite application is built using an MCP
configuration. MCP Builder generates COBOL source files, ALGOL source files and other
resources from the business model created in AB Suite Developer. While building an AB
Suite application, the generated files and resources are transferred to the host machine
where they are compiled and deployed into a MCP application. MCP Builder also
generates the database schema of the AB Suite application.

MCP Build Process

The MCP Build process comprises of the following phases:

• Build

• Deployment

The Deployment phase comprises of the following sub-phases:

• Compile and Bind (for system and report builds)

• System Deployment (for system builds only)

The Deployment phase may be delayed by using the ‘Delay Compile and Deploy’ option
on the Host Login dialog.

If required, the Deployment sub-phases may be restarted from the Application Builder
Server on the host. The ability to restart the Deployment sub-phases is dependent on a
successful Build phase.

MCP Build Options

When an AB Suite application is built using an MCP configuration, the Host Login dialog
box displays deployment options specific to MCP Runtime. The build options are:

• Retain Existing Database

• Usercode and Password

• Accesscode and Password

• Chargecode

• Use Host details for FTP

• FTP Usercode and Password

• FTP Chargecode

• Delay Compile and Deploy

• Deploy Date

• Deploy Time
3–254 3826 5823-008

Developing Applications
These options are used to specify whether to retain an existing database, where and
when the application is deployed. The following table describes the different options:

Building Applications

You can build the following:

• Deployable Folders

• The model

Property Function

Retain Existing Database When Retain Existing Database is checked, database of the
application being built is retained if it already exists.

When Retain Existing Database is unchecked, a new database is
created. If a database with the same name already exists, it is
overwritten. You are prompted to confirm your action.

Usercode and password Usercode specifies the host usercode under which the application is
built. This usercode is used as the FTP account if the ‘Use Host
Details for FTP’ box is checked.

Accesscode and
password

If the host usercode under which the application is deployed has an
accesscode associated with it, the accesscode and password must
be entered to allow deployment to proceed.

Chargecode If the host usercode under which the application is deployed has a
chargecode associated with it, the chargecode must be entered to
allow deployment to proceed.

Use Host Details for FTP When ‘Use Host Details for FTP’ is checked, Usercode is used as
the account for the transfer.

When ‘Use Host Details for FTP’ is unchecked, ‘FTP Usercode’ is
used as the account for the transfer.

FTP Usercode and
password

FTP Usercode specifies the host usercode to be used as the FTP
account if the ‘Use Host Details for FTP’ box is unchecked.

FTP Chargecode If the ‘FTP Usercode’ has a chargecode associated with it, the
chargecode must be entered to allow deployment to proceed.

Delay Compile and
Deploy

When the ‘Delay Compile and Deploy’ box is unchecked, the
Deployment phase starts immediately after the Build phase has
finished. Builder continues to monitor the deployment activities.

When the ‘Delay Compile and Deploy’ box is checked, Builder is
suspended at the end of the Build phase until the date and time
specified in the Deploy Date and Deploy Time options.

Deploy Date Date on which deployment of the application starts. Format is dd/
mm/yyyy.

Deploy Time Time at which deployment of the application starts. Format is
hh:mm:ss.
3826 5823-008 3–255

Developing Applications
• A report contained within deployable folders configured for report deployment

• An ispec with presentation contained within deployable folders configured for
component enabler interface generation

In Builder, an application is built using the Visual Studio Environment or Builder
Application.

Building using Visual Studio Environment

You can use the Visual Studio Environment to build your application.

Only folders that contain deployable elements can be built.

Deployable elements include top-level classes (that is, Segment or vanilla classes), report
classes, user interfaces, reports, or Technology folders. While a number of build scenarios
are possible, all other element types cannot be built, and the Build option is disabled.

If a folder is selected for building, but does not contain any deployable elements, nothing
is built. During a build, a small window appears before the start of the build where the
elements are locked. Hence, changes cannot be made to elements. Once a safe point for
the build is reached, the locks on the elements are released and other users can modify
the elements while build is in progress. Note that no two users can build the same
deployable element at the same time.

To build applications using the Visual Studio Environment, perform the following:

1. Open the Class View window and select the model, or elements you wish to build.

2. Using the configuration properties, specify the deployment generation properties.

3. Either right-click and select Build, or on the Build menu, select Build.

All logging information is displayed in the Output window, while errors encountered are
displayed in the Error List window.

In Windows® runtime at the end of a build, a deployment package is created.

Logging information is displayed in the Output window, while errors encountered are
displayed in the Error List window. You can navigate to the corresponding line of logic
from the Output window and Error list window. You can view the Help on an error item by
right-clicking an error item from the Error Window and selecting Show Help.

At the end of a build, a deployment package is created.

Restrictions

The following restriction applies:

In Windows® platform, if Builder is not configured to perform a full application build and
deployment, you have to manually transfer the deployment package once it is created.
3–256 3826 5823-008

Developing Applications
About Folders

A folder can contain any type of element, however its contents may be ignored during
building, depending on its configuration settings. Folders can be used to group elements
or deployment packages.

Technology Folders

A technology folder includes ispecs or classes for a particular client technology. If a
technology folder is created with a given name, such as MyWPF, you should be aware
that this name is used in conjunction with the model segment name to qualify project
names and namespaces in the generated components. This allows you to include
different technology folders in the same AB Suite application (maybe with a different set
of ispecs in each). The chosen technology type can be the same or different for each
technology folder.

Building Reports

Reports can be built and deployed separately, or with a segment.

Each report is built and deployed as a separate component. However, if multiple reports
are built and deployed at the same time, they are deployed as one batch group.

Database Generation

Database generation determines the physical database schema based on the model's
class/ispec inheritance structure, configuration properties set, and in Windows® platform
determines the implicit limits imposed by the target Data Manager (SQL Server).

Files are built so that during deployment, files are created, replaced, or database
reorganized for your Agile Business Suite application.

Note: In windows® platform user-maintained classes can only exist as a base class
(that is, they cannot participate in any inheritance structure).

Build Scenarios

Following is a list of common build scenarios that can be performed in Builder:

• Build Preview

• Build a System

• Build Reports

• Build a Single Report

• Either right-click the folder and select Build, or from the Build menu, select Build.

• Build Component Enabler User Interfaces

• Build AB Suite Client Framework Applications

It is assumed that a system build includes building Application Components, Database
and Winforms for a segment.
3826 5823-008 3–257

Developing Applications
Build Preview

To determine the impact of a build and view the model elements that are modified since
the last build, the Build Preview option can be used. Perform the following for a Build
Preview:

1. Select the deployable folder.

Note: Ensure that the outer folder containing the segment is also deployable.

2. From the Build menu, choose Preview or choose Folder Only, Preview.

The Build Preview window appears. This window displays details as follows:

• Project – Name of the system modeler project

• Configuration – Type of configuration that you have specified for the desired
runtime platform

• Build Node – Name of the folder that is used for the preview.

• Build Impact – Percentage of changed/updated element(s) that is built

• Build Type – Displays the type of the build. If build type is Full, all the elements
within the deployable folder(s) are built. If the build type is Partial, only a part of
the application is built. If the build type is Deployment, none of the elements are
built. Only those Builders that are required for deployment run.

• Database – Displays the impact on a database. You need to create a new
database if it does not exist. A database is reorganized if the following changes
are made to the schema:

– A new persistent attribute is added to the model

– Existing persistent attributes are changed

– The database files on the Host are deleted

– All the system files are deleted from the Host

• Logics – Number of logic elements that have errors or need to be validated

• A summary of the number of Ispecs/Events/Reports/Classes/SQL Scripts that
need to be built and the details of the elements that have changed since the last
build are displayed.

The Details pane of the Build Preview window

• Displays the list of elements to be built for a particular deployable folder.

• Displays the list of elements that have errors or require validation if any.

• Displays a Database node with a link to the Database Comparison Report that
contains details of the changes made to the database.

The build preview report is saved in the project folder as a BuildPreviewSummary
<Folder name> <DD-MM-YYYY> <H-M>.xps file. For example, BuildPreviewSummary
SampleDeploy 10-4-2012 6-34.xps. The file name is unique and you can print this report
via File > Print.
3–258 3826 5823-008

Developing Applications
Notes:

• XPS is Microsoft’s new electronic paper format, an alternative to the PDF
format. The XPS Viewer comes preinstalled with Windows 7. You can download
the XPS Viewer from http://msdn.microsoft.com/en-us/library/windows/
hardware/dn641615(v=vs.85).aspx

• The debug and information messages of a build preview output are not recorded
in the build log file unless you set logging at the DEBUG Level. To set the Build
Log at Debug level, select Tools > Options > System Modeler > Builder > Logging
> Log Build Debugging Information.

• If you have made significant changes in your model elements since the last build,
executing this option might take time to gather and display all the necessary
details.

• The Build Preview option is not available for a Debugger configuration.

The Build Preview option is only available for deployment folders. It is not available for
individual elements such as Ispecs or Reports.

Build a System

To build the system, perform the following:

1. Create a folder (outer folder).

2. Add the segment into the outer folder by dragging and dropping it into the folder, or
on the File menu, select Add Existing Item.

3. Right-click the folder, select Properties, set the following properties to True:

• Deploy Application Components.

• For Windows® platform, deploy Winform User Interface.

• Deployment Database.

4. Set other configuration properties as appropriate.

5. Select the outer folder.

6. Either right-click the folder and select Folder Only, then Build, or on the Build
menu, select Folder Only, then Build.

Build Reports

To build reports, perform the following:

1. Create a folder under the Segment (Segment Class).

2. Copy the reports which you wish to be built, into the folder.

3. Right-click the folder, select Properties to display the Properties page, set the
following properties to True:

• Under the General section – set Deployable.

• Under the Build Target Filters section – set Deploy Reports
3826 5823-008 3–259

Developing Applications
4. Set other configuration properties as appropriate.

5. Click OK to close the Properties page.

6. Either right-click the folder and select Build, or from the Build menu, select Build.

Build a Single Report

To build a single report, perform the following:

Before building a report, ensure that the report you want to build is in a folder. If not, place
the report in a folder.

1. Right-click the folder containing the report that you want to build. Select Properties
to display Properties page.

2. Select the report you want to build from the folder in Class View.

3. Right-click the folder, select Properties to display the Properties page.

4. Set the following properties to True and click OK:

• Under the General section – Deployable.

• Under the Build Target Filters section – Deploy Reports

5. Now, to build the report, you can either–

• Right-click the report you want to build, and select Build from the menu. Or,

• Select the report you want to build, and select Build from the menu.

Build Component Enabler User Interfaces

To build Component Enabler user interfaces only, perform the following:

1. From the Class view select the Segment (Segment Class).

2. Right-click the Segment, and select Properties to display the Properties page.

3. Under the Component Enabler User Interface section complete the following
properties:

• Application Name

• Package Prefix

• CE Output Directory (optional)

4. Create a folder under the Segment (Segment Class).

5. Copy the ispecs for which you wish Component Enabler user interfaces to be built,
into the folder.

6. Right-click the folder, select Properties to display the Properties page, set the
following properties to True:

• Under the General section – set Deployable.

• Under the Build Target Filters section – set Deploy Component Enabler User
Interface, and set the Translation property to the required language.
3–260 3826 5823-008

Developing Applications
7. Under the Component Enabler User Interface section set the following optional
properties:

• Generate Getters and Setters

• Generate Views

• User Defined View Generator. If not specified the default generator is used.

• CE Post Build Script

• Ispec Models Source Language

8. Set other configuration properties as appropriate.

9. Click OK to close the Properties page.

Either right-click the folder and select Build, or from the Build menu, select Build.

Build the System, Reports, and Component Enabler User
Interfaces

To build the system, reports, and Component Enabler user interfaces only, perform the
following:

1. Create a folder (outer folder) as described in Build the system only . Do not initiate the
last build step.

2. Create a Reports folder and Component Enabler folder as described in Build reports
only and Build Component Enabler user interfaces only.

3. Drag the Reports folder and Component Enabler folder into the outer folder.

4. Select the outer folder.

5. Right-click the folder, select Properties, set the Deployable property to True.

6. Either right-click the folder and select Folder Only, then Build, or on the Build
menu, select Folder Only, then Build.

Build AB Suite Client Framework Applications

To build AB Suite Client Framework applications, perform the following:

1. Create a deployment folder.

2. Add a segment into the deployment folder by dragging the segment into the folder.
Alternatively, on the File menu, select Add Existing Item.

3. Set the configuration properties of the deployment folder.

Refer to Creating and Configuring a Deployment Folder for more information on
configuring the properties of the deployment folder.
3826 5823-008 3–261

Developing Applications
4. Set the configuration properties of the segment.

Refer to Configuring the Segment for more information on configuring the properties
of the segment.

5. Right-click the deployment folder, and select Build. Alternatively, on the Build
menu, select Folder Only, and then select Build.

Automating the MCP Build using Host Responder

While building an MCP application using MSBuild.exe command line interface, a waiting
entry could show up asking the MSBuild.exe to provide a valid entry. For example, the
following console text requires the user to enter a positive confirmation to overwrite the
database:

14:57:19 Validating and converting Client supplied files
14:57:20 Generate verify is suspended
14:57:20 *** DATABASE ALREADY EXISTS, TO OVERWRITE ENTER AX YES ELSE NO.
14:57:20 Valid Reply: 5903 & one of AX {reply option},DS
14:57:20 ** For AX reply option(s) see prior messages **

To automate the build process so that a response could be sent to the host automatically
without any human intervention you can use the Host Responder feature of AB Suite.

How: AB Suite Host Responder Works

The AB Suite Host Responder Interface uses standard console input and output which
allows you to define your own handler application for host messages. Following is the
sequence of events that occurs during a build:

1. The Host informs Builder that a waiting entry has been encountered which requires a
response to continue.

2. The Builder calls a user-defined responder (if one has been defined and configured) to
process the request.

3. If the responder can handle the response then it returns the string to pass back to the
host. If it cannot, then it returns an empty string and Builder waits for the entry to be
resolved using a standard interactive Host session.

The Host Responder is a set of code which can be read from the STDIN and written to
the STDOUT. The responder class can be written in C#, Visual Basic .NET, Jscript.NET,
Perl, or Java. For examples of Host Responder class, refer to Examples of Host
Responder Class.

How To: Automate the Build Process for an MCP Platform

In this section we automate the build process of a model in an MCP platform using a
Perlscript responder.
3–262 3826 5823-008

Developing Applications
Using Builder Application

1. Create a host responder class and save the code file (for example Responder.pl) in
the Bin directory of the AB Suite installation (C:\Program Files\Unisys\NGEN\Bin). For
a sample Perl responder class, refer to Examples of Host Responder Class.

2. Copy the file MSBuildSettings.xml located in the Bin directory and save it in a
temporary folder, for example in C:\Temp.

3. Open the MSBuildSettings.xml file from C:\Temp in a notepad and edit the tags in the
MCP platform as follows:

<ResponderAssembly>Perl.exel</ResponderAssembly>
<ResponderClass>Responder.pl</ResponderClass>

4. Follow steps 1 to 5 from the section Build the system, reports and Component
Enabler user interfaces only to configure a deployable Element for MCP.

5. Open command line interface, change the directory to C:\Program
Files\Unisys\NGEN\Bin and type the following command:

Builder.exe /m Meta /re MetaFolder /c "Release|MCP /F
"C:\Temp\MSBuildSettings.xml"

Where,

• Meta is the model name

• MetaFolder is the deployable Element name

• Release is the configuration name

• MCP is the platform we are building to

• C:\Temp\MSBuildSettings.xml is the path for the MSBuildSettings.xml file

Using Visual Studio Environment

1. Create a host responder class and save the code file (for example Responder.pl) in
the Bin directory of the AB Suite installation (C:\Program Files\Unisys\NGEN\Bin). For
a sample Perl responder class, refer to Examples of Host Responder Class.

2. Open Registry Editor.

3. Browse to HKEY_LOCAL_MACHINE\SOFTWARE\Unisys\System
Modeler\Features\Builder and add two String Value keys and enter the values as
follows:

• ResponderClass – Enter Responder.pl in the Value data field

• ResponderAssembly – Enter perl.exe in the Value data field

4. Follow steps 1 to 6 from section Build the system, reports and Component Enabler
user interfaces only to build an MCP application.
3826 5823-008 3–263

Developing Applications
Examples of Host Responder Class

Following are two code examples for a Host Responder class in C# and Perl.

Example 1 C# code for a DBOverwrite Responder

The following code example shows how to code a Responder class as part of a C#
Console Application project:

// Copyright � 2002 Unisys Corporation. All rights reserved. UNISYS CONFIDENTIAL

// It contains two examples to check for the host prompts to confirm overwriting
// the database (auto-response set to YES) and reorganizing the database (auto-
response set to NO).

using System;
using System.Text.RegularExpressions;

namespace SampleResponder
{
/// <summary>
/// Summary description for SampleResponderClass.
/// </summary>
public class SampleResponderClass
{

/// <summary>
/// Main method reads log entries from standard input.
/// If it finds any of interest it writes a response to Standard Output.
//<DB name> CONTROL FILE IN USE -- WHEN DB CLOSED,ENTER OK
//Regex DBExistsPattern = new Regex("CONTROL FILE IN USE -- WHEN DB CLOSED,ENTER

OK");

// Other messages to process...
// ** WHEN DATABASE CLOSED , ENTER <MIX> OK
// POP. OPTIONS WARNING - SEE CFG REPORT MIX
/// </summary>
[STAThread]
static void Main(string[] args)
{

// Create regular expressions for the following two host queries.
// Also create the regular expressions for the valid reply patterns
// for these two host queries.
//
// 14:57:20 *** DATABASE ALREADY EXISTS, TO OVERWRITE ENTER AX YES ELSE NO.
// 14:57:20 Valid Reply: 5903 & one of AX {reply option},DS
//
// NOTE: The * is simply a * because the star char is a Regexp special char
// See the MS documentation on Regex class.
Regex DBExistsPattern = new Regex("*** DATABASE ALREADY EXISTS, TO

OVERWRITE ENTER AX YES ELSE NO");
// Note: the brackets () below indicate groups we want to extract from the

text
Regex ValidDBExistsReplyPattern = new Regex("Valid Reply: ([0-9]*) & one of

AX {reply option},DS");
Regex DBReorgPattern = new Regex("** DO YOU WISH TO RESTART THIS REORG,AX

YES OR NO *");
Regex ValidDBReorgReplyPattern = new Regex("Valid Reply: ([0-9]*) & one of

AX {reply option},DS");

bool DBExistQuestionMatch = false;
bool DBReorgQuestionMatch = false;
// YOU CAN EDIT HERE --> Initialize a boolean variable to indicate if
// the message list consists the host query of interest.
// bool HostQueryQuestionMatch = false;

String sMsg = System.Console.ReadLine();
3–264 3826 5823-008

Developing Applications
// For each of the log lines check against the pattern(s) of interest
while (sMsg != null)
{

// Did we match the DB Exists Pattern?
Match m = DBExistsPattern.Match(sMsg);
if (m.Success)
{

DBExistQuestionMatch = true;
}
// Did we match the Valid Reply Pattern?
m = ValidDBExistsReplyPattern.Match(sMsg);
if (m.Success)
{

if (DBExistQuestionMatch)
{
// Write response to standard output
System.Console.WriteLine(m.Groups[1].ToString() + " AX YES");}

}

// Did we match the DB Reorg pattern?
m = DBReorgPattern.Match(sMsg);
if (m.Success)
{

DBReorgQuestionMatch = true;
}
// Did we match the Valid Reply Pattern?
m = ValidDBReorgReplyPattern.Match(sMsg);
if (m.Success)
{

if (DBReorgQuestionMatch)
{
// Write response to standard output
System.Console.WriteLine(m.Groups[1].ToString() + " AX NO");
}

}
// read the next line from Standard Input

sMsg = System.Console.ReadLine();
}
// If we didn’t detect a response then return nothing allow manual response
}

}
}

Example 2 Perl Code for a Host Responder

Here is similar code written as a Perl script:

This is a perl overwrite responder for the MCP host build

Read the log information from the host via STDIN - the standard input
my(@LogLines) = <STDIN>;

my($FoundDBExists) = 0;
my($LogLine) = "";

Loop through the lines and match on loglines of interest...
foreach $LogLine (@LogLines)
{

scan for DB exists message
if($LogLine =~ /*** DATABASE ALREADY EXISTS, TO OVERWRITE ENTER AX YES ELSE

NO/)
{

$FoundDBExists = 1;
next;

}

if($FoundDBExists)
3826 5823-008 3–265

Developing Applications
{
if($LogLine =~ /Valid Reply: ([0-9]*) & one of AX \{reply option\},DS/)
{

print "$1 AX YES"; # write response to STDOUT
exit(0); # done!

}
}

}
No Response
print "";

Deploying Applications in Windows® Runtime

At the end of a build, a deployment package (msi file) is created, and depending on what
has been set in Builder's configuration properties, transferred to the runtime server, and
installed. Database reorganization may also occur during deployment.

A deployment package consists of one or more files, deployed to one or more runtime
servers. Multiple deployment packages can also be deployed to a single server. A
deployment package can contain separate components, or can be controlled to contain
the elements you want. For diagnostic information collected during the deployment, view
the Deployment.log file located on the runtime server:

<Agile Business Suite Directory>\Data\Public\Log

Note: If a folder containing subfolders is deployed, deployment packages are
created and deployed for each folder. Each deployment package is deployed one at a
time, but in one single operation.

Before you Deploy

Note the following considerations before deploying:

• Complete necessary installations – The Deployment Server and all runtime
infrastructure must be installed on the server to which you wish to deploy. If it is not,
and an application is manually deployed, deployment may appear to succeed,
however is inoperable. The Builder factory for the target platform must also be
installed on the Development environment.

• Deployment Impersonation – By default, the Deployment Server running under the
Application Administrative User identity impersonates the user that invokes the
deployment action to access the MSI package. This requires the invoking user to be
given administrative privileges in the runtime machine and the application
administrative user to be given the “Trust Account for Delegation” privilege at the
domain level when the development environment and runtime environment are on
different machines. Refer to the Agile Business Suite Installation and
Configuration Guide for more information about the delegation privileges.

An alternative method of deployment is by defining the values for the
RuntimeServiceImpersonationLevel registry key where impersonation level is
reduced. Refer to the Agile Business Suite Installation and Configuration Guide for
more information on various impersonation levels.
3–266 3826 5823-008

Developing Applications
• Ensure necessary files exist (applies to redeployments only) – Before rebuilding and
redeploying your application, ensure that all files created with the previous
deployment exist.

• Ensure the target database and database server registrations are created successfully
on the runtime server.

• Stop the System – The system must be stopped before it is deployed. If the system
is running when deployment is attempted, deployment aborts. Use the Admin Tool to
stop a system.

• Enable/Disable the System – To enable your application after deployment, ensure that
is enabled before deployment. Likewise, if it is disabled before deployment, it is
disabled after deployment.

• Check database and application user details – To ensure a successful deployment,
check that database and application user details are correct.

Checking Database and Application User Details

If deployment is initiated using Builder or the Administration Tool, database and
application user details entered (such as name, password, domain, etc) are checked. If
they are incorrect, deployment aborts.

If deployment is performed manually, no checks are performed. If database and
application user details entered are incorrect, deployment appears to succeed, however
the application is inoperable.

If details entered are correct, and the database or Segment COM+ component is being
deployed, the application must be manually stopped and disabled before deployment
proceeds. You are unable to connect to the application until deployment has completed.

Deploying with Reduced Impersonation Level

If the RuntimeServiceImpersonationLevel registry key option is used for deploying a
system, you can access the deployment package at the following two levels:

• As an administrative user not having delegation privileges

• As an application administrative user having delegation privileges

When you opt to install a package with an administrative user not having delegation
privileges, the administrative user can access the MSI package without impersonating the
user that invokes the deployment. If the Package Intermediate Directory is a local path in
the developer environment or on the runtime server, no prior settings are required.
However, access permissions should be explicitly provided to the administrative user if
the Package Intermediate Directory is a shared network path. In the network path, you
must provide the following privileges to an administrative user at the network location:

• Permission to access (Read/Write) the shared builder output path from the network.
3826 5823-008 3–267

Developing Applications
• Add to the “Network Access” group of the remote computer

Note: You can add a user to the Network Access group from Control Panel >
System and Security > Administrative Tools > Computer Management.
In the Computer Management window, navigate to Local Users and Groups >
Groups. Double-click Network Access and then click Add.

• Have “Access this computer from the network” privilege.

Note: You can grant a user “Access this computer from the network” privilege
from Control Panel > System and Security > Administrative Tools >
Local Security Policy. In the Local Security Policy window, navigate to Local
Policies > User Rights Assignment. Double-click Access this computer from
the network and then click Add User or Group.

When you opt to install a package with application administrative user having delegation
privileges, the deployment process is initiated by the application administrative user that
invokes the deployment process. If the Package Intermediate Directory is located on the
runtime server or located on a shared network path, you must provide the following
privileges to the application administrative user:

• Permission to access (Read/Write) the shared package intermediate path from the
network.

• Add to the “Network Access” group of the remote computer.

• Have “Access this computer from the network” privilege.

Note: The privileges required for an administrative user without delegation
privileges are same as those that are required for an application administrative user
with delegation privileges, except the following privileges that needs to be provided:

• Enable the computer and user accounts to be trusted for delegation

• Impersonate a client after authentication

Rebuilding or Redeploying

If you wish to rebuild or redeploy in the future, do not delete files created in your
deployment system directory. If files are deleted and cannot be recovered, your
application must be removed using the Windows Installer CleanUp Utility.

To redeploy your application manually on Windows hosts, before redeploying perform the
following:

1. Stop any builds.

2. Disable the system.

3. Use the Windows Installer Cleanup Utility.

4. Modify the NGRuntime.XML to remove the system entry.

5. Delete the COM+ component.
3–268 3826 5823-008

Developing Applications
How To: Control Deployment Package Contents

To control deployable outputs, perform the following:

1. Create a folder. Each deployable folder creates a separate file.

2. Copy the elements that you wish to build into the folder.

3. Configure the folder using the Build Target Filter properties .

4. Right-click the folder and select Build, or Folder Only, then Build.

Deploying Elements Separately

Application components (core system), databases, reports, user interfaces, and external
files can all be deployed separately.

Use top-level folder configuration properties to specify which elements should be
grouped together in a deployment package.

If a report class, or folder is selected for building, ensure the configuration properties set
for the folder matches the top-level deployable Element properties. For example, ensure
the deployment paths and database host matches the correct system.

Including External Installer files

Using Configuration Properties, you can bundle and execute external files within selected
deployment packages. Builder typically binds external files as nested files.

Note: External files must be capable of running without user input, otherwise
deployment may appear to hang when it is actually waiting for input for an external
package.

Reorganizing a Database

Database reorganization involves adding, modifying, or deleting application specific
database elements to produce new or modified database tables required to support your
applications.

If your application is transferred to a remote server by using the Default method, database
reorganization automatically occurs during application installation. Otherwise, databases
can be manually reorganized. Errors encountered during database reorganization are
logged to the DBReorg.log file. By default, this file is located in:

<NGEN directory>\Data\Public\Log

Since an existing schema does not exist for new deployments, database reorganization is
responsible for creating required database elements.
3826 5823-008 3–269

Developing Applications
Notes:

• Before database reorganization occurs, it is recommended that you create a full
database backup.

• To reorganize a database, you must have sufficient user privileges on both the
database reorganization module, and the targeted database.

User-maintained Tables

A user-maintained table provides database performance features that may not be
available with Developer.

It is your responsibility to ensure that user-maintained tables are consistent and
reorganized with corresponding class definitions.

Restrictions

A consistency check cannot be performed when database reorganization is in progress.

Manual Reorganization

To manually reorganize a database, use the following command line argument:

DBReorgEXE.exe <alias> <dbName> <owner> <retainMode> <execMode> <folder>

Where,

• alias is the name of the Database Server Registration for the system database, as
created by the database administrator using the Administration Tool (for example,
default).

• dbName is the name of the database to be reorganized.

• owner is the schema owner's user name.

• retainMode is whether the existing database is to be retained for the operation (YES
or NO).

• execmode is the function you want to perform on the database:

– CHECK – performs a consistency check on the database.

– PLAN – builds and prints the reorganization plan. The reorganization plan is a
collection of actions that reorganize the database.

– REORG – completes the reorganization of the database.

– DROP – removes the database tables.

• UMTCHECK – runs a user maintained consistency check on the database

• folder is the directory where system files such as DatabaseSchema.xml are located.
3–270 3826 5823-008

Developing Applications
Once a database is reorganized, one of the following values is displayed:

• 0 – reorganization has started, and has successfully completed.

• 1 – reorganization has started, and is unsuccessful.

• 2 – reorganization has failed to start.

Note: Stop the system before attempting to manually reorganize a database.

How To: Allow Recovery from Failed Reorganization

Recovery from a failed Runtime database reorganization has been implemented for
Debugger and Windows® Runtime with Microsoft SQL Server. When the option is
selected on the Build Dialog (Windows) or Debugger Configuration Property (Debugger), a
backup of the Runtime database occurs before the reorganization occurs.

If the reorganization fails, the Runtime database is restored to the state prior to the
reorganization.

This allows the error causing the reorganization failure to be corrected and the system
built successfully. If the option ‘Allow Recovery From Failed Reorganization’ is checked,
should the database reorganization fail, the Runtime database is restored to the state
immediately before the build was done.

Otherwise, if the ‘Allow Recovery From Failed Reorganization’ is unchecked, should the
reorganization fail, the Runtime database may be rendered unusable.

By default, the option is unchecked for Windows® Runtime and is set to true for
Debugger.
3826 5823-008 3–271

Developing Applications
Performance

The performance overhead is dictated by the Microsoft SQL Server backup procedures
and the size of the database.

Note: This feature should not be considered a backup facility for your data, as the
backup files are not retained permanently after a successful reorganization. If you
require your data to be regularly backed up, SQL Server's backup functionality is
recommended to maintain a regularly updated backup set.

Transferring a Deployment Package

Deployment packages are transferred to runtime servers by:

• Using the default method in Developer.

• Manually copying deployment packages from the Staging area to the runtime server.

Once your deployment package has been transferred, it can be installed .

Note: Win Form and Component Enabler Java deployment packages cannot use the
default method. Use manual transfer instead.

Default Method

Use default deployment method by using the Build, or Folder Only, Build option in
Developer. Once an application is built, deployment and installation automatically occurs
on the runtime server (where the Stop Deployment After configuration properties
includes transfer and install phases).

Manual Method of Deployment

To manually transfer a deployment package, you can either copy the deployment package
from the Staging area to the runtime server, or type the command line argument. Once
transferred, it can be installed .

Alternatively, there are other methods to transfer your deployment package.

Installing a Deployment Package

A deployment package in Windows is a Microsoft Installer (msi) package. It is normally
found in the Package Intermediate Directory folder, specified in the Deployable Element
configuration properties. While other msi packages can usually be installed by double-
clicking on the file, Agile Business Suite deployment packages require additional
command line arguments, which are not passed to the package if it is invoked by double-
clicking on the file.

It is recommended, where a default deployment operation is not feasible, manually
deploy the package and install it using MSIEXEC command line arguments as described
in Using MSIEXEC command line arguments section.
3–272 3826 5823-008

Developing Applications
Notes:

• Each application must be installed in its own directory. Do not install multiple
applications in the same directory.

• An application cannot be installed to several different databases on the same
server. If an application is updated (that is, it is deployed to a server that hosts a
previously deployed installation), and the target database of the new application
is different to the database used by the installed application, the application
creates a new database. The old database is not removed. Any existing data it
contains must be migrated manually.

• Once a deployment package has been deployed, do not delete any deployment
created files.

Using MSIEXEC Command Line Arguments

The /i parameter of MSIEXEC command line is used to install the Agile Business Suite
deployment package.

Syntax

msiexec /i "<PackageGUID> or <complete MSI Name with its path>" <UserName>
<Password> <Domain>

Following table lists the various parameters of MSIEXEC command and their description:

Parameter Description

/i Installs the Agile Business Suite deployment package. You can either
pass the msi file along with its path or the GUID of the deployment
package.

If the system is already installed, you are prompted to repair or remove
the installed system.

Examples:

msiexec /i C:\Temp\StagingArea\Sample.msi

msiexec /i {D95F933C-4F0B-11DD-867E-444553544200}

/x Uninstalls an installed system. You can either pass the msi file along with
its path or the GUID of the deployment package. If system is not already
installed, the following message is displayed - “This action is only valid
for the products which are currently installed”.

Examples:

msiexec /x C:\Temp\StagingArea\Sample.msi

msiexec /x {D95F933C-4F0B-11DD-867E-444553544200}

/passive It can be passed with /i or /x. The /passive parameter installs, repairs or
removes the installation in passive mode. The progress bar is visible
during the installation and uninstallation.

Examples:

msiexec /passive /i C:\Temp\StagingArea\Sample.msi

msiexec /passive /x C:\Temp\StagingArea\Sample.msi
3826 5823-008 3–273

Developing Applications
Repairing and Uninstalling

While the Deployment Package is installed via Windows Installer, it cannot be normally
Repaired or Removed due to dependency complexities – especially when subsequent
report deployments are made. It is highly recommended that you use the Admin Tool to
uninstall systems where possible. Where this is not possible, use the Microsoft Fix it
from the Microsoft Installer SDK to remove the systems. Note that you need to manually

/q Installs and uninstalls in quiet mode.

Examples:

msiexec /q /x C:\Temp\StagingArea\Sample.msi

msiexec /q /x C:\Temp\StagingArea\Sample.msi

/j Installs the system for all the users of the machine but the user must
have logged on as administrator to install the system.

Example:

msiexec /j {C:\Temp\StagingArea\Sample.msi}

/norestart Do not restart once the Installation/Uninstallation is over.

/a Creates a network image of the installable msi in the path mentioned in
the folder property “Package Installation Directory”

Example:

msiexec /a C:\Temp\StagingArea\Sample.msi

/forcerestart Prompts you to restart after the Installation/Uninstallation.

Example:

Msiexec /forcerestart /i C:\Temp\StagingArea\Sample.msi

DropDB Specifies whether or not to retain the existing database. It can be set to a
value of TRUE or FALSE. By default, the value for this parameter is
FALSE. TRUE indicates retain existing database and False indicates do
not retain existing database.

Example:

C:\Temp\StagingArea\Sample.msi userCode=appuser domain=.
password=app1user# DropDB=TRUE

EnableAfterDeploy Specifies that the COM+ system generated by AB Suite would be
enabled if it is set to true.

Example:

C:\Temp\StagingArea\Sample.msi userCode=appuser domain=.
password=app1user# enableAfterDeploy=TRUE

REPORT Specifies that the whether the report should be deployed or not.

It can be set to a value of 0 or 1. 0 indicates that deploy reports is false. 1
indicates deploy reports is true.

Example:

msiexec.exe /forcerestart /i C:\Temp\StagingArea\Sample.msi
userCode=appuser domain=. password=app1user# REPORT=0

Parameter Description
3–274 3826 5823-008

Developing Applications
delete the COM+ component as it can be left behind if locked by residual database
operations (such as updating system status) during the uninstallation. Refer to Removing
an Invalid System for more information.

Note: If your application is uninstalled, it must first be stopped and disabled.

To create specific uninstallation instructions, use Builder's configuration properties . For
example, leave user-maintained tables untouched during uninstallation.

Removing an Invalid System

You can remove an invalid system from the AB Suite environment by using Microsoft Fix
it.

To remove an invalid system, perform the following:

1. Run Microsoft Fix it.

Read information about running Microsoft Fix it at the following website:

http://support2.microsoft.com/mats/program_install_and_uninstall

2. Delete the COM+ component from Component Services. To do this open Runtime
Administration Tool, Console Root ,Component Service , My Computer, COM+
Application and delete the COM+ Application from the list.

3. Right-click the AB Suite Runtime Manager and click Shutdown.

4. Delete the database via SQL Server Enterprise Manager.

5. Delete SQL Login for the system via SQL Server Enterprise Manager (must delete
corresponding DB first).

Administrative Installation

An administrative installation allows multiple users to install your application from a
network drive.

To install, users simply locate the deployment package, double-click it, then complete the
installation wizard. No registry entries are made, shortcuts created, and the application
cannot be launched.

Note: You need to supply the same user name and password credentials for
Administrative installations, as they do for default and manual installations.

Warning
It is not recommended to use this cleanup procedure as there is a substantial
risk of environment corruption if you are not familiar with the cleanup
procedure. However, if you still want to perform the cleanup procedure,
ensure to back up the runtime data and any custom files before running
Microsoft Fix it.
3826 5823-008 3–275

Developing Applications
Programmatic Use of Deployment Server Component

In certain circumstances, direct use of the deployment server through its COM interface
is preferable over the use of Developer when deploying systems and reports. The
deployment server can be invoked to deploy generated application MSI files, and requires
the creation of the DeploymentServer object. A DeploymentServer object is used to
access properties and methods on the server. Following example explains the creation of
a DeploymentServer object.

An AB Suite system contains an OuterFolder, an InnerFolder (including all the ispecs), and
ReportFolder with all the reports.

If you do a generate-install, the system is deployed and two MSIs are created in the
Package Intermediate Directory if specified or in the packages folder of the Builder output
directory. Now, if you make any changes to the ispecs in the painter and do a generate-
generate on the OuterFolder, MSIs are created in the Builder Output directory. To make
these changes made to the ispecs available without affecting the reports, you can use the
following VB script.

Deploying a System

To determine the PROGID of the deployment server, use the Administrative Tool and
locate the Prog id for the DeploymentServer object.

dim SIretcode
‘Create an object of Deployment Server’
set DSobj = CreateObject(DEPLOYMENTSERVER_PROGID)
SIretcode = DSobj.StartInstall("ApplicationFolder", "<Package Intermediate
Directory>\ApplicationFolder.msi", "userCode=uuu domain=ddd password=ppppp
dropBS=TRUE", nothing)
If SIretcode = 0 then
WScript.Echo "Deployment Success"
Else
WScript.Echo "Deployment Failed with error code" & SIretcode
End If

where,

• ApplicationFolder – Name of the deployable folder that contains the segment.

• Package Intermediate Directory – The folder in which the generated application MSI
files are located. This value must correspond to the Package Intermediate Directory
configuration setting in the deployable Element.

• userCode =<uuu> –”<uuu>” is the Application User account's name that is used as
the deployed application's identity.
3–276 3826 5823-008

Developing Applications
• domain=<ddd> – “<ddd>” is the Application User account's domain that is used as
the deployed application's identity.

• password=<ppp> –”<ppp>” is the Application User account's password that is used
as the deployed application's identity

If changes are made to the reports (adding a label) and ReportFolder is built, an MSI for
reports, ReportsFolder.MSI is created. Use the following VB script to deploy the reports
MSI (without affecting the application folder).

Deploying a Report

To determine the PROGID of the deployment server, use the Administration Tool and
locate the Prog id for the DeploymentServer object.

dim SIretcode
‘Create an object of Deployment Server’
set DSobj = CreateObject(DEPLOYMENTSERVER_PROGID)
SIretcode = DSobj.StartInstall("ReportsFolder",
"<ReportsMsiPath>\ReportsFolder.msi", "userCode=uuu domain=ddd
password=ppp", nothing)
If SIretcode = 0 then
WScript.Echo "Deployment Success"
Else
WScript.Echo "Deployment Failed with error code" & SIretcode
End If

where,

• ReportsFolder – Name of the report folder in the Application Folder.

• ReportsMsiPath – The folder in which the generated report MSI files are located. This
value must correspond to the path where the report MSI files are located.

• userCode =<uuu> –”<uuu>” is the Application User account's name that is used as
the deployed application's identity.

• domain=<ddd> – “<ddd>” is the Application User account's domain that is used as
the deployed application's identity.

• password=<ppp> –”<ppp>” is the Application User account's password that is used
as the deployed application's identity.

Notes: Follow the instructions to execute either of the scripts given above.

1. Create a text file, paste the code for deploying a system, and save the file with
extension .vbs.

2. Change the directory paths used in the script to the directory paths and MSI
names as applicable for your machines.

3. From the command prompt, navigate to the path where the script file is saved.

4. Execute the script with the following command:
C:\>cscript myVBScript.vbs

The deployment server script determines whether to make a partial or full installation, and
accordingly execute MSIEXEC command by passing suitable parameters.
3826 5823-008 3–277

Developing Applications
Deploying an Application in MCP Runtime

MCP Builder communicates with the Application Builder server (NGEN27/APPL_BLD_61)
to deploy an application to the selected host. Refer to the Agile Business Suite Runtime
for ClearPath MCP Administration Guide for more information on configuring and
running the Application Builder server.

Before you Deploy

For an MCP configuration, ensure the following before deploying an application:

• Ensure that MCP Runtime is installed on the host.

• If Interim Corrections have been released, ensure that an Interim Correction (IC)
compatible with the MCP Builder client has been installed.

• If there are multiple MCP Runtime installations, ensure the Application Builder server
for the specified MCP Runtime installation is running on the host.

• For re-deployments where a reorganization of the database occurs, ensure that you
are able to stop the application when requested. The exception to this is a database
reorganization using a reorganization type of REORGDB with the AUTOSWAP
property set to true.

Build and Deployment Configuration Properties

Following is a list of configuration properties sections that affect build and deployment
processes:

• Build Target Filter

• Component Enabler User Interface

• Configure/BNA

• Connection

• DASDL

• Default DASDL

• Debugging

• Environment

• External

• General Configuration

• Installation

• National Support

• NAP Direct Interface

• OLTP

• Pack Allocation
3–278 3826 5823-008

Developing Applications
• Persistence

• Profile DASDL

• Remote Database

• Runtime Options

• Runtime Transfer Utility

• Subsystem

• Winform User Interface

All Agile Business Suite configuration properties are listed in this documentation, but
some may be associated with only certain platforms, and may only be available for the
platform to which you are generating. All configuration properties can be reset to default
or initial values. You can reset the value of a simple entry field, predefined entry field, and
an entry field with a user interface. A predefined entry field includes all the configuration
properties where you can select the values from the available list.

Note: All property values appear in bold in the Property Pages window, if they are
different from the defined default values.

Configuration properties are directly associated with elements in the Class View window
in Visual Studio.

To edit an element's configuration properties, perform the following:

1. Select an element from the Class View window.

2. Right-click the element, then select Properties.

To reset a simple and predefined configuration property field value to a default or initial
value, perform the following:

1. Select the property in the right pane of the Property Pages window that needs to be
reset. For example, Data Set Buffers, Runtime Behavior of Unavailable
Commands, property of a Segment. Refer to Default DASDL, Runtime Options for
more information on Segment properties.

The property field is highlighted and a list appears on the value field. The property
value appears in bold.

2. Select list option; inherit from parent or default to reset the property to a
default value.

3. Click OK or Apply.

The property field value is reset to the default value.

To reset a configuration property that includes a user interface, perform the following:

1. Select the property field in the right pane of the Property Pages window that includes
a user interface. For example, Internal DASDL Options property of a Segment.
Refer to DASDL for more information on DADSL Segment properties.
3826 5823-008 3–279

Developing Applications
The property field is highlighted and a list appears on the value field with two options,
inherit from parent or default and Edit…. You can either:

a. Select list option; inherit from parent or default to reset the property to a
default value.

b. Select list options, Edit… to open the relevant user interface and edit the value
of this property.

2. Click OK or Apply.

Note: The drop-down list gets enabled only for the properties which has a User
Interface defined.

Build Target Filter

Property Function

Deploy Application
Components

Specifies whether Application (core system) Component(s) are
deployed.

By default, this property is set to False.

This property is enabled if Deployable is set to True.

This property is specific to Folders not contained within a segment.

Deploy Component
Enabler User Interface

Specifies whether Component Enabler user interface(s) are deployed.

By default, this property is set to False.

This property is enabled if Deployable is set to True.

This property is specific to Folders contained within a segment.

Deploy Database Specifies whether the database is deployed.

By default, this property is set to False.

This property is enabled if Deployable is set to True.

This property is specific to Folders not contained within a segment.

Deploy Legacy Text
Interface

Specifies whether character screens or Legacy Text interface(s) are
deployed.

By default, this property is set to True.

This property is enabled if Deployable is set to True.

This property is specific to Folders only.

Deploy Reports Specifies whether Report(s) are deployed.

By default, this property is set to False.

This property is enabled if Deployable is set to True.

This property is specific to Folders only.

Deploy SQL views Generates SQL views for all the persistent components (for example,
Events, Profiles, etc).

When set to True, it sets the view for all the persistent components.
3–280 3826 5823-008

Developing Applications
Component Enabler User Interface

Deploy Winform User
Interface

Specifies whether Winform user interface(s) are deployed.

By default, this property is set to False.

This property is enabled if Deployable is set to True.

This property is specific to Folders only.

External Installer Files Specifies the location of external installer files to be included in the
deployment.

Type the full path names for any files to be included in the folder
package. Use semi-colons to separate multiple path names. For
example,

\\network\my folder\installer1.msi; C:\mylocalfolder\installer2.msi

By default, this property is empty.

This property is enabled if Deployable is set to True, and Stop
Deployment After is not set to Generate.

This property is specific to Folders only.

Generate Runtime
Transfer Utility File

Specifies whether to build the MCP Runtime Transfer Utility (RTU) file.

By default, this property is set to False.

This property is enabled if Deployable is set to True.

This property is disabled while any of the other deploy properties are
enabled.

This property is specific to Folders only.

Translations Specifies a list of languages that can be used by the system. The MCP
platform usesonly the first 15 of these. There is a wrapper for this so
that users can edit the languages.

Semi-colons are used to separate translations.

By default, this property is set to the primary language.

This property is enabled if Deployable is set to True.

This property is specific to Folders only.

Property Function

Application Name Specifies the name of the Component Enabler User Interface
application.

The following naming conventions apply:

• Component Enabler reserved words cannot be used.

• The first character must be an alphabet or an underscore.
Subsequent characters can be alphanumeric or underscore.

• Maximum length is 30 characters.

By default, this property is empty.

This property is specific to Segments only.

Property Function
3826 5823-008 3–281

Developing Applications
CE Output Directory Specifies the location of the output directory to which the
generated files are written. The default value, if no directory is
specified, is the Temp directory in the TMP Environmental Variable.

This property is specific to Segments only.

CE Post Build Script Specifies the location of an optional script or batch file to run on
completion of the build.

This property is specific to Folders contained within a segment.

Generate Getters And
Setters

Specifies whether Getters and Setters are used.

Getters and Setters are extra methods on the field objects and take
the form get<fieldname> and set<fieldname>.

By default, this property is set to False.

This property is enabled when:

• Deployable is set to True.

• Deploy Component Enabler User Interface is set to True.

This property is specific to Folders contained within a segment.

Generate Views Specifies whether presentation files (For example, Java, Visual
Basic etc) are generated.

By default, this property is set to True. If set to False, only
IspecModel files are created and compiled.

This property is enabled when:

• Deployable is set to True.

• Deploy Component Enabler User Interface is set to True.

This property is specific to Folders contained within a segment.

Ispec Models Source
Language

Specifies the source language in which to generate the Component
Enabler IspecModels, ComponentList and PublicMethodList. The
options are Java, C#, or both.

By default, this property is set to C# and Java.

This property is specific to Folders contained within a segment.

Package Prefix Specifies the name and type of company in World Wide Web
format. For example, com.unisys.

The following naming conventions apply:

• Component Enabler reserved words cannot be used.

• The first character must be alpha, or an underscore. Subsequent
characters can be alphanumeric, period, or an underscore.

• Maximum length is 60 characters.

By default, this property is empty.

This property is specific to Segments only.

Property Function
3–282 3826 5823-008

Developing Applications
Configure/BNA

User Defined Public
Segment Method
Generator Java Class

Specifies the Java Class name of the generator that is used to
generate interface classes for a segment’s public methods.

If a name is not specified, the default generator is used to generate
interface classes.

The following naming conventions apply:

• Component Enabler reserved words cannot be used.

• The first character must be alpha, or an underscore. Subsequent
characters can be alphanumeric, period, or an underscore.

• Maximum length is 120 characters.

By default, this property is empty.

This property is enabled when:

• Deployable is set to True.

• Deploy Component Enabler User Interface is set to True.

This property is specific to Folders contained within a segment.

User Defined View
Generator

Specifies the .NET based view generator dynamic linked library that
is used to generate “other” presentation files.

If a name is not specified, a default Presentation Client generator is
used, and IspecView.Java files are created and compiled.

If a name is specified, “other” presentation files are created and
IspecView files and classes are not created and compiled.

The following naming conventions apply:

• Component Enabler reserved words cannot be used.

• The first character must be alpha, or an underscore. Subsequent
characters can be alphanumeric, period, or an underscore.

• Maximum length is 120 characters.

By default, this property is empty.

This property is enabled when:

• Deployable is set to True

• Deploy Component Enabler User Interface is set to True.

• Generate Views is set to True.

This property is specific to Folders contained within a segment.

Property Function

Usercode Specifies the usercode for the BNA Generate job.

This property is limited to a maximum length of 17 alphanumeric
characters.

By default, this property is empty.

This property is enabled when Configure Set Type is set to BNA
Generate.

This property is specific to Segments only.

Property Function
3826 5823-008 3–283

Developing Applications
Access Code Specifies the access code for the BNA Generate job.

This property is limited to a maximum length of 17 alphanumeric
characters.

By default, this property is empty.

This property is enabled when Configure Set Type is set to BNA
Generate.

This property is specific to Segments only.

Charge Code Specifies the charge code to be used for application accounting
purposes. All resource usage by the BNA Generate is debited to this
charge code.

This property is limited to a maximum length of 45 alphanumeric
characters.

By default, this property is empty.

This property is enabled when Configure Set Type is set to BNA
Generate.

This property is specific to Segments only.

Configure Set Type Provides the user with a single option to specify what the
configuration is used for.

The following options are available for this property:

• BUILD – Indicates that the configure set is used for a normal
build

• CONFIGURE – Indicates that the configure set is used for
configuring a target system with Runtime Transfer.

• RDB – Indicates that the configure set is used to specify a
Remote DB secondary database and system.

• BNA Generate – Indicates that the configure set is used to create
a BNA Generate system. (Not implemented in this release).

This property is specific to Segments only.

Configure Work Pack Specifies the name of the pack on which the Configuration work
files are located on the target host.

This property is limited to a maximum length of 17 alphanumeric
characters.

By default, this property is empty.

This property is disabled when Configure Set Type is set to BUILD.

This property is specific to Segments only.

DMSII Pack Specifies the name of the pack where an alternative version of DMS
II software is located. This location and the value entered in the
DMSII Usercode property identify the alternative version of DMS II
to be used by the BNA Generate.

This property is limited to a maximum length of 17 alphanumeric
characters.

By default, this property is empty.

This property is enabled when Configure Set Type is set to BNA
Generate.

This property is specific to Segments only.

Property Function
3–284 3826 5823-008

Developing Applications
DMSII Usercode Specifies the usercode for use with an alternative version of DMS II
software. This usercode and the value entered in the DMS II Pack
field identify the alternative version of DMS II to be used by the BNA
Generate.

This property is limited to a maximum length of 17 alphanumeric
characters.

By default, this property is empty.

This property is enabled when Configure Set Type is set to BNA
Generate.

This property is specific to Segments only.

Generate Family Specifies the desired family specification to ensure that the required
DMSII files and compilers are visible to the generate process.

You must make an entry in this field if:

• The system software required during the generation is not
resident on either the primary or alternate pack family of the
WFL usercode family.

• Some or all of your installed host software is installed on a pack
family called DISK

This property is limited to a maximum length of 44 alphanumeric
characters.

By default, this property is empty.

This property is enabled when Configure Set Type is set to BNA
Generate.

This property is specific to Segments only.

Generate Work Pack Specifies the location for use with BNA generate. All files produced
by the BNA generate reside on this location.

This property is limited to a maximum length of 17 alphanumeric
characters.

By default, this property is empty.

This property is enabled if Configure Set Type is set to BNA
Generate/Configure.

This property is specific to Folders only.

MODEL Base
Configuration

Specifies the configuration name of the Base System, when using
the DMS Model facility. The Base System configuration must be a
valid configuration.

The Base System is the system on which the modeled database is
modeled or based.

This property is limited to a maximum length of 10 alphanumeric
characters.

By default, this property is empty.

This property is enabled when Configure Set Type is set to
CONFIGURE.

This property is specific to Segments only.

Property Function
3826 5823-008 3–285

Developing Applications
Retain Existing Database Specifies whether to retain an existing database, or initialize a new
database.

The following options are available for this property:

• Retain Existing – Retains the existing database already on the
target host

• No Retain Existing – Initializes a new database

• Configure New Clone – Initializes a new cloned secondary
database, if you are configuring a standby System to support a
secondary database.

• Retain Existing Cloned – Retains existing cloned secondary
database, if you are configuring a standby System to support a
secondary database.

By default, this property is set to Retain Existing.

This property is disabled when Configure Set Type is set to BUILD.

This property is specific to Segments only.

Target Host Name Specifies the name of the target host to which the application is
transferred and configured.

This property is limited to a maximum length of 17 alphanumeric
characters.

By default, this property is empty.

This property is disabled when Configure Set Type is set to BUILD.

This property is specific to Segments only.

Host Builder Usercode Specifies the usercode of the Runtime software on the target host.

This property is limited to a maximum length of 17 alphanumeric
characters.

By default, this property is empty.

This property is disabled when Configure Set Type is set to BUILD.

This property is specific to Segments only.

Host Builder Pack Specifies the name of the pack on which the Runtime software is
located on the target host.

This property is limited to a maximum length of 17 alphanumeric
characters.

By default, this property is empty.

This property is disabled when Configure Set Type is set to BUILD.

This property is specific to Segments only.

Property Function
3–286 3826 5823-008

Developing Applications
Connection

Property Function

Accesscode Specifies a valid ClearPath MCP accesscode set on the target host.

Note: You must enter the password associated with the specified
accesscode when you request a generate. This password for the
accesscode is stored in a tmp file for the duration of your NEGN
session.

This property is limited to a maximum length of 17 alphanumeric
characters. The first character must be an alpha or a numeric character.

By default, this property is empty.

This property is enabled if Deployable is set to True.

This property is specific to Folders only.

Chargecode Specifies a valid ClearPath MCP charge code set on the target host.

This property is limited to a maximum length of 60 alphanumeric
characters. This property can contain the slash character.

By default, this property is empty.

This property is enabled if Deployable is set to True.

This property is specific to Folders only.

FTP Chargecode Specifies the chargecode for the FTP Server software on the specified
target host.

This property is limited to a maximum length of 60 alphanumeric
characters. This property can contain the slash character.

By default, this property is empty.

This property is enabled if Deployable is set to True.

This property is specific to Folders only.

FTP Usercode Specifies a valid Usercode for FTP connection to the host. This Usercode
must be defined as a valid user in the FTP Server software on the
specified target host.

Before you generate a System or Report, you must first log into the
Builder Server using MCP login details. The information required to log in
is determined by the target host. In addition, an FTP session must be
established for all hosts and the FTP login details must be specified.

Note: You should enter the password associated with the specified
FTP usercode when you request a generate. This password for the
FTP usercode is stored in a tmp file for the duration of your NEGN
session.

This property is limited to a maximum length of 17 alphanumeric
characters.

By default, this property is empty.

This property is enabled if Deployable is set to True.

This property is specific to Folders only.
3826 5823-008 3–287

Developing Applications
MCP FTP Site
Command

It is used to customize how the generated files are FTP’d to the host.
The user can enter either of the two commands for text data:

QUOTE SITE MAPIN TEXT <text options>

TEXT <text options>

Users can use all options except FILekind and RECordlength, which are
controlled by the generate process.

Users may use the MCP site MAPIN command to specify the character
set translation used in the file transfer.

 Refer to the TCP/IP Distributed Systems Services Operations Guide
in the Support website for more information on the MAPIN command.

MCP Kana Mode Specifies the Kana mode for MCP Japanese hosts only.

This property is set to one of the following values according to the
character set used on the target ClearPath MCP host.

• V24PlusK

• V24MinusK

By default, this property is set to V24PlusK.

This property is enabled if Deployable is set to True.

This property is specific to Folders only.

Port Number Specifies the port number used for logging on to Builder Server. This
number should match the port configured for the Builder Server.

Before you generate a System or Report, you must first log into the
Builder Server. The information required to log in is determined by the
target host.

By default, this property is set to 8600.

This property is enabled if Deployable is set to True.

This property is specific to Folders only.

Usercode Specifies a valid ClearPath MCP user code set on the target host.

Note: You should enter the password associated with the specified
Usercode when you request a generate. This password for the
Usercode is stored in a tmp file for the duration of your NEGN
session.

This property is limited to a maximum length of 17 alphanumeric
characters. The first character must be an alpha or a numeric character.

By default, this property is empty.

This property is enabled if Deployable is set to True.

This property is specific to Folders only.

Property Function
3–288 3826 5823-008

Developing Applications
DASDL

Property Function

$-Options (DASDL
Compiler)

Specifies the DASDL compiler options. The value is a free format
string field that allows the user to specify compiler options that is
included in the DASDL source. Text entered in this field is inserted in
the DASDL source file, after the default $-.

Refer to the Data and Structure Definition Language (DASDL)
Programming Reference Manual for a list of DASDL compiler
options.

This property is limited to a maximum length of 63 alphanumeric
characters.

By default, this property is empty.

This property is specific to Segments only.

Addresscheck Required Specifies whether a DMSII addresscheck statement is generated.

The following options are available:

• DMSII Default (default setting): ‘ADDRESSCHECK’ not
generated.

• Yes: ‘ADDRESSCHECK SET’ is generated.

• No: ‘ADDRESSCHECK RESET’ is generated.

If you attempt to reset this property for an application that has
previously been set and generated, a warning message is displayed.
Changing the property value results in a DASDL compile error.

By default, this property is set to DMSII Default.

This property is specific to Segments only.

Allowed Core Specifies the amount of memory (in number of words) needed for
database buffers.

By default, this property is set to 80000. The numbers range from
2000 to 268435455.

This property is specific to Segments only.

Areasize in Records Specifies the areasize in records.

By default, this property is set to 0. The numbers range from:

• 0 to 1048575 for Classes.

• 1 to 9999 for Profiles.

This property is specific to <<Ispec>> Classes, Vanilla Classes,
EventSets and Profiles only.
3826 5823-008 3–289

Developing Applications
Audit Sections Specifies the number of audit trail sections for a segment and
generates a statement for the defined sections.

This property is enabled when the Extended Edition property of a
segment is set to True.

The following rules apply to the value of this property:

• If the Audit Sections property is greater than one and the
Extended Edition property of a segment is set to True, a
statement for the section is generated, such as SECTIONS = nn.

• If the Audit Sections property is equal to zero or one or the
Extended Edition property of a segment is set to False, a
statement for the section is not generated.

By default, this property is set to 0. The numbers range from 0 to 63.

This property is specific to Segments only.

Blocksize in Records Specifies a value for the Blocksize to override the default defined by
the host.

By default, this property is set to the calculated default value. The
numbers range up to 4095.

This property is specific to <<Ispec>> Classes, Vanilla Classes, and
EventSets only.

Control Point Specifies the DMSII Control Point.

By default, this property is set to 2. The numbers range from 1 to
4095.

This property is specific to Segments only.

DumpEncrypt Specifies whether it enables automatic tape encryption during a
DMUTILITY DUMP operation. If DumpEncrypt is set to True and
EncryptType property is not specified, the default EncryptType, TDES,
is used.

By default, this property is set to False.

This property is specific to Segments only.

Note: The Obfuscate Level configuration property must be set
to 0 before DumpEncrypt can be used.

EncryptType Specifies the encryption algorithm that the DMUTILITY and
COPYAUDIT software use when copying files to tape.

The following options are available for this property:

• TDES

• AES256

• Blank

By default, this property is set to Blank.

This property is specific to Segments only.

Property Function
3–290 3826 5823-008

Developing Applications
Filler Size Specifies the size of the filler area to be allocated at the end of the
database structure. This size reduces as attributes are allocated which
uses the filler space.

You may optionally specify a filler area to be allocated at the end of
each database record on a structure relating to the Event Set or an
<<ispec>> class or a vanilla class. This filler area means that new
Attributes can be added to an <<ispec>> class without causing
database reorganization. Each new Attribute is allocated space in the
filler area and the total size of the record does not change.

This property is limited to a maximum length of four digits in the range
of 0 to 2047.

By default, this property is set to 0.

This property is specific to <<Ispec>> and Vanilla Classes, and
EventSets only.

Filler Size at Last
Generate

Specifies the amount of space in the filler area remaining that could be
allocated for new attributes as at the last generate. This is purely a
calculated field (non enterable).

When generate is complete, the Filler size at last generate should
match the Filler space remaining.

This property is Read-Only.

This property allows a maximum length of four digits in the range of 0
to 2047.

By default, this property is empty.

This property is specific to <<Ispec>> and Vanilla Classes, and
EventSets only.

Filler Space Remaining Displays the amount of space remaining in the allocated filler area. If
the space in the filler area is exceeded the name of this field changes
to Filler Space Exceeded By.

By default, this property is empty.

This property is Read-Only.

This property is specific to <<Ispec>> and Vanilla Classes, and
EventSets only.

Internal DASDL Options Specifies the definition for the population and packs for structures in
the following categories:

• Internal

• ROC

• HDBA

You can use the Internal DASDL dialog box to add or modify structures
definitions. Click the browse button to access the dialog box.

This property is specific to Segments only.

Property Function
3826 5823-008 3–291

Developing Applications
Keycompare Required Specifies whether key rechecks are required for added protection
against writing corrupt information.

The key check is done by the DMSII software to validate whether the
key value entered to retrieve a record matches the value in the record.

By default, this property is set to False.

This property is specific to Segments only.

Locked File Specifies whether the LOCKEDFILE attribute is set on audit files,
dump tapes, and database files (when initialized).

The following rules apply to the value of this property:

• If the Locked File property of a segment is set to True a
statement for the section is generated, such as LOCKEDFILE.

• If the Locked File property of a segment is set to False no
statement is generated.

By default, this property is set to False.

This property is specific to Segments only.

Caution: Locked File causes the LOCKEDFILE attribute on audit
files, dump tapes/files, and database files (when initialized) to be
set to True. The LOCKEDFILE attribute on these files must be set
to False before they can be removed or overwritten.

Lock Program Specifies whether the database stack and RDBSUPPORT are initiated
as locked processes through the use of the LP (Lock Program) MCP
system command. If the database stack and RDBSUPPORT are
initiated as locked processes, they are prevented from being
discontinued.

The following rules apply to the value of this property:

• If the Lock Program property of a segment is set to True, a
statement for the section is generated, such as LOCKPROGRAM.

• If the Lock Program property of a segment is set to False, no
statement is generated.

By default, this property is set to False.

This property is specific to Segments only.

Log Access Specifies the database access logging setting for the class and
generates a statement for the defined sections.

The following rules apply to the value of this property:

• If the Log Access property of the class is set to True, a
statement for the section is generated, such as LOGACCESS =
TRUE.

• If the Log Access property of the class is set to False, a
statement for the section is not generated.

By default, this property is set to False.

This property is specific to <<Ispec>> classes, EventSets, and Vanilla
classes only.

Note: To enable this property, the System Log option for Major
Type must be set to 1 and Minor Type must be set to 35.

Property Function
3–292 3826 5823-008

Developing Applications
Memory Resident Specifies whether the record you access remains in memory.

By default, this property is set to False.

This property is specific to <<Ispec>> classes, EventSets and Vanilla
classes only.

Number of Sections Specifies the number of sections for an Event set or Component set.
If you enter a value of 0 or 1 the Events or Components are not
sectioned.

This property can be set if the Extended Edition property is enabled.

This property is limited to a maximum length of three digits in the
range of 2 to 255.

By default, this property is set to 0.

This property is specific to Classes only.

Obfuscate Level Specifies the value for masking the data content.

The following options are available for this property:

• 0 – Indicates that AB Suite does not apply data masking to
attributes in the database.

• 1 – Indicates that the entire database uses the same methodology
of masking data.

• 2 – Indicates that each structure in the database uses a different
method to scramble the data content.

• 3 – Indicates that each record of the structure uses its own
methodology to scramble data. This type of obfuscation is only
allowed when all datasets/tables in the database have the
Extended Edition property set to True.

By default, this property is set to 0.

This property is specific to Segments only.

Refer to the Agile Business Suite Runtime for ClearPath MCP
Administration Guide for more information and restrictions on the
use of this property.

Overlay Goal Specifies the DMSII Overlay Goal.

This parameter controls the rate at which buffers are overlaid to the
disk. The value for Overlay Goal must be an integer or decimal number
in the range 0 through 100. For example, 50.00000000, 9.00001000.

By default, this value is set to 1.00000000.

This property is specific to Segments only.

Note: This value must have at least one digit before the decimal
point and exactly eights digits after the decimal point.

Property Function
3826 5823-008 3–293

Developing Applications
Reapply Completed/
Independent Trans

Specifies whether to provide generated application with recovering
capability.

If you attempt to reset this property after it is once set and
generated, a warning message is displayed and the change is
disallowed. The warning message also states that the Two Phase
Commit, Extended Report Recovery or Enable OLTP options are set
and are not compatible with this property being reset.

By default, this property is set to True.

This property is specific to Segments only.

Resident Limit Specifies the DMSII Resident limit. Resident Limit is a DASDL
PARAMETERS option. The Resident Limit option limits the amount of
memory used for MEMORY RESIDENT buffers.

Refer to the Data and Structure Definition Language (DASDL)
Programming Reference Manual for more information on the
RESIDENT LIMIT option.

By default, this property is set to 250000. The numbers range from 0
to 268435455.

This property is specific to Segments only.

Resident Limit - Use
DMSII Default

Specifies whether the DMSII default value is used for the DMSII
Resident limit, or the value defined in the Resident Limit property.
Resident Limit - Use DMSII Default is a Boolean property that
indicates whether to use the DMSII default or not.

By default, this property is set to True. Valid values are True and
False.

This property is specific to Segments only.

Revert to standard
layout at next generate

Specifies whether to revert the field order layout for the <<ispec>>
class in the DASDL file to the standard alphabetical sequence.

This means the Attributes in the filler area become part of the
complete sequence. If this property is set to False, the Attributes in
the filler area remain in the order they are entered and the position of
the existing Attributes does not change.

By default, this property is empty.

This property is specific to <<Ispec>> classes, EventSets and Vanilla
classes only.

Statistics Specifies whether to enable the DMSII software to accumulate basic
statistics on physical and logical access to all the database structures.

By default, this property is set to True.

This property is specific to Segments only.

Property Function
3–294 3826 5823-008

Developing Applications
Statistics Location Specify the location of the statistics report.

The following options are available for this property:

• Blank

• Location

By default, this property is set to Blank.

This property is specific to Segments only.

Refer to the Enterprise Database Server for ClearPath MCP Data
and Structure Definition Language (DASDL) Programming
Reference Manual for more information on the STATISTICSLOC
option.

Memo Data – Pack Specifies the pack on which the data set for Memo Data is to be
stored.

When the StoreIfPresent property is set to True for one or more
persistent attributes of an <<ispec>> class, vanilla class or
<<Event>> class, a separate data set (table) is created for the data of
these attributes. This data set is called Memo Data. The Memo Data -
Pack property specifies the pack on which this data set is located.

By default, this property is set to the Default Pack.

This property is specific to <<Ispec>> and Vanilla Classes, and
EventSets only.

Memo Data – Expected
Number

Specifies the maximum number of entries you expect to be created
for Memo Data, which exists if the StoreIfPresent property is set to
True for one or more persistent attributes of the <<Ispec>> class.

This property is enabled only if Memo Data – Population Estimation
Method is set to Use Expected Number Method.

This property’s value ranges from 1 to 268,435,455.

By default:

• This property is set to 100 for <<Ispec>> and Vanilla classes.

• This property is set to 1000 for <<Event>> classes.

This property is not applicable to <<Ispec>>, <<Event>> and Vanilla
classes:

• If the <<Ispec>> or vanilla class inherits from another class.

• If the <<Event>> class’s EventSet property is not spaces (that is,
an AutoPersist dependency with another <<Event>> class has
been defined).

This property is specific to <<Ispec>> classes, EventSets and Vanilla
classes.

Property Function
3826 5823-008 3–295

Developing Applications
Memo Data –
Percentage

Specifies the expected number of entries for Memo Data as a
percentage of the Default Calculation.

This property is enabled only if Memo Data– Population Estimation
Method is set to Use Percentage Method.

This property allows a percentage in the range of 0 to 100.

By default, this property is set to 100.

This property is not applicable to <<Ispec>>, <<Event>> and Vanilla
classes:

• If the <<Ispec>> or vanilla class inherits from another class.

• If the <<Ispec>> or vanilla class inherits from another class (that
is, an AutoPersist dependency with another event class has been
defined).

This property is specific to <<Ispec>> classes, EventSets and Vanilla
classes.

Memo Data –
Population Estimation
Method

Specifies the population estimation method for Memo Data.

When the StoreIfPresent property is set to True for one or more
persistent attributes of an <<ispec>> class, vanilla class or
<<Event>> class, a separate data set (table) is created for the data of
these attributes. This data set is called Memo Data. The Memo Data -
Population Estimation Method property specifies the method by
which the data set population is calculated.

The following options are available for this property:

• Use Default Calculation – Select this option for the target builder
to calculate the population for the Memo Data Table using default
calculations.

• Use Expected Number – Select this option for the target builder to
use the value in the Expected Number property of the <<Ispec>>
or vanilla class.

• Use Percentage Method – Select this option for the target builder
to calculate the population for the Memo Data Table using the
percentage value in the Memo Data– Percentage property of the
<<Ispec>> or vanilla class.

By default, this property is set to Use Default Calculation.

This property is specific to <<Ispec>> classes, EventSets and vanilla
classes.

Caution: If the value specified for the expected number for
Memo Data results in a population that exceeds 268,435,455, you
must ensure that Sections have been defined for the parent ispec/
class and associated profiles. Refer to the Agile Business Suite
Runtime for ClearPath MCP Adminstration Guide for more
information on how to prepare related classes and profiles. If you
do not prepare the ispec and associated profiles before using a
large population, syntax errors may occur during compilation of the
DASDL.

Property Function
3–296 3826 5823-008

Developing Applications
Internal DASDL Dialog Box

Use the Internal DASDL dialog box to define or modify the definition of population and
packs for structures in the following categories:

• Internal

• ROC

• HDBA

To display this dialog box, click Browse in the Internal DASDL Options property
under the DASDL category for Segments.

Set the definitions for the structures in each category using the Internal tab, the ROC tab
and the HDBA tab. These tabbed pages contain the following fields:

Sync Point Specifies the DMSII Sync Point. A sync point is a point in time at
which all users of the database are out of transaction state.

By default, this property is set to 500. The numbers range from 0 to
99999.

This property is enabled if Reapply Completed/ Independent Trans is
set to True.

This property is specific to Segments only.

Sync Wait Specifies a value that determines the period of time that DMSII
allows a program to be held waiting for a sync point.

By default, this property is set to 4. The numbers range from 0 to
99999.

This property is enabled if Reapply Completed/ Independent Trans is
set to True.

This property is specific to Segments only.

Property Function

Display Population
Increase

Specifies whether to display a message when an automatic population
has occurred.

By default, this property is set to True.

Display Population
Warning

Specifies whether to display a warning when the population reaches the
percentage of the set limit.

By default, this property is set to True.

Extended Specifies whether to enable the use of the DMSII EXTENDED option.

By default, this property inherits its value from the parent property on the
segment.

Property Function
3826 5823-008 3–297

Developing Applications
The following table lists the structures in each category, their corresponding default
Population, and default Pack attributes values:

No Fine Table Lock Specifies the usage of fine table locking for the set or subset associated
with the internal data set when the entries are being deleted.

By default, this property is set to False.

The setting of the No Fine Table Lock property is ignored for the sets of
GLB-DIALOGINFO and GLB-GLIOFFINFO, and for ROC-O-SSET and
ROC-O-HSET.

Pack Specifies the pack for the selected structure.

By default, this property is set to different values for different structure.
Refer to the following table for more information.

Population Specifies the number of entries for the selected database structure.

By default, this property is set to different values for different structure.
The numbers range from 0 to 268435455. Refer to the following table for
information.

Population Increase Specifies the percentage by which the population increases if it exceeds
its limit for the selected database structure.

By default, this property is set to 0. The percentage ranges from 0 to
100.

Population Warning Specifies the percentage of the population at which a warning message
is issued for the selected database structure.

By default, this property is set to 0. The percentage ranges from 0 to 99.

Sections Specifies the number of sections. The Extended property must be set to
True.

By default, this property is set to 0. The numbers range from 0 to 255.

The sections are ignored for GLB-DIALOGINFO and GLB-GLIOFFINFO.

Structure Lists the database structures contained in the selected category (Internal
and ROC). Refer to the following table for more information.

For each selected structure, the corresponding Population, Population
Increase, Population Warning, Pack, Extended, Sections and No Fine
Table Lock attributes are displayed and allowed to be changed.

By default, this property is set to GLB-HUB.

Category Structure Default Population Default Pack

Internal GLB-HUB 100000 SYSTEM

GLB-CRITIC 2048

GLB-SECURITY 20000

GLB-DIALOGINFO 65536

GLB-GLIOFFINFO 4000

AUDITAREA 1024

Property Function
3–298 3826 5823-008

Developing Applications
Setting Internal Structure Property Values

To modify the value of any property for an existing structure, perform the following:

1. Click the desired Category tab. The structures for that category are displayed in a list.

2. Click the property you wish to change for a structure.

3. Specify the value for the property.

To reset the value for a particular structure or set of structures to its default, select any
structure row and right-click in the column, then select Reset or Reset All from the
context menu.

Profile DASDL

ROC ROC-H 800 SYSTEM

ROC-O 5600

ROC-S 8000

ROC-T 99000

HDBA GLB_DBSCHEMA 20000 SYSTEM

Property Function

Duplicates order Specifies the order in which records with duplicate key values are
retrieved.

This property is enabled only if the Duplicates Allowed property of the
Profile is set to True.

By default, this property is set to Last. The range of values includes: First,
Last, or No specific order.

This property is specific to Profiles and <<ispec>>, <<Event>>and
vanilla class automaint profiles only.

Load Factor Specifies a percentage value to define how full an index table can be.

By default, this property is set to 67 percent. The numbers range from 1
to 99.

This property is specific to Profiles and <<ispec>>, <<Event>> and
vanilla class automaint profiles only.

Category Structure Default Population Default Pack
3826 5823-008 3–299

Developing Applications
Memory Resident Specifies the index tables that remains in memory once they are
accessed. These tables are not removed from memory until either the
database is closed or the option is dynamically reset.

The following options are available for this property:

• Coarse – Indicates that the coarse index tables remain in memory.

• All – Indicates that both coarse and fine index tables remain in
memory.

• None – Indicates that normal buffer allocation/deallocation algorithms
apply.

By default, this property is set to None.

This property is specific to Profiles and <<ispec>>, <<Event>> and
vanilla class automaint profiles only.

No Fine Table Lock Specifies the usage of fine table locking for a profile when the entries are
being deleted. Set the No Fine Table Lock property to True to prevent fine
table locking when deleting the entries.

This property is enabled when the

• Extended Edition property of the class is set to True.

• DuplicatesAllowed property of the profile is set to False.

The following rules apply to the value of this property:

• If the No Fine Table Lock property of a profile is set to True, the
Extended Edition property for the class is set to True, and the
DuplicatesAllowed property for the profile is set to False, the
DMSII NOFTLOCK option is generated for the profile.

• If the No Fine Table Lock property of a profile is set to False, the
Extended Edition property for the class is set to False, or the
DuplicatesAllowed property for the profile is set to True, the
DMSII NOFTLOCK option is not generated for the profile.

By default, this property is set to False.

This property is specific to Profiles and <<ispec>>, <<Event>> and
vanilla class automaint profiles only.

Profile Sections Specifies the definition of the key ranges to section the Profile.

This property allows a maximum length of 825 characters.

The following rules apply to the value of this property:

• Users can enter data like K1 = 10, K2 = 100, K3 = 2000, K4 =
“ABCD”; up to a maximum of 825 characters.

• Names of Attributes must be in uppercase and alpha literals must be
in quotes.

You can do either of the following:

• Select the <inherit from parent or default> option from the list
to reset the property to default key.

• Select the <Edit…> option from the list to edit the value of the
property in the Profile Sections – Configurations dialog box. Refer
to Profile Sections – Configuration Dialog Box for more information.

By default, this property is empty.

This property is specific to Profiles and <<ispec>>, <<Event>> and
vanilla class automaint profiles only.

Property Function
3–300 3826 5823-008

Developing Applications
Physical Profile
Sections

Specifies the Physical or Logical type of section for a profile and
generates a statement for the defined profile sections.

This property is enabled when the

• Profile Sections property of a profile is not blank.

• Extended Edition property of the class, which the profile spans, is set
to True.

The following rules apply to the value of this property:

• If the Profile Sections property is not blank and the Physical
Profile Sections property is set to False, a statement for logical
profile sections is generated, such as SECTIONS(… .

• If the Profile Sections property is not blank and the Physical
Profile Sections property is set to True, a statement for physical
profile sections is generated, such as PHYSICAL SECTIONS(… .

By default, this property is set to False.

This property is specific to Profiles and <<ispec>>, <<Event>> and
vanilla class automaint profiles only.

Note: The UsePhysicalSectionsOnly registry setting overrides
this property. For example, if the Profile Sections property is not
blank, the Extended Edition property of the class, which the profile
spans, is set to True, and the UsePhysicalSectionsOnly registry
setting is present, PHYSICAL SECTION(is generated for the profile,
regardless of the Physical Profile Sections property setting.

Set Buffers Specifies the number of set buffers.

By default, this property is set to 5. The numbers range from 0 to
1048575.

This property is specific to Profiles only.

Note: In the Buffer group properties, you cannot set values for all the
properties as not all combinations of properties are valid. Only the
following combinations of nonzero values are valid:

• Buffers

• Buffers and Buffers per User

• Buffers and Buffers per random User

• Buffers, Buffers per Random User, and Buffers per Serial User

• Buffers and Buffers per Serial User

Although a value of 0 is valid for the Set Buffers property, AB Suite
generates a value of 5 in the set physical options in the DMS file for it.

Refer to the definitions of Buffers per User, Buffers per Random User,
and Buffers per Serial properties for more information.

The property on the segment specifies the default number of system
buffers.

The property on Profiles and <<ispec>>, <<Event>> and vanilla class
automaint profiles inherits the value of the property on the segment by
default.

Property Function
3826 5823-008 3–301

Developing Applications
Set Buffers per
Random User

Specifies the number of buffers per random user.

By default, this property is set to 1. The numbers range from 0 to 254.

This property is enabled if the Set Buffers per User property is set to 0.

This property is disabled if the Set Buffers per User property is not set to
0. When it is disabled, the Set Buffers per Random User property is reset
to 0. Refer to Note in the definition of Buffers property.

The property on the segment specifies the default number of buffers per
random user.

The property on Profiles and <<ispec>>, <<Event>> and vanilla class
automaint profiles inherits the value of the property on the segment by
default.

Set Buffers per Serial
User

Specifies the number of buffers per serial user.

By default, this property is set to 2. The numbers range from 0 to 254.

This property is enabled if the Set Buffers per User property is set to 0.

This property is disabled if the Set Buffers per User property is not set to
0. When it is disabled, the Set Buffers per Serial User property is reset to
0. Refer to Note in the definition of Buffers property.

The property on the segment specifies the default number of buffers per
serial user.

The property on Profiles and <<ispec>>, <<Event>> and vanilla class
automaint profiles inherits the value of the property on the segment by
default.

Set Buffers per User Specifies the number of buffers per user.

By default, this property is set to 0. The numbers range from 0 to 254.

This property is enabled if the Set Buffers per Random User property and
the Set Buffers per Serial User property is set to 0.

This property is disabled if the Set Buffers per Random User property is
not set to 0 or the Set Buffers per Serial User property is not set to 0.
When it is disabled, the Set Buffers per User property is reset to 0. Refer
to Note in the definition of Buffers property.

The property on the segment specifies the default number of number of
buffers per user.

The property on Profiles and <<ispec>>, <<Event>> and vanilla class
automaint profiles inherits the value of the property on the segment by
default.

Tablesize Specifies the number of entries that can be made to an index table.

By default, this property is set to 0. The numbers range from 0 to 4095.

This property is specific to Profiles and <<ispec>>, <<Event>> and
vanilla class automaint profiles only.

Property Function
3–302 3826 5823-008

Developing Applications
Profile Sections – Configuration Dialog Box

The Profile Sections – Configuration dialog box allows you to specify sections for a profile
(set or subset). For example

K1 = 10, K2 = 3000,

K1 = 30, K2 = 5000,

K1 = 60, K2 = 8000,

K1 = 100, K2 = 9000,

For logical sectioning, set the Physical Profile Sections property to False; for
physical sectioning, set the Physical Profile Sections property to True.

Refer to Sets, Subsets, and Accesses in the Enterprise Database Server for ClearPath
MCP Data and Structure Definition Language (DASDL) Programming Reference
Manual for more information about Sections and on correctly specifying ranges.

Default DASDL

Property Function

Check Sum Specifies whether to enable the DMS II Checksum feature for added
protection against writing corrupt information.

Using the Checksum feature, the DMS II software performs a hash total of
the words written in each physical IO. The hash total is written as an extra
word at the end of the IO buffer.

By default, this property is set to True.

This property is specific to <<ispec>> and vanilla Classes, EventSets and
Segments only.
3826 5823-008 3–303

Developing Applications
Data Set Buffers Specifies the number of data set buffers.

A Dataset is a table in the database. The Dataset Buffers options are used
to generate the BUFFER option for Datasets in the DASDL.

Refer to the Data and Structure Definition Language (DASDL)
Programming Reference Manual for more information on the BUFFER
option.

This property’s value ranges from 0 to 1048575.

By default:

• This property is set to 4 for Segments

• This property assumes the value of owner for <<Ispec>> classes,
EventSets and Vanilla classes.

This property is not applicable for <<Ispec>>, <<Event>> and Vanilla
classes:

• If the class inherits from another class

• If the class is an <<event>> class whose EventSet property is not
spaces (that is, an AutoPersist dependency with another event class
has been defined).

Note: In the Data Set Buffer group properties, you cannot set values
for all the properties as not all combinations of properties are valid.
Only the following combinations of non-zero values are valid:

• Data Set Buffers

• Data Set Buffers and Data Set Buffers per User

• Data Set Buffers and Data Set Buffers per random User

• Data Set Buffers, Buffers per Random User, and Data Set Buffers
per Serial User

• Data Set Buffers and Data Set Buffers per Serial User

Although a value of 0 is valid for the Data Set Buffers property, AB Suite
generates a value of 5 in the data set physical options in the DMS file for it.

Refer to the definitions of Data Set per User, Data Set Buffers per Random
User, and Data Set per Serial properties for more information.

This property is specific to <<ispec>> and vanilla classes, EventSets and
Segments only.

Property Function
3–304 3826 5823-008

Developing Applications
Data Set Buffers
per Random User

Specifies the number of data set buffers per random user.

For a Random user, the reading or updating operation on the Dataset is
done randomly.

Refer to the Data and Structure Definition Language (DASDL)
Programming Reference Manual for more information on how buffers are
allocated to random and serial users.

This property’s value ranges from 0 to 254.

By default:

• This property is set to 1 for Segments

• This property assumes the value of owner for <<Ispec>> classes,
EventSets and Vanilla classes.

This property is enabled if the Data Set Buffers per User property is set to
0.

This property is disabled for <<Ispec>>, <<Event>> and Vanilla classes:

• If the class inherits from another class

• If the class is an <<event>> class whose EventSet property is not
spaces (that is, an AutoPersist dependency with another event class
has been defined).

This property is disabled if the Data Set Buffers per User property is not set
to 0. When it is disabled, the Data Set Buffers per Random User property is
reset to 0. Refer to Note in the definition of Data Set Buffers property.

This property is specific to <<ispec>> and vanilla classes, EventSets and
Segments only.

Data Set Buffers
per Serial User

Specifies the number of data set buffers per serial user.

For a Random user, the reading or updating operation on the Dataset is
done randomly.

Refer to the Data and Structure Definition Language (DASDL)
Programming Reference Manual for more information on how buffers are
allocated to random and serial users.

This property’s value ranges from 0 to 254.

By default:

• This property is set to 2 for Segments

• This property assumes the value of owner for <<Ispec>> classes,
EventSets and Vanilla classes.

This property is enabled if the Data Set Buffers per User property is set to
0.

This property is disabled for <<Ispec>>, <<Event>> and Vanilla classes:

• If the class inherits from another class

If the class is an event class whose EventSet property is not spaces and is
not set to a value that is the same name as itself (that is, an AutoPersist
dependency with another event class has been defined).

This property is disabled if the Data Set Buffers per User property is not set
to 0. When it is disabled, the Data Set Buffers per Serial User property is
reset to 0. Refer to Note in the definition of Data Set Buffers property.

This property is specific to <<ispec>> and vanilla classes, EventSets and
Segments only.

Property Function
3826 5823-008 3–305

Developing Applications
Data Set Buffers
per User

Specifies the number of data set buffers per user. This property’s value
ranges from 0 to 254.

By default:

• This property is set to 0 for Segments.

• This property assumes the value of owner for <<Ispec>> classes,
EventSets and Vanilla classes.

This property is enabled if the Data Set Buffers per Random User property
and the Data Set Buffers per Serial User property is set to 0.

This property is disabled for <<Ispec>>, <<Event>> and Vanilla classes:

• If the class inherits from another class.

• If the class is an <<event>> class whose EventSet property is not
spaces (that is, an AutoPersist dependency with another event class
has been defined).

This property is disabled if the Data Set Buffers per Random User property
is not set to 0 or the Data Set Buffers per Serial User is not set to 0 and
also reset the Data Set Buffers per User property to 0. Refer to Note in the
definition of Data Set Buffers – Buffers property.

This property is specific to <<ispec>> and vanilla Classes, EventSets and
Segments only.

Display Population
Increase

Specifies whether to display a message when an automatic population has
occurred.

This property is enabled only if the Population Increase property is set.

By default, this property is set to True.

This property is specific to <<ispec>> and vanilla Classes, EventSets, and
Segments only.

Display Population
Warning

Specifies whether to display a warning when the population reaches the
percentage of the set limit.

This property is enabled only if the Population Warning property is set.

By default, this property is set to True.

This property is specific to <<ispec>> and vanilla Classes, EventSets, and
Segments only.

Property Function
3–306 3826 5823-008

Developing Applications
Dumpstamp Specifies whether to enable the use of the DUMPSTAMP option in DASDL
for all data sets.

The DUMPSTAMP option provides the facility for incremental backups by
adding a timestamp word to each block of the affected structure.

You can only use this property if you have the required license key on the
target host. If you enable this property and you do not have the license key,
a dialog is displayed at the beginning of the build, giving you the option to
continue without the Dumpstamp option or cancel the build.

Refer to the DASDL documentation for more information on the
DUMPSTAMP option.

The following options are available:

• DMSII Default: ‘DUMPSTAMP’ not generated.

• Yes: ‘DUMPSTAMP = TRUE’ is generated.

• No: ‘DUMPSTAMP = FALSE’ is generated.

At the segment, the default setting is DMSII Default. At the class level,
the default setting is <inherit from parent or default>.

This property is specific to <<ispec>> and vanilla Classes, EventSets, and
Segments only.

Extended Edition Specifies whether to enable the use of the DMSII EXTENDED option.

Using the DMSII EXTENDED option causes the dataset to have records
that contain two additional words at the beginning of the record: Record
Serial Number and an internal Transtamp field. These provide
improvements to dataset access. Refer to the EXTENDED option in the
Data and Structure Definition Language (DASDL) Programming
Reference Manual for more information. To use this option, you must have
the DMSII Extended Edition key installed on your MCP machine.

Caution: Setting the Segment Extended Edition property to True for
an existing system that has already been generated with Extended
Edition set to FALSE, or vice versa, may cause the REORGANIZATION
program to exceed size limits for large systems.

By default, this property is set to False.

This property is specific to <<ispec>> and vanilla Classes, EventSets, and
Segments only.

Guardfile
Information –
Name

Specifies the file name for Guardfile information.

The Guardfile information designates the name and location of the guard
file, if any, that controls access to the database files through the
Accessroutines.

Refer to the Data and Structure Definition Language (DASDL)
Programming Reference Manual for more information on the GUARDFILE
option.

This property value is limited to a maximum length of 17 alphanumeric
characters.

By default, this property is empty.

This property is specific to Segments only.

Property Function
3826 5823-008 3–307

Developing Applications
Guardfile
Information – Pack

Specifies a valid pack name for Guardfile information.

This property value is limited to a maximum length of 17 alphanumeric
characters.

Select a pack from the list of available packs. By default, this property is
empty.

This property is specific to Segments only.

Guardfile
Information – User

Specifies a valid username for Guardfile information.

This property value is limited to a maximum length of 17 alphanumeric
characters.

By default, this property is empty.

This property is specific to Segments only.

Number of
Sections

Specifies the number of sections for an Event set or Component set. If you
enter a value of 0 or 1, the Events or Components are not sectioned.

This property can be set if the Extended Edition property is enabled.

This property is limited to a maximum length of three digits in the range of
2 to 255.

By default, this property is set to 0.

This property is specific to <<Ispec>> classes, EventSets, and Vanilla
classes only.

Optimize Blocksize
to VSS-2

Specifies whether to enable the blocksize feature. A new blocksize value,
in records, is calculated. This option is used to optimize the calculation of
DASDL blocksize attributes.

By default, this property is set to False.

If you wish to use the populations in excess of 268,435,455 with classes
or ispecs, set Optimize Blocksize to VSS-2 to True and create a
DWORD registry key called ActivateVSS2blocking in the following
location:

• For 32-bit: HKEY_LOCAL_MACHINE?\SOFTWARE\Unisys\System
Modeler\Features\Builder

• For 64-bit:
HKEY_LOCAL_MACHINE?\SOFTWARE\Wow6432Node\Unisys\Syste
m Modeler\Features\Builder

Caution: Setting Optimize Blocksize to VSS-2 to True and creating
a DWORD registry key called ActivateVSS2blocking causes a database
reorganization with the next system build. Likewise, removing the
ActivateVSS2blocking registry key after building a system with it
causes a database reorganization with the next system build.

This property is specific to <<ispec>> and vanilla classes, EventSets and
Segments only.

Property Function
3–308 3826 5823-008

Developing Applications
Population
Increase

Specifies a percentage by which the population increases if it exceeds its
limit.

Values greater than 0 percent allows an automatic increase in the
population by up to that percentage if the population exceeds its current
limit, up to the system limit of 1000 areas.

By default, this property is set to 0. The numbers range from 0 to 100 in
percentage.

This property is specific to <<ispec>> and vanilla Classes, EventSets and
Segments only.

Population Warning Specifies a percentage of the population at which a warning message is
issued.

Values greater than 0 percent causes the system to issue a warning
message when the population reaches that percentage of its limit.

This property is limited to a maximum length of two digits in the range of 0
to 99 percent.

By default, this property is set to 0. The numbers range from 0 to 99 in
percentage.

This property is specific to <<ispec>> and vanilla Classes, EventSets and
Segments only.

Reblock Factor Specifies the Reblock Factor.

The REBLOCKFACTOR allows the user to specify the factor by which the
blocksize on a Dataset is increased during serial access.

Refer to the Data and Structure Definition Language (DASDL)
Programming Reference Manual for more information on the REBLOCK
and REBLOCKFACTOR options.

This property is limited to a maximum length of two digits in the range of:

• 1 to 17 for Segments.

• 1 to 60 for Classes

By default, this property is set to 1.

This property is specific to <<ispec>> and vanilla Classes, EventSets and
Segments only.

Securityguard
Information –
Name

Specifies file name for Securityguard information.

Securityguard Information is used to set the SECURITYGUARD option in
the DASDL. The SECURITYGUARD option sets the SECURITYGUARD file
attribute to the name and location of the guard file that controls direct
access to the database files by programs other than the Accessroutines.

Refer to the Data and Structure Definition Language (DASDL)
Programming Reference Manual for more information on the
SECURITYGUARD option.

This property is limited to a maximum length of 17 alphanumeric
characters.

By default, this property is empty.

This property is specific to <<ispec>> and vanilla Classes, EventSets and
Segments only.

Property Function
3826 5823-008 3–309

Developing Applications
Securityguard
Information – Pack

Specifies a valid pack name for Securityguard information.

Select a pack from the list of available packs. By default, this property is
empty.

This property is specific to Classes and Segments only.

Securityguard
Information – User

Specifies valid username for Securityguard information.

This property is limited to a maximum length of 17 alphanumeric
characters.

By default, this property is empty.

This property is specific to <<ispec>> and vanilla Classes, EventSets and
Segments only.

Sections Specifies the number for a class and generates a statement for the
defined sections.

This property is enabled when the Extended Edition property of the
class is set to True.

The following rules apply to the value of this property:

• If the Sections property is greater than one and the Extended
Edition property of a segment is set to True, a statement for
sections is generated, such as SECTIONS = nn.

• If the Sections property is equal to zero or one or the Extended
Edition property of the class is set to False, a statement for sections
is not generated.

By default, this property is set to 0. The numbers range from 0 to 511.

This property is specific to <<Ispec>> Classes, vanilla classes and
EventSets only.

Use Calculated
Buffers

Specifies how buffer statements are generated for individual Profiles.

By default, this property is set to True.

When this property is set to True, the buffer statements for individual
profiles use a calculated value. When this property is set to False and the
buffer values for the profile match the Set Buffer values of the segment, no
buffer statements are generated for the profile (the profile uses the default
values specified for the segment). When set to false and the buffer values
of the profile differ from the Set Buffer values of the segment, buffer
statements are generated using the profile settings.

This property is specific to Segments only.

VSS Warning Specifies whether to issue a warning when the blocking attributes of the
structure are not optimized for the operational characteristics of the
storage device.

This property provides a runtime indication of discrepancy between the
blocking attributes of a structure and the storage device type upon which it
resides.

By default, this property is set to False.

This property is specific to Segments only.

Property Function
3–310 3826 5823-008

Developing Applications
Debugging

Property Function

Code Set Specifies the Code Set in which you want LRSS to interpret data
that is being sent.

This property is limited to a maximum length of 20 alphanumeric
characters.

By default, this property is empty.

This property is enabled when:

• Deployable is set to True

• Enable Remote CALL Statements is set to True

This property is specific to Folders only.

Data Translation Routines
Exist

Specifies whether to allow user-developed hook routines to be
invoked, to translate Windows character sets to the matching
character representation on the target host.

This option prompts Developer to look for hook routines to invoke
before sending data to the remote host, and immediately after
retrieving data from successfully called functions on the host.

By default, this property is set to False.

This property is enabled when:

• Deployable is set to True.

• Enable Remote CALL Statements is set to True.

This property is specific to Folders only.

Enable Host Database
Access

Specifies whether to enable Debugger to access the deployed
database (target host database) for the application.

Host Database Access (HDBA) allows you to access data directly
from a generated target platform. This means that when you
execute a database command, such as Determine, Lookup, or
ForEach, the records are retrieved from the DMSII database on the
targeted MCP platform instead of the local SQL Server database.

Caution: The HDBA functionality is for debugging purpose
only. Do not use it with your deployed production databases, or
you destroy the integrity of your production database, risk
losing data, and risk corrupting your database.

By default, this property is set to False.

This property is enabled if Deployable is set to True.

This property is specific to Folders only.
3826 5823-008 3–311

Developing Applications
Enable Remote CALL
Statements

Specifies whether to enable Debugger to access the subroutine on
the target host. If enabled, the following Remote CALL Statement
Attributes is also enabled:

• Data Translation Routines Exist

• Language

• Code Set

• Primary Disk

• Secondary Disk

By default, this property is set to False. This property is enabled if
Deployable is set to True. This property is specific to Folders not
contained within a segment.

Language Specifies the language in which you want the Remote Subroutine
Server (LRSS) to return error messages.

This property is limited to a maximum length of 20 alphanumeric
characters.

By default, this property is empty.

This property is enabled when:

• Deployable is set to True

• Enable Remote CALL Statements is set to True

This property is specific to Folders only.

Port Number (HDBA) Specifies the port number of the Host Database Access (HDBA).

By default, this property is set to 1871. The numbers range from 1
to 9999.

This property is enabled if Deployable is set to True.

This property is specific to Folders not contained within a segment.

Port Number (LRSS) Specifies the port number of the Remote Subroutine Server (LRSS).

By default, this property is set to 6004. The numbers range from 1
to 9999. This property is enabled if Deployable is set to True. This
property is specific to Folders only.

Primary Disk Specifies the disk on which LRSS is to initially locate the call
subroutine.

This property is limited to a maximum length of 17 alphanumeric
characters.

By default, this property is empty.

This property is enabled when:

• Deployable is set to True

• Enable Remote CALL Statements is set to True

This property is specific to Folders only.

Property Function
3–312 3826 5823-008

Developing Applications
Environment

Secondary Disk Specifies the disk on which LRSS is to locate the call subroutine if it
cannot be found on the Primary Disk.

This property is limited to a maximum length of 17 alphanumeric
characters.

By default, this property is empty.

This property is enabled when:

• Deployable is set to True

• Enable Remote CALL Statements is set to True

This property is specific to Folders only.

Property Function

Areas Specifies the number of areas for the extract file. If the number of areas
is 0, value for areas is calculated.

Area Size Specifies the area size for the extract file. If area size is 0 or less than the
block size (RecordsPerBlock times the size of the maximum record length
in the extract file), value for area size is calculated.

Block Size Algorithm Specifies which algorithm to use while calculating the block size (Records
Per Block = 0).

The following options are available for this property:

• Default – This algorithm is equivalent to the EAE block size algorithm.
The resultant blocksize is similar to one calculated by EAE.

• Large – This algorithm calculates the largest optimal blocksize for the
extract file.

• Small – This algorithm is equivalent to the LINC block size algorithm.
This option is provided to those who still need the block size that is
produced by this algorithm.

The large block size algorithm is recommended for extract files with a
large Expected Number.

Property Function
3826 5823-008 3–313

Developing Applications
Copy Audit to Tape Specifies whether to copy the Audit files of a DMS II job to a magnetic
tape.

The following options are available for this property:

• None – Indicates that the Audit files remain on pack until physically
removed.

• QIC Tape – Indicates that the Audit files are copied to a 1250 BPI QIC
tape device.

• GCR Tape 2200 – Indicates that the Audit files are copied to a
GCRTAPE 6250 BPI (2200 ft) tape device.

• GCR Tape 3200 – Indicates that the Audit files are copied to a
GCRTAPE 6250 BPI (3200 ft) tape device.

• HS8500 Cartridge – Indicates that the Audit files are copied to a
HS8500 (BPI11000) 8mm cartridge device.

• User Defined – Indicates that you can define your own tape device or
specify the specific size of your audit files on pack.

• TAPE 3800 – Indicate that the Audit files are copied to a TAPE 3800
BPI (1/2 inch cartridge) device.

• TAPE 1600 – Indicates that the Audit files are copied to a TAPE 1600
BPI (2200 ft) tape device.

By default, this property is set to None.

When a value other than None is selected, a DMS II job DATABASE/WFL/
COPYAUDIT is initiated whenever a DMS audit trail is closed and a new
audit trail is started. This job copies your Audit files to magnetic tape and
then deletes the files from the pack.

If User-defined is selected, you can define your own tape device or
specify the specific size of your audit files on pack. The specific attributes
can be set using the User Defined Copy Audit Details property that is
enabled. This property is specific to Segments only.

Expected Number Specifies the expected number of records for the corresponding extract
files.

This property’s value ranges from 1 to 99,999,999,999. By default, this
property is set to 0. This property is enabled when Kind of File
property is set to Disk. This property is specific to Extract files (classes
inheriting from GLB.FILE).

Expected TPH Specifies the expected number of transactions per hour (TPH), expressed
in thousands per hour.

The expected number of transactions per hour is used for calculating the
Input Queue Memory Size for the COMS program delimiters.

By default, this property is set to 5. The numbers range from 5 to 999.
This property is specific to Segments only.

Property Function
3–314 3826 5823-008

Developing Applications
External DASDL File Specifies the path and name of your user-created DASDL source file
name. If specified, Developer checks whether the file exists.

The following naming conventions apply to the DASDL source file:

• For a Build Configuration (the segment configuration property
Configure Set Type is set to Build, for generates), the file name must
be in Windows format and the path must be visible to Developer. The
directory path can be on the same machine or a mapped directory on
another machine. For example, F:\GENERATE\DASDL.

• For a Configure Configuration (the segment configuration property
Configure Set Type is set to Configure, for Runtime Transfer), the file
name should be in Host MCP format and the path must be the host
directory where the file is located. The file name should not include
any usercode or packname for MCP hosts. For example,
(MYUSER)CONFIGURE/DASD ON MYPACK.

This property is limited to a maximum length of 80 alphanumeric
characters. By default, this property is empty. This property is specific to
Segments only.

External Database -
Name (DB1)

External Database -
Name (DB2)

Specifies the name of the external database.

Note: You can specify the name details for up to two external
databases For example, details of external databases, DB1 and DB2.

This property is limited to a maximum length of 17 characters.

By default, this property is empty. This property is specific to Segments
only.

External Database -
Pack (DB1)

External Database -
Pack (DB2)

Specifies the name of the pack for the external database.

Note: You can specify the pack details for up to two external
databases For example, details of external databases, DB1 and DB2.

Select a pack from the list of available packs. By default, this property is
empty. By default, this property is empty. This property is specific to
Segments only.

External Database -
User (DB1)

External Database -
User (DB2)

Specifies the user name of external database.

Note: You can specify the user details for up to two external
databases For example, details of external databases, DB1 and DB2.

This property is limited to a maximum length of 17 characters.

By default, this property is empty. This property is specific to Segments
only.

Generate as
Coroutine

Specifies whether the Report is to be generated as a coroutine for
invocation by a method within the system or by an external program.

By default, this property is set to False. This property is specific to
Reports only.

Generate Full
LINCOFF

Specifies whether to generate the LINCOFF file.

By default, this property is set to False. This property is specific to
Segments only.

Refer to the Agile Business Suite Runtime for ClearPath MCP
Administration Guide for more information on generating the LINCOFF
file and compiling NOF programs.

Property Function
3826 5823-008 3–315

Developing Applications
High Frequency Specifies whether faster access is to be provided at runtime.

By default, this property is set to False. This property is enabled if Ispec
Type is set to Table only. This property is specific to Ispecs and classes
only.

Note: Excessive use of this facility can result in wasteful use of
memory resources.

Ispec Type Specifies the database usage by the ispec or vanilla class.

The following options are available for this property:

• Default – Select this option for normal database usage.

• Table – Select this option for high frequency access.

• Direct – Select this option to create a direct dataset in the DASDL.

By default, this property is set to False.

This property is specific to <<ispec>>, <<event>>, and vanilla classes
only.

Kind of File Specifies whether the extract file is a tape or disk file. Extract files
created and read on tape are single files on single or multi-reel tapes.

By default, this property is set to Disk.

Note: If this value is set to Tape, the corresponding Records Per
Block (Tape) and Tape Volume Label properties must be set to valid
values and cannot be set to zero.

This property is specific to Extract files (classes inheriting from
GLB.FILE).

POF Duplicate Family Specifies the name of a duplicate pack family for the Protected Output
File, if you want a duplicate file for recovery purposes. The duplicate file
takes the name you have entered in the POF Name property.

This property is limited to a maximum length of 17 characters. By default,
this property is empty. This property is specific to Segments only.

POF Family Specifies the name of the pack family for the Protected Output File.

This property is limited to a maximum length of 17 characters. By default,
this property is empty. This property is specific to Segments only.

POF Name Specifies the name of the Protected Output File (POF). This file is used by
COMS to manage the recovery of output messages.

This property is limited to a maximum length of 10 characters. By default,
this property is empty. This property is specific to Segments only.

Protected Input Specifies whether to implement COMS input protection.

By default, this property is set to False. This property is specific to
Segments only.

Property Function
3–316 3826 5823-008

Developing Applications
Record Format Specifies the format (Internal or Generic) of an extract file.

The following options are available for this property:

• I – Specifies to extract the file in the Internal format of the host you
are extracting from.

• G – Specifies to extract the file in a Generic format so that the file can
be loaded into a system running on a different host type.

Notes:

• The Generic format only applies to Ispec extractions; the format
for frame extractions is not affected by this setting.

• The current release of AB Suite does not support the sharing of
generic extract files between platforms when the records within
them contain aggregated instances.

By default, this property is set to I This property is specific to Extract files
(classes inheriting from GLB.FILE).

Records Per Block Specifies the number of records per block for the corresponding extract
file.

This property’s value ranges from 1 to 99999999.

By default, this property is set to the default. You should be aware of the
minimum and maximum physical block sizes for the device being used,
and ensure that your specified block/record size falls within those limits.
This property is specific to Extract files (classes inheriting from
GLB.FILE).

ROC uses Database Specifies whether to store Report output in a ROC database.

By default, this property is set to False.

This property is specific to Reports and Segments only.

For Reports, this property is enabled if the System Uses ROC property for
the Segment is set to True for the application.

If this property has been set for the Segment, then the Reports should
inherit the value for this property from the Segment. Otherwise, you can
set this option for each report using this property.

Sort Disk Size Specifies the required sort disk size in kilowords. You can significantly
improve the performance of SORT logic commands by making more disk
space available to the sort operation.

This property’s value must be in the range 1 through 999999.

By default, this property is empty. If no value is entered, the default is
calculated in the Clearpath MCP environment. Refer to Calculation of
Default for more information.

This property is specific to Reports only.

Sort Memory Size Specifies the memory size in kilowords for SORT logic command.

The value of this property ranges from 0 through 99999999.

By default, this property is set to 0.

Refer to Calculating Sort Memory Size for more information.

This property is specific to Reports only.

Property Function
3826 5823-008 3–317

Developing Applications
Subsystem Specifies the subsystem to where it belongs.

By default, this property is set to the default subsystem. This property is
limited to a maximum length of 10 alphanumeric characters.

This property is specific to Classes only.

Tape Volume Label Specifies to use labeled tapes.

This property is enabled when Kind of File property is set to Tape.

The following options are available for this property:

• True – If files are labeled

• False – If files are not labeled

By default, this property is set to True.

This property is specific to Extract files (classes inheriting from
GLB.FILE).

User Defined Copy
Audit Details

Specifies the details of the tape device or the details of the audit files on
pack as defined by the user.

This property is enabled if the Copy Audit to Tape property is set to User
Defined. This property is limited to a maximum length of 10 lines of 66
characters or 660 characters.

By default, this property is empty.

This property is specific to Segments only.

User Privilege Specifies the user terminal access to an Ispec at runtime.

Each terminal has an assigned security level which is defined as Integer3
Installation Data record in the COMS Configuration File in the ClearPath
MCP-based COMS utility.

Refer to the Enterprise Application Runtime for ClearPath MCP
Administration Guide for more information.

In Ispec logic at runtime, the privilege level of the terminal currently
accessing the System is contained in the System Attribute GLB.PRIV.

By default, the value is 1. The privilege ranges 1 from 15.

This property is specific to Ispecs and Events only.

Transferable Specifies whether the Report is to be transferred to another host using
the All Transferable Reports option on the Selected Transfer screen of the
Runtime Transfer Utility (RTU).

This option relates specifically to the MCP Runtime Transfer process,
during which options may be selected to decide which reports are
transferred to the target system.

By default, this property is set to False.

This property is specific to Reports only.

Property Function
3–318 3826 5823-008

Developing Applications
Calculation of Default for Sort Disk Size

If no value is entered for the Sort Disk Size property, the default is calculated in the
ClearPath MCP environment.

Default sizes are applied as follows:

• If no Extract files to be sorted have a specified Expected Number value (on the
Extract File Options page), a value of 20 modules (16,384 words of memory) is used.
Otherwise, the following formula is calculated for every Extract file to be sorted that
has a value expected specified in its Expected Number property. The value
maxframe is the largest record size for Frames in the Extract file.

(Expected / 1000) * maxframe * 2.25) / 10800

• If the largest value for these Extract files is 20 or more, that number of modules is
used.

• If the largest value for these Extract files is less than 20 and all Extract files to be
sorted have been considered (that is, they all have a value in the Expected Number
property), then that number of modules is used.

• If the largest value for these Extract files is less than 20 but not all Extract files to be
sorted have been considered (that is, they do not all have a value in the Expected
Number property), then a value of 20 modules is used.

Example 1

A Report has several Frames to be extracted and sorted in Extract file A. The largest
Frame record size is 240, and Extract file A has an expected number of 1,000,000. If you
do not enter a value for the Sort Disk Size property, the default is 50 modules,
calculated as:

(1,000,000 / 1000) * 240 * 2.25) / 10800 = 50

Example 2

A Report has one Frame to be extracted and sorted in Extract file B. The Frame record
size is 80, and Extract file A has an expected value of 10,000. If you do not enter a value in
the Sort Disk Size property, the default is 1 module, which is the rounded-up result
from the calculation:

(10,000 / 1000) * 80 * 2.25) / 10800 = 0.17

Note: If any other Extract files that were to be sorted did not have an expected
number, the default becomes 20 modules.

Calculation of Sort Memory Size

The following formula is used to calculate the required memory size for each of the sorts
executed in the report:

((((<Maxrecsize>/6) + ((<key1> + <key2> +...+ <keyN>)/6) + 3) * <number of records>)/
1000) + 1
3826 5823-008 3–319

Developing Applications
Where,

• <Maxrecsize> is the length of the maximum frame or class record size extracted
to the extract file that is sorted.

• <key1>, <key2>… <keyN> are the lengths of the keys used in the sort.

• <number of records> is the value in the Expected Number property of the extract
file.

You must first calculate the memory size for each sort and then enter the largest value in
the Sort Memory Size configuration property. It is recommended to specify minimum of
two kilowords and maximum of 200 kilowords for memory sort.

Refer to the ClearPath Enterprise Servers System Software Utilities Operations
Reference Manual for details on the limitations with memory sort.

External

The external configuration properties of the Builder are used to determine and establish a
connection with an external resource on a Windows® platform.

The Component Type property of an external class broadly defines the component
type of the external resource that implements its functionality. You must specify the
component type because AB Suite generates different external class wrappers for
different component types.

To set the configuration properties, right-click an external class, and select Properties.

For an imported data source, set the Data Source Location property of the external
class to either Defined Locally or Location. An error message is displayed if you
enter an invalid value other than Defined Locally or an existing Location name.

Note: You can select an existing Location to specify predefined connection
information or set the properties within the class configuration with the Defined
Locally option. Refer to Data Source properties in System Modeler Locations for
more information on setting the properties for the Defined Locally option.

Property Function

Component Type Specifies the type of external component to be interfaced with an
external class. For example, .NET, COM, DLL, EXE, Java, or Shell.

By default, this property is set to EXE.

Identifier Specifies the ID of the external component:

• Prog ID for COM objects

• Name for .dll files, .exe files, and shell programs

• Qualified name for .NET objects

By default, this property is set to the name of the external class.
3–320 3826 5823-008

Developing Applications
Note: When you build an application in a Debug Mode, you must ensure that the
following rules are met to avoid errors during build:

• The .NET Assembly must be COM Visible, which can be set globally in the
Assembly Information properties window.

• The interface of the assembly must be defined as Public.

However, these settings are not required when you build an application for
Windows® runtime, and it builds the application with a warning message.

General Configuration

.NET Assembly Specifies the full path of the assembly containing the .NET
component type. This can be the compiled DLL for the .NET
component.

This property is only available if the Component Type is set to .NET.

Default Interface Specifies the name of the dispatch interface that contains the
methods to be invoked.

You must define an external class for every interface if you use
methods from different interfaces of the component.

Note: Interfaces can only be used if they are in the same
namespace as the class. This property can contain alphanumeric
and '_' characters.

This property is enabled if the Component Type is set to either .NET
or COM.

Type_Library Is optional. If specified, AB Suite uses the type library to retrieve the
GUIDs of the COM-Visible classes and methods of the external
component. Otherwise, AB Suite generates its own type library
through the tlbexp and regasm calls. The type library is used if the
interface of the component is defined in another library.

You can select Make assembly COM-Visible in the Assembly
Information window to create a COM-Visible assembly for an
external component. This property is enabled if the Component Type
is set to COM or .NET.

Property Function

Access Code Specifies the access code for the Generate job.

This property is limited to a maximum length of 17 alphanumeric
characters. By default, this property is empty. This property is
specific to Folders only.

As Coroutine Specifies whether the external component is a MCP co-routine.

Build Dependencies Specifies whether classes (that are dependencies of the current
selected build) are automatically built.

By default, this property is set to True. This property is specific to
Segments only.

Property Function
3826 5823-008 3–321

Developing Applications
Builder Cache Location Specifies the location of the builder cache folder. This property
value overrides the builder cache location from Tools > Options >
System Modeler > Builder > General.

By default, the value of the property is empty.

Note: This property is not applicable to debugger.

By Function Specifies whether the external MCP library is called by its function
name or title.

Charge Code Specifies the charge code to be used for application accounting
purposes. All resource usage by the Generate is debited to this
charge code.

This property is limited to a maximum length of 45 alphanumeric
characters. By default, this property is empty. This property is
specific to Folders only.

COM Prog ID Specifies the COM object's Prog ID.

This property can contain alphanumeric and '_' characters. By
default, this property is the name of the Segment or Report.

This property is specific to Segments and Reports only.

Deployable Specifies whether a folder represents a deployable unit.

By default, this property is set to False. This property is specific to
Folders only.

Description Specifies a description of the folder.

By default, this property is empty. This property is specific to
Folders only.

Environment Name The name of the environment for an Application Server. (for
example, JBOSS1, JBOSS2, etc).

This must be one of environment names configured in Deployment
configuration of NGServer.

Exclude From The Build Specifies whether the element is excluded from the Build.

By default, this property is set to False. This property is specific to
Segments and Reports only.

Generate As Name Specifies a name of a report when generated from this folder that is
different from the default name of a report. The Generate As Name
property takes precedence over Alternate Name, which in turn
takes precedence over Alias or Model Name.

• This property is enabled if the Deploy Reports property is set to
True.

You can either:

• Select the <inherit from parent or default> option to reset
the property to default name.

Or

• Select the <Edit…> option to edit the value of the property in
the Generate As Dialog Box.

This property is specific to the folders contained within a Segment.

Property Function
3–322 3826 5823-008

Developing Applications
Glb.SysVersion Specifies the current version of the system. This number
increments with every build.

By default, this property is empty. This property is read-only. This
property is specific to Folders only.

Library UserCode Specifies the usercode for the external MCP library or co-routine.

This property is disabled if the By Function property is True.

Library Name Specifies the title or the function name of the external MCP library,
or the name of the external MCP co-routine.

Library Pack Specifies the location used to connect to the external MCP
component.

This property is disabled if the By Function property is True.

Start Deployment With Option to allow control over the generate, transfer and install stages
of a deployment.

• Generate – The phase of deployment where an MSI package is
compiled and created.

• Transfer – Transfer the package to the Package Intermediate
Directory

• Install – Install the package in the Package Installation Directory

• Compile and Package – The phase of deployment where a
package is compiled and created.

• Deploy – Generate, compile, package and deploy the
application.

By default, this property is set to Generate. This property is enabled
if Deployable is set to True. This property is specific to Folders not
contained within a segment.

Note: This setting can also be overridden later, just before the
Build using the Build Details dialog box.

Property Function
3826 5823-008 3–323

Developing Applications
Generate As Dialog Box

The Generate As dialog box enables you to view and modify information on reports.
The report information is available in a table of four columns for a specific folder
configuration. The table displays the following columns:

• Report Name: Specifies the name of a report. This value is read-only.

• Default Name: Specifies the report configuration Alternate Name, if defined. If this
value is not defined, the default name property contains the Alias for an MCP
configuration or Model name for a Windows configuration. This value is read-only.

• Generate As: Specifies the generated name of a report. You can edit this value and
ensure that the value does not exceed 10 alphanumeric characters for MCP
configurations.

Note: There is no such restriction for Windows® configurations.

• Status: Specifies the status of individual reports. This value is read-only. If a report
does not exist directly under the folder, a status of “Missing” appears against the
report; else, the status is blank. A status of “Conflict” appears against a report along
with a conflict message in the lower pane when a conflict occurs.

Stop Deployment After Option to allow control over the generate, transfer, install and run
stages of a deployment.

• Generate – The phase of deployment where an MSI package is
created.

• Transfer – Transfer the package to the Package Intermediate
Directory.

• Install – Install the package in the Package Installation Directory.

• Run – Runs the deployed application from the installation
directory.

• Compile and Package – The phase of deployment where a
package is compiled and created.

• Deploy – Generate, compile, package and deploy the
application.

• Restart Application Server – Deploy the application and restart
the application Server.

This property is enabled if Deployable is set to True. This property is
specific to Folders not contained within a segment.

Note: This setting can also be overridden later just before the
Build using the Build Details dialog box.

Usercode Specifies the usercode for the Generate job.

This property is limited to a maximum length of 17 alphanumeric
characters. By default, this property is empty. This property is
specific to Folders only.

Property Function
3–324 3826 5823-008

Developing Applications
A conflict can occur when

– The Generate As value is the same for two or more reports

– The Generate As value of a report is blank and the default name of the report is
the same as the Generate As value of another report.

In such situations, you must rename the Generate As value to resolve the conflicts.

Notes:

• If the length of the generated name is less than 100, the Generate As
Remaining Characters displays the number of characters in red.

• If the Generate As value is not yet defined for a report, a value of Not
Specified appears against those reports.

Installation

Property Function

Additional Install Script This script is called after the AB Suite Deployment process. It is run
after the application has been successfully deployed and is used to
run user-specific post-deployment configuration steps.

By default, this property is empty. This property is enabled if
Deployable is set to True, and Stop Deployment After is not set to
Generate. This property is specific to Folders only.

An example would be to copy Winform configuration files to a file
server to automate Winform distribution.

Additional Uninstall Script This script is called after the AB Suite application is deleted, usually
from the Admin Tool. It is run after the component has been
removed and any DBReorg operations. It is used to run user-
specific post-uninstallation clean up steps.

By default, this property is empty. This property is enabled if
Deployable is set to True, and Stop Deployment After is not set to
Generate. This property is specific to Folders only.

An example would be to de-register 3rd party external components
that are no longer used or needed after the AB Suite application is
removed.

Clone Database Specifies whether to clone the database for use as a secondary
remote database.

This property is only valid if you set a valid name in the RDB
Configuration property. By default, this property is set to False. This
property is specific to Segments only.
3826 5823-008 3–325

Developing Applications
Deployment Host Specifies the name of the deployment server.

For Unix, it is the DNS name or the IP address of the machine
where the application is to deployed to.

By default, this property is empty. This property is enabled if
Deployable is set to True, and Stop Deployment After is set to
Install or Run.

Note: For a Windows host only, precede the name with a
double backslash \\, unless the entry is localhost

This property is specific to Folders not contained within a segment.

Deployment Interface Type Currently only one deployment interface is supported, the default
windows deployer.

By default, it is Default Windows Deployer. This property is
specific to Folders only.

Deployment Port Number For Unix, it is the port number of the host where the application is
to be deployed.

DMSII Pack Specifies the name of the pack (location) where an alternative
version of DMS II software is located. This pack and the value
entered in the DMS II Usercode field identify the alternative version
of DMS II to be used when building the DASDL source and by the
deployment phase when compiling the database.

Select a pack from the list of available packs. By default, this
property is empty. This property is specific to Segments only.

DMSII Usercode Specifies the usercode for use with an alternative version of DMS II
software. This usercode and the value entered in the DMS II Pack
field identify the alternative version of DMS II to be used when
building the DASDL source and by the deployment phase when
compiling the database.

This property is limited to a maximum length of 17 alphanumeric
characters. By default, this property is empty. This property is
specific to Segments only.

External Installer File
Deployment Script

Specifies a script that is executed during installation to install
anything from the External Internal Files property. That is, to install
anything that is not from Agile Business Suite.

By default, it is empty. This property is specific to Folders only.

Number of Parallel
Compiles

Specifies the number of compile threads (multithreading) that run
concurrently.

By default, this property is set to 1. The numbers range from 1 to
99. This property is specific to Segments only.

Number of Reorg Tasks Specifies the maximum number of reorganization tasks that can
occur simultaneously.

By default, this property is set to 1. The numbers range from 1 to
9999. This property is specific to Segments only.

Property Function
3–326 3826 5823-008

Developing Applications
Package Installation
Directory

Specifies the directory where the msi file installs, when it is run.

Type a valid DOS path. For example,

C:\my folder

By default, this property is empty. This property is enabled if
Deployable is set to True, and Stop Deployment After is not set to
Generate. This property is specific to Folders not contained within a
segment.

Package Intermediate
Directory

Specifies where the package installer file(s) transfer to before the
installation process begins.

By default, this property is empty. This property is enabled if
Deployable is set to True, and Stop Deployment After is set to
Transfer, Install or Run. This property is specific to Folders only.

Package Name Specifies the name of the msi file. By default, this property is set to
the folder name. Package names must be unique within a project.

This property is enabled if Deployable is set to True. This property is
specific to Folders only.

RDB Configuration Specifies the name of an RDB Configuration that is to be used in
conjunction with this Configuration to setup/maintain a secondary
database. Refer to the Backup, Recovery, and Remote Database
section of the Agile Business Suite Runtime for Clearpath MCP
Administration Guide for guidelines on this feature.

By using Remote Database Backup, you can maintain an up-to-date
copy of your production database on a different host for the
purposes of disaster backup/recovery.

If you wish to clone the database the next time the system is
transferred, set the Clone Database property to True.

This property is limited to a maximum length of 17 characters. By
default, this property is empty. This property is specific to
Segments only.

Reorg Allowedcore Specifies the amount of memory that you require for database
reorganization. The value is specified in words and is factored by
100,000 (1 = 100,000). If you enter a value greater than the amount
of the available memory, the value is changed to eighty percent of
the available memory. This ensures that reorganization does not
fail.

The property value ranges between 1 and 5,497,558 inclusive. By
default, this property is set to zero. If zero or no value is entered in
this property, the default value of this property is set to 100,000.

This property is specific to Segments only.

Property Function
3826 5823-008 3–327

Developing Applications
Reorg Preverify Specifies when to use the DMSII PREVERIFY option with a
database reorganization. If you set Reorg Preverify to True, a pre-
verification task is initiated for each generated data set before
reorganization actually begins. This task locks the structure,
preventing changes until the reorganization starts. It then reads all
records in the data set to ensure the verify condition for records
(for example, that required items are not null).

PREVERIFY is not permitted with the REORGDB option. You have
to ensure that the Reorg Preverify property is set to False before
setting the Reorganziation Type property to REORGDB.

Refer to the Enterprise Database Server for ClearPath MCP
Utilities Operations Guide for more information.

By default, this property is set to False.

This property is specific to Segments only.

Property Function
3–328 3826 5823-008

Developing Applications
Reorganisation Type Specifies the reorganization options.

The following options are available for this property:

• DMS Offline – Indicates that you do not want reorganizations to
be audited, but you want to use the DMS II OFFLINE or
NORESTART feature. When the reorganization is complete you
are prompted to perform a database dump.

Refer to the Enterprise Application Runtime Administration
Guide for ClearPath MCP for more information on the Offline
and NORESTART features.

• Offline NoPostDump – Indicates that you do not want
reorganizations to be audited, but you want to use the
NOPOSTDUMP feature. This option is an extension of the DMS
Offline option, but you arenot prompted to perform a database
dump.

• Online Reorg – Indicates that you want reorganizations to be
audited. This may slow down your reorganization time.

• ReorgDB – Indicates that you want to use the DMSII
REORGDB option with the next reorganization. Refer to the
Enterprise Database Server for ClearPath MCP Utilities
Operations Guide for more information on usage and
constraints of the REORGDB option. You do not need to shut
down your database during the reorganization if AutoSwap is
set to True and no user intervention is required. However, if
AutoSwap is set to False, you need to shut down your system
briefly at the time the reorganized structures are swapped. This
allows you to install software changes at the same time. When
you are asked to enter AX SWAPNOW, you must bring your
system down before responding to the request. The generate
operation continues as normal after that, and you may restart
your system after the generate operation completes. When this
option is selected, the following REORGDB properties are
enabled:

– REORGDB DB Title

– REORGDB CopyTo

– REORGDB AutoSwap

– REORGDB TotalCopyCore

– REORGDB AllowedCore

– REORGDB KeepRSN

– REORGDB NoRestart

Regardless of the AutoSwap setting, if you use ReorgDB, ensure
that you terminate any active reports prior to the deployment if
they reference any database structure that is reorganized.

By default, this property is set to DMS Offline.

This property is specific to Segments only.

Property Function
3826 5823-008 3–329

Developing Applications
REORGDB AllowedCore Specifies the amount of core memory that can be used for the
reorganized database copy. The value is specified in words and is
factored by 10,000 (1 = 10,000). This option for the REORGDB
mode of reorganization serves the same purpose as the database
ALLOWEDCORE parameter that is specified in DASDL.

Note: The DMSII REORGDBALLOWEDCORE option serves the
role of database ALLOWEDCORE parameter only during the
processing of updates. It does not have a role during the
background OFFLINE reorganization.

By default, this property is set to 1000 (10,000,000 words). The
numbers range from 1 to 99,999.

This property must be set if Reorganization Type property is set to
ReorgDB.

This property is specific to Segments only.

REORGDB AutoSwap In this release of Agile Business Suite Runtime for Clearpath MCP,
this property is ignored. The DMSII REORGDBAUTOSWAP option
is always set to FALSE.

This property must be set if Reorganisation Type property is set to
ReorgDB.

By default, this property is set to False.

This property is specific to Segments only.

REORGDB CopyTo Specifies the database location where the production database
structures are captured and applied during a REORGDB
reorganization. When the REORGDB CopyTo option is set to
spaces, the pack name of the existing structure is used.

This property may be set if Reorganisation Type property is set to
ReorgDB.

REORGDB KeepRSN Specifies whether the KEEPRSN option is used with a REORGDB
reorganization. Set this property to True to preserve the RSN value
of new records created during a REORGDB reorganization.

This property is enabled when Reorganization Type is set to
REORGDB.

By default, this property is set to False.

This property is specific to Segments only.

REORGDB NoRestart Specifies that the reorganization cannot be restarted. Select this
option to enable the reorganization of the database copy
designated by the REORGDBTITLE to proceed without performing
excessive input/output operations that can slow the process.

This property is enabled when Reorganization Type is set to
REORGDB.

By default, this property is set to False.

This property is specific to Segments only.

Property Function
3–330 3826 5823-008

Developing Applications
REORGDB Title Specifies the name of the database copy during a REORGDB
reorganization.

This property must be set if Reorganisation Type property is set to
ReorgDB. This property allows a maximum length of 50 characters.

By default, this property is empty.

This property is specific to Segments only.

REORGDB TotalCopyCore Specifies the value to be used with the REORGDB
TOTALCOPYCORE option. The value is specified in words and is
factored by 10,000 (1 = 10,000).

This property must be set if the Reorganization Type property is set
to ReorgDB.

By default, this property is set to 5000 (50, 000, 000 words). The
numbers range from 1 to 99,999.

This property is specific to Segments only.

Sort Sets on Reorg Specifies whether Agile Business Suite Runtime for Clearpath
MCP includes explicit statements in the BUILDREORG deck for
reorganizing datasets (<<Ispec>>/vanilla classes) and their sets/
subsets (Profiles) when the deployment process has determined
that a structure needs reorganizing. For large structures, this can
be a more efficient reorganization of the dataset and its sets.

By default, this property is set to False.

This property is specific to Segments only.

Suggested Number of
Class DLLs

Defines the number of classes that is included in each DLL. The
number of DLLs is determined by dividing the number of classes
by this property value.

For example, if Classes per DLL is set to 50 and you have 250
classes, you end up with 5 DLLs.

Every group class is counted as a class.

User Deployment Script This property allows specific deployment processes to be
developed, tailored to the user's requirements and deployment
context. This script is run after the generated deployment package
is produced and placed in the package intermediate directory. It can
be used, for example, to manually copy and deploy the application
across non-domain network scenarios, or to run specific pre-
deployment configuration steps.

By default, this property is empty. If left empty, default process is
used to control installation.

This property is enabled if Deployable is set to True, and Stop
Deployment After is set to Install or Run.

This property is specific to Folders only.

Note: To run user-defined scripts, remote scripting must be
enabled. Refer to the Visual Studio Online Help on how to set up
remote Windows script hosts for more information.

Property Function
3826 5823-008 3–331

Developing Applications
NAP Direct Interface

WFL Family Specifies the MCP Family statement to be used by the generate
process for storing your system and system software files.

This property requires an entry if either of the following situations
apply:

The system software required during the installation (for example,
the compilers) is not resident on either the primary or alternate
pack family of the WFL usercode family. To address this situation,
enter the statement (where pack is the pack family of system
software):

DISK = pack ONLY

To ensure all work files are kept on your primary family, enter
(where pack is the pack family of system software and primary is
the primary family):

DISK = primary OTHERWISE pack

You are placing some or all of the installed host software onto a
pack family called DISK. To address this situation, enter the
statement:

DISK = DISK ONLY

Or, if the system software is not on the pack family called DISK,
enter (where pack is the pack family of system software):

DISK = DISK OTHERWISE pack

Note: If you specify an alternate pack, that is used as the
alternate pack of the FAMILY statement associated with LSS and
the Update programs within COMS, and therefore be the
alternate pack for files accessed by those programs (for
example, WFLs referenced by a START; command).

This property is limited to a maximum length of 44 characters. By
default, this property is empty. This property is specific to
Segments only.

Property Function

Enable NAP Direct
Interface

Specifies whether an application can communicate through a direct
interface to external applications. The direct interface is the Network
Application Platform (NAP).

By default, this property is set to False. This property is specific to
Segments only.

NAP GSDs – AIM Buffer Specifies the name of your NAP AIM buffer Group attribute.

This attribute must be a Group attribute, and cannot be part of
another Group attribute. If you change the value in this property all
attributes are regenerated.

This property is enabled when the Enable NAP Direct Interface is set
to True. This property is limited to a maximum length of 18 characters.
By default, this property is empty. This property is specific to
Segments only.

Property Function
3–332 3826 5823-008

Developing Applications
National Support

NAP GSDs – Global
Work

Specifies the name of the NAP Global Work Group attribute.

This attribute must be a Group attribute, and cannot be part of
another Group attribute. If you change the value in this property all
attributes are regenerated.

This property is enabled when the Enable NAP Direct Interface is set
to True. This property is limited to a maximum length of 18 characters.
By default, this property is empty. This property is specific to
Segments only.

Property Function

Internationalization
Language

Specifies the national language that is available on the host targeted by
this Configuration. This language to be used as the collating sequence for
a national item

This property enables you to set your DASDL definition to specify a
collating sequence (other than the default EBCDIC sequence) for the
national Attributes stored on your database. This ensures that all text
comparisons and sort sequences use the same collating sequence as the
DMSII database. It also applies to your generated classes and methods.

This property must be specified if any attributes of the Segment are
defined as national items. A National Attribute in Agile Business Suite is a
National String under the following conditions

• National Support = Single-byte

• Internationalization Language not set to NONE or spaces

• Collating Sequence not set to NONE or spaces.

The following rules apply to the value of this property:

• If a segment contains some national items and the value of this
property is empty then generate fails (with errors).

• If a segment contains some national items and the value of this
property is Ignore National then generate proceeds as normal
(without errors).

• If a segment does not contain any national items and the value of this
property is empty or Ignore National then generate proceeds as
normal (without errors).

This property is limited to a maximum length of 17 alphanumeric
characters.

By default, this property is empty. It also has predefined value of Ignore
National.

This property is specific Segments only.

Property Function
3826 5823-008 3–333

Developing Applications
OLTP

The OLTP information is only relevant to Agile Business Suite systems for the MCP and
Windows® platform.

Property Function

Accept OLTP Transaction Specifies whether the <<Ispec>> class is able to accept OLTP
transactions.

The <<Ispec>> class only receive transactions if you have set the
Enable OLTP property to True and specified a service name in the
OLTP Service Name property for the <<Ispec>> class.

The OLTP Reply property is automatically set to True when you set
the Accept OLTP Transaction property to True. These options can
also be used independent of each other.

By default, this property is set to False.

This property is specific to Ispecs only.

Note: <<Copy Ispec>> classes cannot receive OLTP transactions.

Default Service Name Specifies the default OLTP service name.

This property is specific to Segments only.

Enable OLTP Specifies whether to enable the use of OLTP to access any services
for elements of the Segment.

By default, this property is set to False. If this property is set to True,
additional OLTP properties are enabled.

This property is specific to Segments only.

Load OLTP Configuration
Data

Specifies whether to load the OLTP configuration data.

By default, this property is set to True.

This property is specific to Segments only.

Number of Concurrent
OLTP Reports

Specifies the initial number of OLTP Interface Programs (system/
OLTP/IP) to be configured for the application.

By default, this property is set to 1. The numbers range from 1 to 99.

This property is specific to Segments only.

OLTP Client Specifies whether to enable this <<Ispec>> or <<Report>> class as
an OLTP Client (accepts OLTP transactions).

This property is enabled for Reports if OLTP Participation is set to
OLTP Client and Server.

By default, this property is set to False.

This property is specific to <<Ispec>> and <<Report>> classes only.

OLTP Participation Specifies whether the System participates as:

• Both OLTP Client and Server,

• OLTP Client only, or

• OLTP Server only.

By default, this property is set to OLTP Client and Server.

This property is specific to Segments only.
3–334 3826 5823-008

Developing Applications
OLTP Server Specifies whether to enable this <<Ispec>> class as an OLTP Server
(accepts OLTP transactions).

By default, this property is set to False.

This property is always set to True if OLTP Client is set to True.

This property is specific to <<Ispec>> classes only.

OLTP Service Name Specifies the OLTP service name for the <<Ispec>> class.

The property has the following naming conventions:

• Limited to a maximum length of 15 alphanumeric characters

• Case sensitive

• Must start with an alpha character and support local case when
specified

• Allows a maximum of 10 OLTP service Name to be specified.

This field is enabled only if the Enable OLTP option is set to True.

By default, this property is empty. You can leave this property blank
to use the default OLTP service name for the subsystem.

This property is specific to <<Ispec>> classes only.

OLTP Reply Specifies whether to enable the <<Ispec>> class to reply to OLTP
transactions. An <<Ispec>> class buffer definition is also generated
for definition to OLTP.

The OLTP Reply property is automatically set to True when you set
the Accept OLTP Transaction property to True. These options can
also be used independent of each other. An <<Ispec>> Class buffer
definition is also generated for definition to OLTP

By default, this property is set to False.

This property is specific to <<Ispec>> and <<Event>> classes only.

Note: <<Copy Ispec>> classes cannot receive OLTP transactions.

Report Timeout Specifies the report timeout in seconds.

By default, this property is set to 450. The numbers range from 1 to
9999. This property is specific to Segments only.

Transaction Timeout Specifies the OLTP transaction timeout in seconds.

By default, this property is set to 300. The numbers range from 1 to
9999. This property is specific to Segments only.

Property Function
3826 5823-008 3–335

Developing Applications
Pack Allocation

Property Function

Audit Pack Specifies the storage location for the Database Audit files. Select a pack
from the list of available packs.

If you do not specify an entry in this property, the Dictionary Pack entry is
used. The Audit files should not be directed to the pack specified as the
Default Pack.

The entry in this field is ignored for audit purposes if you enter User
Defined in the Copy Audit to Tape property under the Environment
category of the Segment Configuration properties. However, the pack
you enter in the Audit pack field is always used to hold the secondary
copy of the GLB.UNIQUE file if that pack is different from the Dictionary
Pack.

Note: The Audit Pack name must be different to the Default Pack
name.

This property is limited to a maximum length of 17 alphanumeric
characters. By default, this property is set to the Dictionary Pack.

This property is specific to Segments only.

Database Pack Specifies the storage location for the Application Database structures.
Select a pack from the list of available packs.

If you do not specify an entry in this property, the Dictionary Pack entry is
used. Database structures that do not have explicit packs specified for
them are placed on the pack that you specify in this property. If you
intend using the MCP-based Pack Mirroring feature, it is essential that
you use this property to define one pack for all your Database structures.

This property is limited to a maximum length of 17 alphanumeric
characters.

By default, this property is set to the Default Pack.

This property is specific to Segments only.

Default Pack Specifies the storage location for all packs in the Configuration. Select a
pack from the list of available packs.

This property is limited to a maximum length of 17 alphanumeric
characters.

By default, this property is set to SYSTEM.

This property is specific to Segments only.
3–336 3826 5823-008

Developing Applications
Dictionary Pack Specifies the storage location for the following system and DMS files:

• DMS II description and control file

• DMS II database, unless one of the following options is taken:

– A Database pack is specified.

– Components, Events, and Audit files are redirected.

– Structures and GLB-DIALOGINFO datasets are redirected.

• GLI layout file for your system.

• Screen layouts file for your system.

• Control file for your system.

Select a pack from the list of available packs.

This property allows a maximum length of 17 alphanumeric characters.

By default, this property is set to the Default Pack.

This property is specific to Segments only.

DuplicateAudit Pack Specifies the storage location for the second copy of the DMS II
database audit files. Select a pack from the list of available packs.

If you specify an entry in this property, a copy of the audit files is created
and is maintained on the pack specified in this property. These files are
called the secondary or duplicate audit files. If you do not specify an entry
in this property, secondary audit files are not maintained. The entry in this
property is ignored for audit purposes if you enter User Defined in the
Copy Audit to Tape property under the Environment category of the
Segment Configuration properties.

This property is limited to a maximum length of 17 alphanumeric
characters.

By default, this property is empty.

This property is specific to Segments only.

Event Pack Specifies the storage location for the Event Set data. This is also the
default pack for all Profiles using Events. Select a pack from the list of
available packs.

If you do not specify an entry in this property, the Database Pack entry is
used. If the Database Pack is not specified, then the Default Pack entry is
used.

This property is limited to a maximum length of 17 alphanumeric
characters.

By default, this property is set to the Default Pack. All Profiles using
Events reside on the Database Pack, or if that is not specified, they
reside on the Default Pack.

This property is specific to Segments only.

Property Function
3826 5823-008 3–337

Developing Applications
Extract Pack Specifies the storage location for the Report Extract files. Select a pack
from the list of available packs.

This property allows a maximum length of 17 alphanumeric characters.

By default, this property is set to DEFAULT which indicates that the
Dictionary Pack entry is used and if that is not specified, the Default Pack
entry is used.

This property is specific to Segments only.

Specifies the name of the pack (location) to where the extract data is to
be stored.

This property is limited to a maximum length of 17 alphanumeric
characters.

By default, this property is set to the default pack. For example, SYSTEM.
This property’s value is used only for the first generate and is not used for
Events.

This property is specific to Reports only.

Log Pack Specifies the storage location for the Log files. Select a pack from the list
of available packs.

This property is limited to a maximum length of 17 alphanumeric
characters.

By default, this property is set to Default Pack.

This property is specific to Segments only.

Object Pack Specifies the storage location for the object code of the system, its
associated Reports, and for any temporary work files. Select a pack from
the list of available packs.

If you do not specify an entry in this property, the Dictionary Pack entry is
used. If the Dictionary Pack is not specified, then the Default Pack entry
is used.

This property is limited to a maximum length of 17 alphanumeric
characters.

By default, this property is set to the Default Pack.

This property is specific to Segments only.

Pack Specifies a storage area (location) on the host for the application
components. Select a pack from the list of available packs.

This property is limited to a maximum length of 10 alphanumeric
characters.

By default, this property is set to:

• Default pack for Classes. This property value is used only for the first
generate and is not used for Events.

• Is empty (which equates to default pack inside the application) for
Profiles.

This property is specific to Classes and Profiles only.

Property Function
3–338 3826 5823-008

Developing Applications
Persistence

Reorg Pack Specifies the storage location for structures created by the reorganization
process of a retained database. Select a pack from the list of available
packs.

This property is limited to a maximum length of 17 alphanumeric
characters.

By default, this property is set to Default Pack.

This property is specific to Segments only.

ROC O/P file
Location

Specifies the storage location for the flat files on which Report Output
Control files (ROC) files are stored. Select a pack from the list of available
packs.

If you do not specify an entry in this property, the ROC DB Location entry
is used. If that is not specified, then the Default Pack entry is used.

This property is limited to a maximum length of 17 alphanumeric
characters.

By default, this property is set to the Default Pack.

This property is specific to Segments only.

ROCDB Pack Specifies the name of the database family in which Report Output
Control (ROC) files are stored. Select a pack from the list of available
packs.

If you do not specify an entry in this property, the Database Pack entry is
used. If the Database Pack is not specified, then the Default Pack entry is
used.

This property is limited to a maximum length of 17 alphanumeric
characters.

By default, this property is set to the Default Pack.

This property is specific to Segments only.

StationInfo Pack Specifies the storage location for the GLB-DIALOGINFO information.
Select a pack from the list of available packs.

If you do not specify an entry in this property, the Database Pack entry is
used. If the Database Pack is also not specified, then the Default Pack
entry is used

This property is limited to a maximum length of 17 alphanumeric
characters. By default, this property is set to the Default Pack.

This property is specific to Segments only.

Property Function

Alternate Name Specifies an alternate name to be used in database and system
definitions.

This property can contain alphanumeric and '_' characters. By
default, this property is empty.

This property is specific to Segments, persistent Classes, Ispecs,
Events, Copy Ispecs, Copy Events Profiles, Persistent Attributes and
Methods only.

Property Function
3826 5823-008 3–339

Developing Applications
Cluster Index Specifies the profile to be used as the clustered index for the class's
database table.

By default, this property is empty.

This property is specific to persistent classes only.

COMS Window Name Specifies the name for the COMS window under which your
generated systemis identified to COMS.

This property is limited to a maximum length of 10 alphanumeric
characters.

By default, this property is set to the Segment name.

This property is specific to Segments only.

Database Name Specifies the name of the database. The name is case sensitive and
should match the name of the database exactly. By default, this
property is empty.

This property is specific to Segments only.

Database Schema Name Specifies the name of the database schema.

This schema name is created as a database user.

Type a name in uppercase letters. By default, this property is set to
the Segment name.

This property is specific to Segments only.

Tables of each system are owned by the user derived from the
database schema name. If two systems use the same database
schema name, then there could be a possibility that the other
system could be disrupted when one system is being reorganized.
Hence using a unique database schema name is recommended.

Database Server
Registration

Specifies the name of the runtime's database server registration that
refers to the database server to which you want to deploy the
generated application. The name is case sensitive and should match
the name of the database registration exactly. By default, this
property is empty.

This property is specific to Segments only.

Database Tablespace Specifies the location of the object's database table. By default, this
property is empty.

This property is specific to persistent classes and Profiles only.
Maximum of 30 characters, the first of which must be alphabetic.

Property Function
3–340 3826 5823-008

Developing Applications
Expected Number Specifies the expected population for ispec and vanilla classes,
expected monthly volume for event classes, expected number/
monthly volume for profiles and the expected number of records for
extract files.

By default, this property is set to 100.

For profiles, this property is enabled if Population Estimation Method
is set to Use Expected Number.

This property is specific to persistent classes and Profiles only.

For MCP Applications:

The value of this property ranges from 1 to 545,755,813,887. An
exception to this is direct ispec/classes and their profiles, for which
the range is 1 to 268,435,455.

By default:

• This property is set to 100 for <<Ispec>> and vanilla classes.

• This property is set to 1000 for <<Event>> classes.

Caution: If the value specified for the expected number exceeds
268,435,455, you must ensure that sections have been defined for
the ispec/class and associated profiles. Refer to the Agile
Business Suite Runtime for Clearpath MCP Adminstration Guide for
more information on how to prepare related classed and profiles.
If you do not prepare the ispec and associated profiles before
using a large population, syntax errors may occur during
compilation of the DASDL.

Percentage of Expected
Number

Specifies the maximum number of database records expected to be
created for the Profile as a percentage of the Default Calculation.

By default, this property is set to 100.

This property is specific to Profiles only.

This property is enabled when Population Estimation is set to Specify
Percentage of class's Expected Number.

Property Function
3826 5823-008 3–341

Developing Applications
Population Estimation
Method

Specifies the method used to specify the maximum number of
database records expected to be created for the Profile.

The following options are available for this property:

• Use Default Calculation – Select this option to use the default
calculations for the Expected Number/Monthly Volume. For a
Profile owned by an <<Ispec>>, <<Event>>, or vanilla class, the
Default Calculation is the Expected Number of the owner class.
For a Profile owned by an EventSet and spans more than one
<<Event>> class, the Default Calculation is the sum of the
Expected numbers of all <<Event>> classes included in the
Profile’s conditions.

• Use Expected Number Method – Select this option for the target
builder to use the value in the Expected Number property for
the profile.

• Use Percentage Method – Select this option for the target builder
to calculate the population for the profile as a percentage
(ProfileUsePercentage) of the Default Calculation

By default, this property is set to Use Expected Number.

This property is specific to Profiles, ispec class, event class, vanilla
class, extract file configuration properties only.

Records Per Block Specifies the expected number of records for the corresponding
extract files.

This property’s value ranges from 1 to 99999999.

By default, this property is set to the default. You should be aware of
the minimum and maximum physical block sizes for the device being
used, and ensure that your specified block/record size falls within
those limits.

This property is specific to an Attribute that inherits GLB.File (extract
files).

User Maintained Table Specifies whether a database table is reorganized by the user or by
system during deployment.

By default, the value is False.

Applies to persistent classes.

View Alternate Names Displays an alternative name of a report. You can use the View
Alternate Names dialog box to view information about reports.
Click the ellipsis button (…) to access the View Alternate Names
dialog box.

This dialog box includes a read-only list of data in the following
columns.

• Folder Name: Displays the folder in which the report exists.

• Default Name: Specifies the report configuration Alternate
Name, if defined. If this value is not defined, the default name
value contains the Alias for an MCP configuration or Model name
for a Windows® configuration.

• Generate As: Displays the generated as value of a report.

Property Function
3–342 3826 5823-008

Developing Applications
Remote Database

Property Function

ACK Rate Specifies the number of blocks of audit files to be sent between
your primary and secondary databases, before your application
checks for an acknowledgment.

This property enabled when

• Configure Set Type is set to RDB.

• File Transmission Mode is set to Audit block write.

By default, this property is set to 0. The numbers range from 0 to
99.

This property is specific to Segments only.

Delay AuditFile Removal Specifies whether to delay the audit files being removed before
RDB has finished sending them.

This property is enabled when Configure Set Type is set to RDB.

By default, this property is set to False.

This property is specific to Segments only.

Dump Tape Cycle Specifies the cycle number for the dump tape.

This property is only enabled when

• Configure Set Type is set to RDB.

• Dump Medium is set to Tape.

By default, this property is set to 0. The numbers range from 0 to
999999.

This property is specific to Segments only.

Note: You can specify up to three sets of dump details.

Dump Tape Density Specifies the density of the dump tape.

This property is only enabled when

• Configure Set Type is set to RDB.

• Dump Medium is set to Tape.

By default, this property is set to 0. The numbers range from 0 to
999999.

This property is specific to Segments only.

Note: You can specify up to three sets of dump details.

Dump Name Specifies the name of the dump file.

This property is only enabled if Configure Set Type is set to RDB.

By default, this property is empty.

This property is specific to Segments only.

Note: You can specify up to three sets of dump details.
3826 5823-008 3–343

Developing Applications
Dump Medium Specifies the medium on which the dump file is kept.

The following options are available for this property:

• Pack – Indicates that the dump file is on pack

• Tape – Indicates that the dump file is on Tape

By default, this property is set to Tape.

This property is enabled if Configure Set Type is set to RDB.

This property is specific to Segments only.

Note: You can specify up to three sets of dump details.

Dump Pack Specifies the name of the pack if your dump file is on pack. You can
either enter the name or select it from the list.

This property is limited to a maximum length of 17 alphanumeric
characters.

This property is only enabled when

• Configure Set Type is set to RDB.

• Dump Medium is set to Pack.

By default, this property is empty.

This property is specific to Segments only.

Note: You can specify up to three sets of dump details.

Dump Tape Serial Number Specifies the serial number of the dump tape.

This property is only enabled when

• Configure Set Type is set to RDB.

• Dump Medium is set to Tape.

By default, this property is set to 0. The numbers range from 0 to
999999.

This property is specific to Segments only.

Note: You can specify up to three sets of dump details.

Dump Tape Version Specifies the version number for the dump tape.

This property is only enabled when

• Configure Set Type is set to RDB.

• Dump Medium is set to Tape.

By default, this property is set to 0. The numbers range from 0 to
999999.

This property is specific to Segments only.

Note: You can specify up to three sets of dump details.

Property Function
3–344 3826 5823-008

Developing Applications
Error Handling Specifies the method of communication error handling.

The following options are available for this property:

• Connection Dropped

• Operator Intervention

Refer to the Remote Database Backup, Planning and Operations
Guide for more information on these options.

This property is enabled when:

• Configure Set Type is set to RDB.

• File Transmission Mode is set to Audit block write.

This property enabled if the File Transmission Mode property is set
to Audit block write.

By default, this property is set to Connection dropped.

This property is specific to Segments only.

File Transfer Option Specifies the file transfer rate.

The following options are available for this property:

• FTRapid – transfers files at a faster rate.

• Native – transfer files at a standard rate.

By default, this property is set to Native.

This property is enabled when:

• Configure Set Type is set to RDB.

• File Transmission Mode is set to Audit block write.

This property is specific to Segments only.

File Transmission Mode Specifies the mode of communication between your primary and
secondary databases.

This property is enabled when Configure Set Type is set to RDB.

The following options are available for this property:

• Audit block write

• File Switch

• ServerCapable

• Not ServerCapable

Refer to the Remote Database Backup, Planning and Operations
Guide for more information on these options.

By default, this property is set to Audit block write.

This property is specific to Segments only.

Number of Workers Specifies the number of dump workers that you want to use, if
your primary database is to be dumped to tape or pack. The
number of dump workers is the number of reels dumped in parallel.

This property is enabled when Configure Set Type is set to RDB. By
default, this property is set to 1. The numbers range from 0 to 99.

This property is specific to Folders only.

Property Function
3826 5823-008 3–345

Developing Applications
Pack Mappings Specifies the mapping of the Packs for the selected Configuration
to the equivalent Packs for the remote database on the secondary
host.

For example, PACK1=PACK2, PACK3=PACK4, etc.

By default, this property is empty.

This property is specific to Segments only.

Port Timeout From Primary Specifies the time, in seconds, for which the primary application
waits for a response from the secondary database before timing
out.

This property is enabled when Configure Set Type is set to RDB.

By default, this property is set to 0. The numbers range from 0 to
9999.

This property cannot be set to 0, when:

• Error Handling property is set to Connection Dropped

• File Transmission Mode is set to Audit Block Write

• Port Timeout From Secondary property is set to zero.

This property is specific to Segments only.

Port Timeout From
Secondary

Specifies the time, in seconds, for which the secondary application
waits for a response from the primary database before timing out.

This property is enabled when Configure Set Type is set to RDB.

By default, this property is set to 60. The numbers range from 0 to
9999.

This property cannot be set to 0, when:

• Error Handling property is set to Connection Dropped

• File Transmission Mode is set to Audit Block Write

• Port Timeout From Primary property is set to zero.

This property is specific to Segments only.

Synch Restart Interval Specifies the interval between when the System detects that a
Catchup condition has occurred (when your Secondary system has
fallen behind the processing of your Primary system) and when it
initiates the Catchup process.

This property is enabled when Configure Set Type is set to RDB.

By default, this property is set to 0. The numbers range from 0 to
999.

This property is specific to Segments only.

Property Function
3–346 3826 5823-008

Developing Applications
Runtime Options

Property Function

Active Month Number Your system uses Active Month Number and Expected Number to
reserve space for Event data.

Active Month Number specifies the number of months. Events are
stored before they may be removed.

Note: It is the user’s responsibility to remove the old Event
transactions, not Agile Business Suite. This property is used to
specify how much space to reserve.

By default, this property is set to 1. The numbers range from 1 to 99.

This property is specific to Segments only.

Binary Specifies the Binary options for numeric.

The following options are available for this property: Binary Coded
Decimal, Binary, or None.

By default, this property is set to None.

This property is specific to Attributes painted in a report frame only.

This property is disabled if Default Device is set to Enterprise Output
Manager (EOM) Generated Reports.

DataReader Capable Specifies whether a runtime system is using the Datareader SQL
Server feature to retrieve data through the Determine commands.
This feature modifies the process of data retrieval and subsequently
optimizes the performance of AB Suite runtime. Refer to the Agile
Business Suite Runtime for Windows® Operating System
Administration Guide for more information about the Datareader
feature.

Note: Most of the AB Suite runtime systems have a
performance improvement by using the Datareader feature.
However, the Datareader feature can be inefficient for some
runtime systems and this property should be set to false for
those systems.

By default, this property is set to True.

This property is specific to Segments only.

Def Bounds Checking Specifies whether a bound checking is set using the MOVE logic
command or assignment operation.

By default, this property is set to False.

This property is specific to Segments only.

Default Translation Specifies the translation used for the System GUI at runtime. If this
property is empty, the Session language is used.

By default, this property is empty. This property is specific to
Segments and Reports only.

Extend Report Recovery Specifies whether failed Reports store recovery information.

Failed Reports can be rerun once offending problems have been
fixed.

By default, this property is set to False.

This property is specific to Segments only.
3826 5823-008 3–347

Developing Applications
Extract File Location Specifies the full path name of the Extract File.

By default, this property is empty.

This property is specific to Classes and Attributes that inherit from
Glb.File only.

Extract File Name Specifies the name of the Extract File.

By default, this property is set to the name of the extract file object.

This property is specific to Classes and Attributes that inherit from
Glb.File only.

Fireup Ispec Specifies the name of the <<ispec>> class that automatically
displays when the deployed system is run.

By default, this property is empty.

This property is specific to Segments only.

Generate Optimized
Initialization Code

Specifies generating an optimized code for performing initialization
of the entire primitive and group attributes that are defined as
members of a Segment. Normally all the primitive and group
attributes in a Segment are initialized as part of every ispec
transaction. If this property is set to True, then additional code is
generated to perform this initialization in an optimized manner that
initializes only those attributes that are used in each ispec
transaction. If your system has a large number of attributes as
members of the Segment class, such as greater than 5,000, the
optimized initialization code may provide a noticeable performance
improvement. Always remember that additional time is taken during
the build process to generate the additional initialization code, during
the generation of the <segment>.cs file. So, this property provides a
tradeoff between build time and runtime performance.

Note: This setting is subjective and some runtime systems
might experience a performance benefit. If you have more than
10,000 primitive and group attributes defined as members of the
Segment class, it is recommended to set this property.

By default, this property is set to False.

This property is specific to Segments only.

Glb.Param Size Specifies the size of System Attribute Glb.Param.

By default, the size is 2,000.

The maximum size of the System Attribute Glb.Param is 262,000.

This property is specific to Segments only.

Global Work Size Specifies the size of the global work buffer.

By default, this property is set to 128. The numbers range from 128
to 4095.

This property is specific to Segments only.

Has External Interface Specifies whether the selected class is represented by an external
interface. For example, Web Service, USER, OFFLINE, or GLI.

By default, this property is set to False.

This property is specific to Ispecs, Events, Copy Ispecs and Copy
Events only.

Property Function
3–348 3826 5823-008

Developing Applications
High Frequency Specifies whether faster access is to be provided at runtime.

By default, this property is set to False.

This property is enabled if Ispec Type is set to Table only.

This property is specific to <<Ispec>> and vanilla classes only.

Note: Excessive use of this facility can result in wasteful use of
memory resources.

Ispec Type Specifies the database usage by the <<ispec>> or vanilla class.

The following options are available for this property:

• Standard – Select this option for normal database usage.

• Table – Select this option for high frequency access.

• Direct – Select this option to create a direct dataset in the
DASDL (you must have defined only one key in the class:
Primitive = number and length < 12).

By default, this property is set to Standard.

It is recommended that you keep the same setting across all MCP
configurations.

This property is specific to<<Ispec>> and Vanilla classes only

KanjiSpace Conversion Determines whether the Kanji space-ASCII space conversions are
done while reading and writing extract files. When Kanji Space
property is set to TRUE, one Kanji space is converted to two ASCII
spaces while reading and writing extract files.

By default, the configuration property KanjiSpaceConversion is not
visible. To make this property visible on Segment Property pages,
set the NationalString property on the Segment to MultiByte and
Validation to Kanji.

By default, the configuration property KanjiSpaceConversion is set
to False. Set this property to True.

Note: KanjiSpaceConversion configuration property is not
available for MCP Platform.

Line Spacing Specifies the line spacing.

The following options are available for this property: Single, Double,
or Triple.

By default, this property is set to Single.

This property is disabled when device is set to Enterprise Output
Manager (EOM) Generated Reports or DI.

This property is specific to Reports only.

Log Activities Specifies whether to write details of non-transaction activities (such
as signing on and off) to a log file.

By default, this property is set to False.

This property must be set to True if Log Transactions is set to True.

This property is specific to Segments only.

Property Function
3826 5823-008 3–349

Developing Applications
Log File Location Specifies the directory that contains the runtime log file.

Type a valid DOS path. For example,

C:\my folder

By default, this property is empty.

This property is specific to Segments only.

Log File Size Specifies the size of the log file.

By default, this property is set to 4000. The numbers range from
1000 to 999999.

This property is enabled when Log Activities is set to True. Once you
set the logging, the Log File Size defaults to 4000 or as specified or
changed by the user. If Log File Size is less than 1000, then, it
defaults to 1000 minimum.

This property is specific to Segments only.

Log Transactions Specifies whether to write details of transaction activities to a log
file.

By default, this property is set to False.

This property must be set to True if Log Activities is set to True. This
property is specific to Segments only.

Preserve Session Data Use this property to control the physical I/0 overhead associated
with saving and retrieving session data records. It specifies whether
to retain data unique to a user across sessions or when the System
terminates.

By default, this property is set to False.

When this property is set to True, you must take care when using
the System Attributes:

• TRANNO

If this property is set to False, the overheads incurred by retaining
this information in the database are removed.

This property is specific to Segments only.

Primary GSDs/DADs FTU
Translatable

Specifies whether primitive segment attributes and attribute
captions (DADs) can be translated through the Forms Translation
Utility (FTU) only.

By default, this property is set to True.

This property is specific to Segments only.

Property Function
3–350 3826 5823-008

Developing Applications
Report Messages Sent to
Client

Specifies whether the messages generated in Reports are sent to
the client who started them.

Note: This refers specifically to reports that are initiated from
logic via the RUN LDL+ command.

Reports produce a number of messages – including standard
messages like BOJ/EOJ messages and all user-defined messages
resulting from Message commands in the logic.

If Report Messages Sent to Client is set to All Messages then these
messages are displayed back to the user session that started the
report (they display on the status line or the Console window pop-
ups to display the messages).

If Report Messages Sent to Client is set to No Messages then the
user does not see any messages from the running report.

This property is valid on Windows® Configurations only.

Reset Report Count
When System Is
Generated

Specifies whether to reset the incrementing version number for
Glb.RepVersion to 1, when the system is built.

By default, this property is set to False.

This property is specific to Segments only.

Reset Version Number If
Identifier Is Changed

Specifies whether to reset the incrementing version number for
Glb.SysVersion to 1, when the Runtime Version Identifier field is
changed.

By default, this property is set to False.

This property is specific to Segments only.

ROC Output Location Specifies the location that contains Report Output Control (ROC)
files.

Type a valid Location name or select a valid name from the list.
Refer to Locations in the Agile Business Suite Developer Online
Help for more information on locations.

By default, this property is empty.

This property is specific to Segments only.

ROC Uses Database Specifies whether ROC output is kept in files or in the database

By default, this property is set to False for Segments and it assumes
the value of owner for Reports.

This property is specific to Segments and Reports only.

Runtime Behavior Of
Unavailable Commands

Specifies what occurs at runtime when unavailable commands are
executed.

By default, this property is set to Warning Message.

This property is specific to Segments only.

Property Function
3826 5823-008 3–351

Developing Applications
Runtime Version
Identifier

Specifies the Runtime Version on the host, and provides the value
for System Attribute Glb.VersionId.

For every value of Glb.VersionId, a corresponding version number
for Glb.SysVersion exists which increments with every Build.

Type an identifier to a maximum of 20 characters.

By default, this property is set to 1.

This property is specific to Segments only.

Standard Heading Specifies whether the standard heading is to be printed on each
page of Report output.

The standard heading consists of the Report name, a page number,
the time at which the Report was run, and the time of its last
compilation

By default, this property is set to True.

This property is disabled when device is set to Depcon Generated
Reports or DI.

This property is specific to Reports only.

System Uses ROC Specifies whether the Report Output Control (ROC) facility must
manage the output from all Reports.

By default, this property is set to True.

This property is specific to Segments only.

Two Phase Commit Specifies whether the two phase commit process is used for
updating databases. This occurs with external Automatic Entries.

With two phase commit, the sending and receiving systems are able
to roll back to a synchronized point if both have not successfully
completed their related transactions.

By default, this property is set to False.

This property is specific to Segments and Reports only.

Use Data Invocation Specifies whether to set data invocation. Data invocation enables
the values of Attributes of a Profile to be accessed without
accessing the Ispec record. This can reduce the number of database
accesses if used appropriately. If it is used inappropriately, database
access is increased.

By default, this property is set to False.

This property is specific to Segments only.

Use No-Domain
Usercode As Station
Name

Specifies the option to allow the domain name as part of the session
identification in GLB.STATION.

If set to False, then GLB.STATION (and GLB.STN) contains the full
usercode including the domain prefix.

If set to True, then GLB.STATION (and GLB.STN) contains just the
usercode without the domain prefix.

This property is valid on Windows® Configurations only.

Property Function
3–352 3826 5823-008

Developing Applications
Runtime Transfer Utility

User Privilege Specifies the user terminal access to an <<Ispec>> class at
runtime.

Each terminal has an assigned security level which is defined as
Integer3 Installation Data record in the COMS Configuration File in
the ClearPath MCP-based COMS utility.

Refer to the Agile Business Suite for ClearPath MCP
Administration Guide for more information.

In Ispec logic at runtime, the privilege level of the terminal currently
accessing the System is contained in the System Attribute
GLB.PRIV.

By default, the value is 1. The privilege ranges 1 from 15.

This property is specific to <<Ispec>> and <<Event>> classes only.

Video Capable Specifies whether to direct a report’s output to a video device.

By default, this property is set to False.

This property is disabled when device is set to Enterprise Output
Manager (EOM) Generated Reports or DI.

This property is specific to Reports only.

Property Function

Runtime Transfer Utility
File Name

Specifies the name of the Runtime Transfer Utility (RTU) file.

By default, this property is empty.

This property is enabled if Generate Runtime Transfer Utility File is
set to True.

This property is specific to Folders only.

Location to FTP the RTU
File To

Specifies where to FTP RTU file on the host.

By default, this property is empty.

This property is enabled if Generate Runtime Transfer Utility File is
set to True.

This property is specific to Folders only.

RTU Configure Set Specifies the name of the Configure Set for the RTU file.

By default, this property is empty.

This property is enabled if Generate Runtime Transfer Utility File is
set to True.

This property is specific to Folders only.

RTU RDB Configure Set Specifies the name of the RDB Configure Set for the RTU file.

By default, this property is empty.

This property is enabled if Generate Runtime Transfer Utility File is
set to True.

This property is specific to Folders only.

Property Function
3826 5823-008 3–353

Developing Applications
Subsystem

Subsystem Dialog Box

Use the Subsystem dialog box to add, update, or delete a Subsystem.

Note: Subsystems only apply to systems generated on ClearPath MCP-based hosts.
Ispecs are grouped into subsystems.

For each subsystem, there is a corresponding COMSTP program with the file name
system/COMS_LINC_TP and the program name the same as the corresponding
subsystem.

To display this dialog box, click the Browse button in the Subsystems Definition
property under the Subsystem category for Segments.

By default, the Subsystems PRIMARY, QUERY, ROC, and LSS are created when a
Segment is first added to the Model. You can add Ispecs to a subsystem by specifying
the Subsystem property for each Component and Event. The Ispec you enter as the
Fire.up Ispec should be in the PRIMARY subsystem.

The default Subsystems are numbered in the following way:

• Subsystem number 1 is always PRIMARY.

• QUERY and ROC initially derive values from PRIMARY and are given the subsystem
number (1).

• LSS always has the subsystem number LSS.

Property Function

Subsystem Specifies a Subsystem for the <<Ispec>> or <<Event>> class.

Note: Subsystems only apply to systems generated on ClearPath
MCP-based hosts. On MCP-based runtime hosts, <<Ispec>> and
<<Event>> classes are grouped into subsystems. For each
subsystem, there is a corresponding COMSTP program with the file
name and the program name the same as the corresponding
subsystem.

By default, this property is empty.

This property is specific to <<ispec>> and <<Event>> Classes only.

Subsystems Definition Defines a list of subsystems for the Segment. You can use the
Subsystems Dialog Box to add, modify, or delete Subsystems. Click
browse to access the dialog box.

This property is specific to Segment only.
3–354 3826 5823-008

Developing Applications
The following table illustrates the relationship between Subsystem name and Subsystem
number:

• The Subsystem dialog box displays the properties listed in the following table in a list
box:

Subsystem Name Subsystem Number

PRIMARY 1

User-defined 2-10

Query A

ROC C

LSS LSS

Property Function

Number Specifies the unique Subsystem number. A maximum of nine
subsystems may be defined by the user. These can be numbered from 2
to 10.

Subsystem numbers 1, A, C, and LSS are reserved and cannot be
allocated to any other Subsystem. Subsystem 1 is called PRIMARY, A and
C can be QUERY or ROC. When defining a new Subsystem, only unused
Subsystem numbers are displayed in the drop-down list.

You can derive values for QUERY and ROC from other Subsystems.
When defining values for QUERY and ROC all user-defined subsystem
numbers are displayed plus 1, A, and C are also displayed if they have not
been used.

This property is limited to a maximum length of 10 alphanumeric
characters. The first character cannot be a numeric or ‘-‘ characters.

By default, this property is empty.

This property is specific to Segments only.

Name Specifies the name of the Subsystem. The Subsystem name, GLOBAL, is
reserved and cannot be used. The names PRIMARY, QUERY, ROC, and
LSS cannot be deleted or changed.

This property allows a maximum length of 10 alphanumeric characters.
The first character cannot be a numeric or ‘-‘ characters.

By default, this property is empty.

This property is specific to Segments only.

Priority Specifies the priority at which a COMSTP program of a Subsystem runs.

By default, this property is set to 50 for the predefined Subsystems:
PRIMARY, QUERY, ROC, and LSS. The numbers range from 1 to 99.

This property is specific to Segments only.
3826 5823-008 3–355

Developing Applications
To Add a Subsystem, perform the following:

1. Select an empty row on the Listview, right-click and Select Add from the context-
menu. A Subsystem with the next available number and default settings and name is
added to the list.

2. Click each property and make the appropriate entries, if needed.

To Delete a Subsystem, perform the following:

Deleting a user-defined Subsystem causes its Ispecs to be allocated to the PRIMARY
Subsystem. The Subsystems PRIMARY, QUERY, ROC, and LSS cannot be deleted.

1. Highlight the subsystem you want to delete from the list.

2. Right-click and select Delete from the context-menu. The subsystem is removed
from the list.

Min Copies Specifies the minimum number of copies of the COMSTP program of a
Subsystem to start when the System is running.

By default, this property is set to 0. The numbers range from 0 to 255. A
value of zero means that the COMSTP program for that Subsystem is not
started until one of its Ispecs is invoked.

This property is specific to Folders only.

Note: This field is not applicable to the LSS Subsystem.

Max Copies Specifies the maximum number of copies of each COMSTP program of a
Subsystem that can be running.

By default, this property is set to 1; except for the PRIMARY Subsystem
which has a value of two. The numbers range from 0 to 255.

This property is specific to Folders only.

Note: This field is not applicable to the LSS Subsystem.

Idle Timeout Specifies an idle timeout period for an individual COMSTP program. The
value entered in this property represents the elapsed time before an idle
COMSTP program or Subsystem is terminated.

By default, this property is set to 0. The numbers range from 0 to 99. You
can enter 99 for no timeout. A value of zero means that the maximum
timeout period of 60 minutes is used.

Enter a time in minutes of 0 through 60, or The LSS Subsystem timeout
is used for the ClearPath MCP-based :TIM command. Enter a value of 0
through 98, or enter 99 for no timeout. A value of zero keeps the current:
TIM value.

Note: If you use the :TIM system command to provide a system-
wide timeout, this takes effect only after the COMSTP program have
closed down.

This property is specific to Segments only.

Property Function
3–356 3826 5823-008

Developing Applications
To Reset the Settings of a Subsystem, perform the following:

1. Highlight the subsystem for which you want to reset the values back to default from
the list.

2. Right-click and select Reset from the context-menu. The properties of the
subsystem is reset back to its defaults.

Winform User Interface

Build Settings

To edit the general settings of the Builder, perform the following:

1. From the Tools menu, select Options.

2. In the left pane, expand System Modeler, and then click Builder. Alternatively,
enter the keyword Builder in the Search box.

The following topics describe properties applicable to each section:

• General

• Component Enabler

• Error Handling

• Logging

• MCP

Property Function

Download URI Specifies the location where clients can download Winform user interfaces
from.

By default, this property is empty.

This property is enabled when Deployable is set to True, and Deploy
Winform User Interface is set to True.

This property is specific to Folders only.

Final Location Specifies the location where Winform items are located.

Type a valid Location name or select a valid name from the list. Refer to
Locations in the Agile Business Suite Developer Online Help for more
information on locations.

By default, this property is empty.

This property is enabled when Deployable is set to True, and Deploy
Winform User Interface is set to True.

This property is specific to Folders only.
3826 5823-008 3–357

Developing Applications
General

Note: Dependency Logging Thread count is separate to the Number of Build
Threads. Since the “Number of Dependency Threads during the generate phase”
setting controls the number of threads that can be working in the generate phase of
the build, the “Number of Build threads” setting may need to be adjusted for
performance benefits. If a large number of dependency threads are used, depending
on the number of CPUs on the build machine, there would be a greater number of total
threads running.

Property Function

Location of Build
Output

Specifies the root location of output files generated by Builder.

By default, this property is set to “<tmp directory>\BuilderOutput”.

Location of Cache
for generated files

Specifies the root location of Builder's cache. In a multi-user development
where the model repository is shared between the users, the Cache folder
must be shared between the users using a network drive. Map the
network drive to the local host.

By default, this property is set to “<tmp directory>\BuilderCache”.

Number of Build
threads

Specifies the number of build threads that runs concurrently.

Type a number from 1 to 64.

By default, this property is set to 1.

Number of
Dependency
Threads during the
generate phase

This setting determines the number of threads used early in the build
while many Builder threads are busy generating files. This value can be
zero to leave all dependency logging until Builder has less to do on the
client side. This implies that, more memory is required to keep all the
dependency information until it is logged.

Number of
Dependency
Threads after the
generate phase

This setting determines the number of threads used later in the build
where Builder is doing less work on the client side. This value must be
greater than or equal to Number of Dependency Threads during the
generate phase.

Rebuild Threshold This setting controls the automatic rebuild mechanism. The automatic
rebuild mechanism optimises the build to ensure it completes as quickly
as possible.

The Rebuild Threshold drop-down list includes the following options:

• Lowest

• Low

• Medium

• High

• Highest

The higher the setting, the greater the amount of change required to an
application before an automatic rebuild is triggered.

By default, this option is set to Medium.

Note: This setting should be modified only when build takes
significantly longer than rebuild, or an automatic rebuild is being
triggered frequently.
3–358 3826 5823-008

Developing Applications
Component Enabler

Error Handling

Logging

Property Function

Class Path Specifies the directory path for LINCViewer.jar.

LINCViewer.jar contains Java classes required by components, and GUI
forms. It is omitted if the compiler does not require a specific directory
path, or if the .jar file is part of the system class path.

By default, this property is empty.

Note: This property is used when it is referred to in the Compiler
String property. If it is not specified in the Compiler String property, the
Class Path under the system Class Path is used.

Compiler String Specifies the Java compiler.

By default, this property is set to javac -d “%2” “%3”.

Specify the bin directory of the jdk on the system path, or change the
default value to specify the full path for the javac.

Property Function

Stop Build At First
Generate Error

Specifies whether generation should stop when an error occurs, or
stop once source generation has completed, but before compilation
begins.

By default, this check box is unchecked.

Stop Build If Generation
Warnings Occur

Specifies whether compilation should begin if source generation
warnings have occurred.

By default, this check box is unchecked.

Error Type for
Unsupported
Commands – Element
Related

Specifies the error handling policy for potential runtime error situations
when commands used, are not available in the context. For example,
SLEEP in an ispec class.

By default, the Warning radio button is selected.

Error Type for
Unsupported
Commands – Platform
Related

Specifies the error handling policy for potential runtime error situations
when commands used, are not available for the target platform.

By default, the Warning radio button is selected.

Property Function

Log Build Debugging
Information

Specifies whether build debugging information displays in the Output
pane in Visual Studio.

By default, the check box is unchecked.

Log Build Information Specifies whether build information displays in the Output pane in
Visual Studio.

By default, the check box is checked.
3826 5823-008 3–359

Developing Applications
MCP

Exporting and Importing Model Elements
Model elements are exported and imported using the Import and Export wizards.

The wizards can be accessed from the File menu by selecting either Export or Import.
To access the wizard externally, go to Start > Apps > Agile Business Suite 6.1 >
Model Exporter or Model Importer.

Elements exported from Agile Business Suite models are contained in XML interchange
files. You can import both XML interchange files and the MDL files created from
Enterprise Application Environment.

Note: Importing parts of an application may create Unresolved Elements in the
model.

Export and Import Wizards

The Export and Import wizards offer a convenient way to export elements from your
model, and to import export files into your model.

The wizards can be accessed in the following ways:

• In Developer, on the File menu, select either Export or Import.

• Go to Start > Apps > Agile Business Suite 6.1 > Model Exporter or Model
Importer.

The wizards can also be invoked from the command line, refer to Exporting and Importing
from the Command Line. Alternatively you can run an entire import or export from the
command line without the wizards being displayed.

Log Build Warnings Specifies whether build warnings displays in the Output pane in Visual
Studio.

By default, the check box is checked.

Property Function

Number of
AsynchronousFTP
threads

Asynchronous processing of MCP targetbuilder FTP tasks increases the
performance and reduces the build time.

By default, the value of this property is set to 5.

Property Function
3–360 3826 5823-008

Developing Applications
The following information includes:

• Export Wizard

• Import Wizard

• Exporting and Importing from the Command Line

Export Wizard

The Export wizard gives you several options for exporting elements from your model. You
can export:

• The entire model to an export file.

• Individual elements to an export file.

• Those elements that have changed since a selected point in time.

Export Options

• Export Settings

• Advanced Settings

• Logging Settings

Export Settings

By default, the export settings are displayed when the wizard is invoked.

Select Advanced Settings to display the advanced export options.

Source Server

Select the name of the server that contains the model to be exported.

By default, when invoked from Developer, the name of the server selected in Class view
is displayed.

Source Model

Select the name of the model to be exported.

By default, when invoked from Developer, the name of the model selected in Class view
is displayed.

Destination File

Enter or browse for the path of the file into which the model database is to be exported.

Select Elements

Select the elements you want to export. An element tree is displayed once a valid Source
Server and Source Model are selected.
3826 5823-008 3–361

Developing Applications
Advanced Settings

These options are displayed when you select Advanced Settings on the Export dialog box.
Select Export Settings to display the basic export options.

Changes Since

This option allows the user to export the elements which were changed after specified
time from the model. The export wizard offers the following four different “Change
Since” options:

Last Migration Database Baseline – Select this option to export only the elements
that are imported after the last migration database baseline operation.

Last Import – Select this option to export the changes made since the last import was
performed.

Last Export – Select this option to export changes made since the last export was
performed.

Date – Select this option to export changes made since the specified date.

Logging Setting

These options are displayed when you select Logging Settings on the Export dialog box.
Select Export Settings to display the basic export options.

Logging to file settings

Append Log File – Select to specify that the log entries are to be appended to the end
of the file rather than replacing the existing contents.

Log File – Enter, or browser for, the name of the log file in which export results are
written.

Messages (in output window only)

Errors – Select this check box to view only error messages in the output window.

Warnings – Select this check box to view only warnings in the output window.

Information – Select this check box to view the general logging information in the
output window.

Register Public Model Feature

This option is used to register a Public Model Export license provided by Unisys. To
register the Public Model Export license, click the Register Public Model Feature
link. In the Register Public Model Feature dialog box that appears, enter a valid license
provided by Unisys, and then click OK.
3–362 3826 5823-008

Developing Applications
Refer to Using Public Model File in the Documentation Libraries page on the Product
Support site for more information about the license.

Note: Registering the Public Model License allows you to export the Public Model
files.

Import Wizard

The Import wizard enables you to import interchange files created by the Export Wizard.

Note: The Debug Mode configuration properties are stored in the Visual Studio
Solution files and not the database. Hence, these properties cannot be exported.

Partial Import

Note: Importing parts of an application may create Unresolved Elements (refer
to Unresolved Elements in the System Modeler in the Visual Studio Online Help).

During partial migration, only the elements that are loaded is migrated. However, if an
element is referencing another element that is not part of the load, the migration is not
successful. Therefore, ensure that you load even the referencing element in partial
migration. Refer to Partial Import for more information on performing a partial import.

Version Control during Migration

During migration, the Import wizard creates versions of all elements with the exception of
elements that are not Namespaces. For example, folders and diagrams are not
namespaces. These excluded elements are versioned as part of their parent.

The Import wizard creates a version file for each element that is versionable in Enterprise
Application Developer release 3.3. It sets the Version File property to
<SegmentName>\<ElementName>.model to ensure that the name is unique within the
model.

Import Options

• Import Settings

• Advanced Import Settings

• Logging Settings

• Addressing Import/Export Issues

This topic includes the issues you might face while Exporting and Importing.

• Addressing Importing Issues

Import Settings

By default, the Import Settings are displayed when the wizard is invoked.

Select Advanced Settings to display the advanced import options.
3826 5823-008 3–363

Developing Applications
Select Logging Settings to display the settings for logging during import.

Destination Server

Enter, or select, the name of the server containing the model into which you want to
import the interchange file.

Destination Model

Enter or select the name of the database into which you want to import the interchange
file. Select the Create Database option if this is a new database.

Source File

You can import more than one file in a single import. Click the Add button and then either
enter the path of, or browse for, the required file to import.

The selected files can be Agile Business Suite Developer interchange files, or control
(.BCH) files.

Use the Remove button to delete files from the list.

Filters

None – Select this option if you do not want to use any filters. If this option is selected
the end user can import the model and the configurations

Configurations Only – Select this option to import only the configurations and to
ignore all other elements in the incoming model file. This option can be selected only
when importing a .model file to an existing database.

Options

Create Database – Select this option to create the required database before importing
the selected file.

Rollback on Uncoverable Error – Select this option to roll the database back to its
state before the import, if an unrecoverable error occurs.

Validate After Import – Select this option to automatically validate logic once the file
is imported.

Migration database – Select this option to create a migration database.

The UnderMigration Property

The Migration-Only Database may be opened in System Modeler. The majority of its
properties is read-only. One of the exceptions to this is the UnderMigration property,
which for a Migration-Only Database has a value of True
3–364 3826 5823-008

Developing Applications
The UnderMigration property may be changed to a value of False, which converts the
Migration-Only Database into a regular (editable) database. However, this operation is
irreversible and should not be done without due consideration. When you change the
UnderMigration property to false, a warning message is displayed to advise you of this
and request confirmation to proceed.

Once you change the property value to false, the UnderMigration property isno longer
displayed in the list of properties in the Properties Window. The other properties
displayed in the Properties Window is enabled, indicating the database is no longer read-
only.

Restrictions

If an element is deleted in the 3R3 model and it is partially imported, the corresponding
element never gets deleted in the AB Suite after the partial import.

Note: A model file with XML Framework enabled can only be imported into another
model that has the same setting. That is, you cannot import a classic model into an
XML Framework model or vice-versa. Similarly, you cannot import a Client
Framework model into an XML Framework model or vice-versa.

Advanced Import Settings

These options are displayed when you select Advanced Settings on the Import dialog
box. Select Import Settings to access the basic import options.

Specify New Owner

Select or enter the name of the new owner of the imported model elements. The name
of the new owner must be a qualified name with a dot separator. For example, where the
new owner is salesSegment.cashSaleIspec, the model elements are imported under the
cashSaleIspec element of the segment salesSegment. Alternatively, click browse to
display the Select Owner Element navigator. Browse to and select the element you want
to become the parent of the import and click OK.

Note: The value entered in the New Owner file is only applicable when importing a
.model file.

On Element Clash

Conflicts occur if an element being imported has the following:

• The same identifier as an element that already exists in the model.

• The same name and is in the same position in both the interchange file and the
model.

Select one of the following options to specify how to deal with conflicts that may arise:

Ask – Select this option to display the Conflict Resolution dialog box each time a conflict
is encountered. You can use this dialog box to deal with conflicts on a case by case basis.
3826 5823-008 3–365

Developing Applications
Replace – When a conflict occurs, this option replaces the existing element with the one
from the interchange file. Any element at the same level in the model, that were not in
the interchange file are removed. Where, the element being imported is not in the
existing model, but has the same name as an existing element within that namespace,
the element from the file is renamed and an error is reported.

Skip – Select this option to retain the existing element in the model and ignore the
incoming element.

Substitute – Select this option to replace the values of the existing element in the
database with those in the interchange file. Any elements at the same level in the model
that were not in the interchange file remains. Where the element being imported is not in
the existing model, but has the same name as an existing element within that
namespace, the elementis renamed and an error is reported.

Override Language Conflict

The Override Language Conflict provides alternative options to deal with language
conflicts

• If a complete model is imported, the name and locale values of the language are
automatically updated.

• If a partial model is imported, the values are not updated. You can update the
language by explicitly selecting the update model option on the Import Wizard
window.

Notes:

• The built-in primary language for a model is defined when the model is created.

• By default, the primary language value is Primary.

Conflicts occur if a model being imported has a conflict in the following:

• Name of the language

• Locale of the language

Select one of the following options to specify how to deal with conflicts that may arise:

Ask – Select this option to display the Override Language Conflict dialog box each time a
language conflict is encountered. You can use this dialog box to deal with conflicts on a
case by case basis.

Update Model – Select this option to overwrite the existing language with the incoming
language when a language conflict is encountered.

Keep Existing – Select this option to ignore the incoming language and retain the
existing language in the Model when a language is encountered.

Abort – Select this option to abort the import when a language conflict is encountered.
3–366 3826 5823-008

Developing Applications
Additional Options

Create New Identifiers – In the model, each element has a globally unique identifier.
Selecting this option gives each of the elements being imported a new globally unique
identifier. The import maintains the structure defined in the model file.

Attempt Import in Exclusive Mode – Select this option to attempt to enter
exclusive mode in the database. If successful, no other user can access the database and
the database remains locked until the import is complete. This can improve the
performance of the import.

The switch to exclusive mode fails if any other user is logged into the database. A
message is displayed and you can select to continue or cancel the import.

Version Controlled

The Version Controlled option applies only to LCIF files not for AB Suite .model files.

Migration Granularity

Elements in AB Suite are able to be versioned individually or collectively in a single file.
LCIFImport allows for the granularity of the version control files generated to be specified.
The two options available are:

Components – All Non-Primitive objects is set into their own separate version control
file.

Segment Members – All elements owned by with the Model, or the Segment, (plus
profiles) is set into their own separate version control file.

Baseline Migration Database

This option allows you to baseline the Migration Database prior to the import of partial
EAE extract file(s) such that doing an export using Changes Since Last Migration
Database Baseline would only export elements changed by that partial import.

This option would be available for selection only if the file being imported is a partial EAE
extract file and the import is being carried into a pre-existing migration database.

The Migration Database is also base lined prior to the import of a full EAE extract into a
migration database, which has the segment being imported already present. Doing an
export using the Changes Since Last Migration Database Baseline option would only
export elements changed by that import. This does not require an explicit selection of the
option to Baseline Migration Database.

Automatically Enlarge Small Controls

EAE allowed users to create controls that are smaller than the minimum size for AB Suite.
Controls that are too small may not display correctly in AB Suite Runtime. The AB Suite
Import provides a new option Automatically Enlarge Small Controls in Advanced Setting
Page of the Importer Main Form.
3826 5823-008 3–367

Developing Applications
This option allows you to specify whether small controls should be resized automatically.
This option is applicable to import of an EAE MDL Files. By default, this option is not
selected. If this option is not selected, the controls could imported with the size as
specified in the LCIF Extracted File. Controls that are too small may not display correctly
in AB Suite.

If this option is selected, the small controls is enlarged automatically to AB Suite
minimum size. The enlarged controls may overlap to surrounding controls.

Migrate Display Item Sizes As Seen In

EAE Developer synchronizes the sizes of display items to fit the desired text thereby
taking into account the font properties. It is however possible to create display items that
are smaller in appearance than the required size. This situation arises when the display
item is getting its font from the segment. If the font on the segment is changed, EAE
does not automatically update the size of all the labels that rely on this font. If the EAE
segment is extracted after such a change, the .mdl file contains incorrect sizes for display
items.

Until now, AB Suite migrator was importing display items with the size specified in the
.mdl file. To address the issues with labels being out of sync, AB Suite Import Wizard has
the extra option to import display items with the size defined in the .mdl or calculate a
new size.

To choose between EAE Developer and EAE MDL File, the AB Suite Import provides an
option in advanced settings of Importer Main Form:

• EAE Developer – Select this option to allow the AB Suite Developer to import the
sizes of the display item as seen in EAE Developer. The sizes of the display items are
calculated based on its Font metrics (that is Font name, Font size) and text of the
display item.

• EAE MDL File – Select this option to allow the AB Suite developer to import the sizes
of the display items as they are defined in LCIF file. By default, the AB Suite importer
imports the sizes of the display items as seen in LCIF Extracted File.

Configurations To Include

All the configuration related options are applicable only when importing a .model file.

All – Select this option to create configurations in the incoming model file, if they do not
exist in the database. It is applicable only when importing a .model file.

Existing – This option is set as default to import the configurations existing in the
database.

None – Select this option to ignore all the configurations in the incoming .model file.

Import Only Configurations

Select this option to import only configurations and ignore all other elements in the
incoming model file. It is applicable only when importing a .model file. By default,
configurations are just updated if they already exist in the database during import.
3–368 3826 5823-008

Developing Applications
LDL+ Migration Settings

Previously, during migration, the StoreOrSend() method was added to all the ispecs. This
method contained logic to test the value of system Attributes like GLB.DESTINATION,
GLB.DESTHOST, and so on, and then perform a Store() or a Send() on the ispec based on
these values. Correspondingly, commands like AUTO; WRITE and AUTO; WRITE&CLEAR
were migrated as a call to the method StoreOrSend().

This could result in unnecessary performance overhead for systems that do not use the
external HUB feature. To handle this, an LDL+ migration option has been provided within
the Import utility to control this behavior (in Import, select Advanced Settings and
click LDL+ Migration Settings).

The options available are:

• Default

• As Ispec.Send

• As Ispec.Store

• File Specifying ispecs to be migrated as Store() or Send()

Default – Select this option to migrate all AUTO; WRITE (and AUTO; WRITE&CLEAR)
commands as Ispec.Store() or Ispec.Send() or Ispec.StoreOrSend() depending on the
ispec properties (for example, IsExternal, HasPresentation).

As Ispec.Send() – Select this option to migrate all AUTO; WRITE (and AUTO;
WRITE&CLEAR) commands as a simple call to Send().

As Ispec.Store() – Select this option to migrate all AUTO; WRITE (and AUTO;
WRITE&CLEAR) commands as a simple call to Store() rather than the more complex logic
to handle the different behavior for Store() and Send(). This has the dual benefit of the
logic being migrated as simpler code (easier to read) and it performs better.

File Specifying ispecs to be migrated as Store() or Send() – Select this option
to further fine grain control over the migration at an individual ispec level. Here the user
can select a text file that contains a separate list of ispecs that have to be migrated as
Store() and ispecs that have to be migrated as Send(). For example:

Consider a model containing six ispecs – ISPC1, ISPC2, ISPC3, ISPC4, ISPC5 and ISPC6.
We want to control the migration such that AUTO.WRITE; for ISPC4 and ISPC3 needs to
migrate as ISPC4.Store() and ISPC3.Store() respectively. Similarly we want to migrate
AUTO.WRITE; for ISPC1 and ISPC5 as ISPC1.Send() and ISPC3.Send(). Hence, the file
format would be:

[Ispecs As Store]

:List of ispecs for which AUTO.WRITE; (and AUTO.WRITE&CLEAR) are to be migrated as
Ispec.Store()

ISPC4
3826 5823-008 3–369

Developing Applications
ISPC3

[Ispecs As Send]

:List of ispecs for which AUTO.WRITE; (and AUTO.WRITE&CLEAR) are to be migrated as
Ispec.Send()

ISPC1

ISPC5

The remaining ispecs in the system (ISPC2 and ISPC6) is migrated with the default
behavior.

Conflict Resolution

This dialog box is displayed if you select the Ask option from the advanced import
settings. It enables you to deal with conflicts on an individual basis and to change your
conflict resolution strategy for the remainder of the import process.

Different options are available depending on what sort of conflict occurs, either a name or
identifier conflict.

Existing Item

This group enables you choose an option that applies to the existing element in the
model:

• Change the name of the existing element.

• Delete the existing element and import the element from interchange file.

• Substitute the values in the database with the values in the interchange file.

Incoming Item

This group enables you to choose an option that applies to the element in the interchange
file:

• Change the name of the incoming element.

• Use the Delete button to retain the existing element and ignore the incoming
element.

On Clash

Use these options to change your conflict resolution strategy for the remainder of the
import. You can select:

• Replace

• Substitute

• Skip
3–370 3826 5823-008

Developing Applications
Language Conflict

This dialog box is displayed if you select the Ask option for Override Language Conflict
from the Advanced Import Settings. It enables you to deal with language conflicts on an
individual basis.

The options available on the Language Conflict Dialog are:

Update Model – Select this option to overwrite the existing language with the incoming
language when a language conflict is encountered.

Keep Existing – Select this option to ignore the incoming language and retain the
existing language in the Model when a language conflict is encountered.

Abort – Select this option to abort the import when a language conflict is encountered.

Logging Settings

These options are displayed when you select Logging Settings on the Import dialog box.
Select Import Settings to access the basic import options.

Logging to file settings

Append Log File – Select this option to specify that the log entries are to be appended
to the end of the file rather than replacing the existing contents.

Log File – Enter, or browse for, the name of the log file in which import results are to be
written. By default, the log file name is <ModelFilename>.log and is created in the same
directory as the model file.

Messages

Select from the following options the type of messages to be displayed in the output
window during the import. All messages are recorded in the log file regardless of this
setting.

• Errors

• Warnings

• Information

Addressing Import/Export Issues

This topic includes the issues you might face while Exporting and Importing.

Addressing Importing Issues

While importing a model from other environments to Agile Business Suite, you may
encounter some issues and behavioral differences. You must follow the guidelines given
below for some of the importing issues:
3826 5823-008 3–371

Developing Applications
Logically Deleted Records and the LookUp Command

• When executed within an Ispec, LOOKUP; command ignored logically deleted
records (that is, component records that had been deleted, so that MAINT was set to
'D').

• When executed within a Report, LOOKUP; command read logically deleted records.

In Agile Business Suite, to make the behavior of the LOOKUP; command more uniform
and consistent, the LOOKUP; command always retrieves logically deleted records.

To maintain the existing behavior in migrated systems, some additional LDL+ logic is
included in LOOKUP; commands coded within insertables and segment methods and
ispecs. This logic causes logically deleted records to be rejected or skipped by LOOKUP;
commands.

There are two situations where the LOOKUP; command can be used.

1. Looping forms of LOOKUP; command coded within ispecs, insertables, and segment
methods read logically deleted records into memory, but the added logic results in
them being skipped or ignored. However, if a looping form of LOOKUP; command
reads only logically deleted records, Glb.Status is set to spaces because at least one
record has been read into memory.

2. The additional logic to skip logically deleted records is added to LOOKUP; commands
within ispecs, insertables, and segment methods. When a Report calls an insertable
or segment method that performs a Lookup, the logically deleted records are skipped
(due to the included logic).

Auto Entry Ispec and its instance

During migration of an Auto Entry Ispec from EAE, the import process creates an instance
of the Ispec with the name _AutoIspec appended to Ispec name. This instance is then
placed under the folder named AutosForIspecs. For example, if CUST is an Auto Entry
Ispec in your model, the instance Cust_AutoIspec is created and placed under
AutosForIspecs folder after migration.

Addressing Export Issues

Auto Entry Ispec and its Instance

• If you export only the Auto Entry Ispec without selecting its instance and import the
resultant model file to a new model database, then only the Auto Entry Ispec is
available in the new model database.

Note: If CUST is an Auto Entry Ispec in your model, the instance Cust_AutoIspec
is created and placed under AutosForIspecs folder.
3–372 3826 5823-008

Developing Applications
• If you export only the instance of the Auto Entry Ispec and then import the resultant
model file to a new model database, the instance is available in the new model
database. Since the Auto Entry Ispec is referred by its instance but is not present in
the model file and the database, so an unresolved element under the Segment with a
green question mark is created.

Note: If both the Auto Entry Ispec and its instance are exported and imported to
a new model database, then these elements are added correctly under their
respective owner.

Exporting and Importing from the Command Line

In addition to the Export and Import wizards, you can also access the import and export
facilities from the command line.

The command line options give access to all the same functionality as is available from
the Import and Export wizards.

• Exporting from the Command Line

• Importing from the Command Line

Exporting from the Command Line

You can export elements from the model using the following syntax:

Export.exe [-q] [-s DatabaseInstance] -m ModelName [-a] [-l LogFileName] -f Filename
ElementName [-nc] [-nu] [-nd] ElementName2 [-nc] [-nu] [-nd] ElementName3 ...

You can export the changed elements from the model using the following syntax:

Export.exe {-se|-si|-sd “DATE”} [-q] [-s DatabaseInstance] –m ModelName [–a] [–l
LogFileName] –f Filename ElementName [-nc] [-nu] [-nd] ElementName2 [-nc] [-nu] [-nd]
Elementname3 …

Where:

Syntax Description

[] Denotes an optional argument.

-a or /a Denotes an optional argument.

Specifies that the log entries are to be appended to the end of the log
file rather than replacing the existing contents.

-b BatchFileName or

/b BatchFileName

Specifies the full path of the export batch file. Specifies the qualified
names of the elements to be exported in the batch file.

Note: Specify flag #BATCH_EXPORT as the first line and only one
qualified element name at each line in the export batch file.

ElementName Specifies the qualified names of the elements to be exported from the
model.
3826 5823-008 3–373

Developing Applications
For example, at the command prompt type:

To write export messages to a log file:

Export -s <server name> -m <model name> -f <filename.model> -l <log file path name>
<Segment Name>

Where, Export –s localhost –m Meta –f Meta.model –l Meta.log MYSEG

Note: The log file is created only if error or warning messages are generated. If the
export runs to completion without generating any error or warning messages then no
log file is created.

To export those elements which have changed since a specific date:

Export -s <server name> -m <model name> -f <filename.model> -sd <date> <Segment Name>

-f Filename or

/f FileName

Specifies the full path of the export file.

-l LogFileName or

/l LogFileName

Specifies a different log file name to use rather than the default.

-m ModelName or

/m ModelName

Specifies the name of the model within the database instance. This is
a required parameter.

-nc or /nc Specifies that the children of the element should not be exported.

-nd or /nd Specifies that the documentation of the element should not be
exported.

-nu or /nu Specifies that the UML diagrams of the element should not be
exported.

-q or /q Specifies that the export should be quiet, that is, the progress dialog
box is not displayed.

If running in quiet mode, all required parameters must be given. The
export exits with an error if all required parameters are not defined.

-s DatabaseInstance or

/s DatabaseInstance

Specifies the SQL Server database instance. If this parameter is
omitted, the file is exported from the local machine.

-sd “DATE” or

/sd “DATE”

Specifies that changes made since a specified date are to be exported.
The format for the date is mm/dd/yyyy hh:mm:ss.

-se or /se Specifies that changes made since the last export are to be exported.

-si or /si Specifies that changes made since the last import are to be exported.

-smb or /smb Specifies that elements that have been imported after the Migration
Database has been base lined are to be exported.

-vf or /vf Specifies the version file to be exported. The -vf option is available only
on the export command line and should be used with the version
control feature.

Syntax Description
3–374 3826 5823-008

Developing Applications
Where, Export -s localhost -m Meta -f Meta.model -sd 07/27/2006 MYSEG

Note: The date string format is determined by the regional settings currently in
effect.

To export those elements which have changed since the last export:

Export -s <server name> -m <model name> -f <filename.model> -se <Segment Name>

Where, Export -s localhost -m Meta -f Meta.model -se MYSEG

To export those elements which have changed since the last import:

Export -s <server name> -m <model name> -f <filename.model> -si <Segment Name>

Where, Export -s localhost -m Meta -f Meta.model -si MYSEG

Note: The –sd, -se and –si options are mutually exclusive.

The Export window is displayed which shows the progress of the Export action.

Note: By default, the directory should be /NGEN/Bin/

To export multiple elements in batch by using export batch file:

Export -s <server name> -m <model name> -f <filename.model> -b <filename.bch>

Note: For example, the content of the export batch file (filename.bch) might look like
below:

 #BATCH_EXPORT

Segment1.Ispec1

Segment1.Ispec2

Importing from the Command Line

You can invoke the import facility using the following syntax:

Import [-cs|-ci|-cr] [-q] [-v] [-x] [-c] [-a] [-l LogFileName] [-r] [-s
DatabaseInstance] -m ModelName FileName1 FileName2 ...

Where:

Syntax Description

[] Denotes an optional argument.

-a or /a Specifies that the log entries are to be appended to the end of the log
file rather than replacing the existing contents.
3826 5823-008 3–375

Developing Applications
-aw MigrationMethod
or /aw
MigrationMethod

Select this option to specify how the AUTO; WRITE or AUTO;
WRITE&CLEAR commands should be migrated to AB Suite. The
parameters available are:

• Send – migrates all AUTO;WRITE (and AUTO;WRITE&CLEAR)
commands as a simple call to Send().

• Store – migrates all AUTO;WRITE (and AUTO;WRITE&CLEAR)
commands as a simple call to Store().

• Default – migrates all AUTO; WRITE (and AUTO; WRITE&CLEAR)
commands as Ispec.Store() or Ispec.Send() or Ispec.StoreOrSend()
depending on the Ispec properties.

-awf FilePath or /awf
FilePath

Select this option to specify a file containing a list of Ispecs to indicate
whether the AUTO;WRITE commands should be migrated as Store()
or Send() method for each Ispec.

-bmd or /bmd Specifies that the Migration Database should be base lined prior to the
import of the file.

-c Create new database for partial import.

-c or /c Specifies that the model database should be created if it is not
currently present.

-ci or /ci Specifies that the skip conflict resolution option is to be used if
conflicts occur.

Retains the existing element in the model and ignores the incoming
element.

-cm Manual conflict resolution. For every clash found, the user is asked
how to proceed.

-cr or /cr Specifies that the replace conflict resolution option is to be used if
conflicts occur.

Deletes the existing element in the model and replaces it with the
incoming element from the interchange file.

-cs or /cs Specifies that the substitute conflict resolution option is to be used if
conflicts occur.

Replaces the values of the existing element in the database with the
values in the interchange file.

-esc or /esc Specifies that automatic resize of small controls is done if controls are
too small to display on AB Suite clients correctly.

-eds or /eds Specifies that sizes of the display items are imported as seen in EAE
developer.

If the option is –eds is given, the sizes of the display items are
imported as seen in EAE Developer. For example:

c:\import.exe -eds -m testsizes displayItems.mdl
If this option is not given. The sizes of the display items are imported
as seen in LCIF Extracted File. For example:

c:\import.exe -m testsizes displayItems.mdl

Syntax Description
3–376 3826 5823-008

Developing Applications
-ele or /ele Select this option to import the colors as they are defined in an LCIF
extracted .MDL file.

Filename Specifies the names of the files to import.

-inc Specifies that all the configurations in the incoming .model file should
be created if they do not exist in the database. You must specify this
option to import all the configurations if the incoming .model file is
partially exported from another AB Suite database. If this option is not
specified, new configurations are imported (only if the incoming
.model file is fully exported) from another AB Suite database.

-l LogFileName or

/l LogFileName

Specifies a different log file name to use rather than the default.

-m Meta Name of AB Suite database (model) for partial import.

-m ModelName or

/m ModelName

Specifies the name of the model within the database instance. This is
a required parameter.

-n NewOwner Specifies that all imported elements should be imported with a new
owner. The name of the owner is provided by the <NewOwner>
parameter.

-nc Specifies that all the configurations in the incoming .model file should
be ignored.

-oc Imports only the configurations and ignores all other elements in the
incoming .model file. It is applicable only when importing a .model file.

-inc Specifies that all the configurations in the incoming .model file should
be created if they do not exist in the database. You must specify this
option to import all the configurations if the incoming .model file is
partially exported from another AB Suite database. If this option is not
specified, new configurations are imported (only if the incoming
.model file is fully exported) from another AB Suite database.

-ni Generates new unique identifiers for all imported elements.

-oc Specifies this option to import only configurations and ignore all other
elements in the incoming model file. It is applicable only when
importing a .model file. By default, configurations are just updated if
they already exist in the database during import.

-p New database is a Migration-Only Database for partial import.

Note: You must use this option in conjunction with the -c option
and only load files with extensions of .mdl or .bch.

-q or /q Specifies that the import should be quiet, that is, the progress dialog
box is not displayed. the importer automatically exits after an import.

If running in quiet mode, all required parameters must be given. The
import exits with an error if all required parameters are not defined.

-r or /r Specifies that if an error prevents completion or the import is
cancelled, the model database should be rolled back to the state at
which it was when the last file was begun.

Syntax Description
3826 5823-008 3–377

Developing Applications
Unresolved Elements

Importing small segments of a larger model may introduce unresolved elements into the
structure. This can happen when all the following conditions are met:

1. When there exists an element in the model that refers to another, either through
inheritance, ownership or in a folder.

2. The first element is imported into the model.

3. The second element does not already exist in the model and is not imported.

-s (local) Database server for partial import.

-s DatabaseInstance or

/s DatabaseInstance

Specifies the SQL Server database instance. If this parameter is
omitted, the file is imported on the local machine.

-tca or /tca Abort the import if the existing language and the language in the
.model file are different.

-tci or /tci Retain the existing language and ignore the language in the .model file.

-tcm or /tcm Prompt the user for an action when the existing and incoming
languages are different.

-tcr or /tcr Update the existing language with the language in the incoming
.model file.

-v Validate language elements after import for partial import.

-v or /v Specifies that validation be performed following the import.

-vc or /vc Indicates that all nonprimitive objects should be set into their own
separate version control file.

-ve or /ve Indicates that all the elements owned by the Model or Business
Segment including profiles should be set to their own separate version
control files.

-vf or /vf Specifies the version file to be imported. The -vf option is available
only on the import command line and should be used with the version
control feature.

-vn or /vn Specify this option to skip the version control file setting for all the
elements owned by the Model or Business Segment.

You should not specify this option if you want to use the vc or ve
option because they are incompatible.

-x or /x Specifies that exclusive mode is to be used during the import.

Provides increased performance during the import.

Syntax Description
3–378 3826 5823-008

Developing Applications
This is most likely to occur when using source control where the two elements are in
separate version files. Checking out a file imports it into the model. The unimported class
is flagged as unresolved during the import and must be resolved before you can build or
debug the part of the model containing the unresolved element. An Unresolved tab is
displayed in the model that lists all elements that have yet to be resolved.

The IsResolved property is used to indicate that there are elements in the model that
refer to elements that do not currently exist in the imported model. This flag is only visible
when set to False and an element is unresolved. The import log warns that an imported
element refers to another element that isn’t in the model or interchange file. Changing
the IsResolved property from False to True resolves the element by re-creating it. This
should be done with care, as it creates a new Id for the element, so you lose any
“relation” to the element is was referencing to. This property can only be changed from
False to True. Once resolved, an element cannot be made unresolved again. The best
way to resolve a unresolved element is by importing this element

Refer to Resolving Elements for more information.

Note: You are unable to build or debug a part of an application that contains an
unresolved element without first resolving the element.

Resolving Elements

There are many ways in which unresolved elements can be created. One of the most
common is through inheritance. This simple example describes how such an unresolved
element can be created and resolved.

A developer working on a part of an application creates a class, called Class B which
inherits from Class A. That is, B has a dependency on A. Class B is in another part of the
application and therefore has a different VersionFile from Class A. The developer checks
in the classes for version control. A second developer wants to work on Class B and
checks it out. During the import of the class a warning is shown that the target for the
3826 5823-008 3–379

Developing Applications
'Inherits' property of the Class 'ClassB' is required but does not exist in the Model or in
the Interchange File. Class B is displayed in the model showing that it inherits from Class
A which is listed as unresolved.

The parameters of Class A (including its stereotype) aren't known, so Class B only has
those parameters that override Class A's parameters. The second developer has three
choices:

• Continue working and leave the class unresolved. The developer won't be able to
build or debug the part of the application that contains the unresolved class. However,
Class B can be checked back in, and the model may still work correctly (provided that
the developer hasn't changed anything relating to Class A and Class B).

• Do a get latest recursive on the model. Provided that Class A is already checked in,
the class is resolved.

Note: If you know Class A’s VersionFile you could do a get latest of Class A only
(again, provided it was already checked in). This would also resolve the class.

• Create the unresolved class by changing class A's IsResolved property to True. The
class is created in the local model and assigned the default properties for the class.
This new class has the same ID as that in the source code bank. The developer can
now build and debug the part of the application that contains the dependent classes,
but may get conflicting results because the created class may not have the correct
properties defined for it. Class B can still be checked back in, and the model may still
work correctly (provided that the developer hasn't changed anything relating to Class
A and Class B). Or, the developer can subsequently check out Class A from the
source code bank overwriting the created class and restoring the correct properties to
Class B.
3–380 3826 5823-008

Developing Applications
Migrating System Modeler Database
The Model Migrator is a standalone application that assists in migrating an Agile Business
Suite System Modeler database from a previous version to the current version. For
example the Model Migrator would be used when upgrading your existing version of
Developer to a newer version. Upgrading with the Model Migrator does not perform an
Export and Import. This is a different function and should be used where appropriate,
refer to the Agile Business Suite Developer Online Help for more information.

The Model Migrator is accessed from the Start menu and runs as a Migration Wizard.

The wizard guides you through each step of the migration process. At the conclusion of
the migration the wizard displays a summary of whether or not the migration was
successful.

You must be a database administrator to run the Migrator, and the database cannot be
use by any other application.

When you run the wizard, each of the following property pages are displayed in
sequence.

• Settings Page

• Overview Page

• Migration Page

• Summary Page

Settings Page

The Settings page is used to select the database that needs migration, and configure
migration conditions. You can select multiple databases if you wish. The following fields
should be completed:

Server – Lists the SQL Server visible to the current machine. Specify the name of server
containing the database, or databases, to be migrated. The default is the current Model
server machine.

Databases – Lists the available databases on the selected server that require migration.
Check each database that you wish to migrate.

Back up selected database(s) – Specifies whether to back up the databases before
the migration. If you check this box and the migration fails, the database automatically
gets restored.

Directory – Specifies the name of the directory in which the database is backed up

Once you have completed the above fields, click Next to continue with the wizard and
display the Overview Page. Click Cancel to cancel the migration.
3826 5823-008 3–381

Developing Applications
Overview Page

The Overview page lists the selections made on the Settings page. If you are satisfied
that the details are correct, click Next to continue to the Migration page, or click Back to
return to the Settings page and change your selections.

Migration Page

The Migration page displays the progress of the migration of the selected database
migration. You can click Cancel at any time to terminate the migration.

Summary Page

The summary page displays a log of the upgrade activity, and identifies if the upgrade was
successful, or if it failed. If you selected multiple databases in the Settings page the log
identifies each database upgrade activity separately.
3–382 3826 5823-008

Section 4
Managing Applications

You can manage the lifecycle of an application by using Team Foundation Server (TFS). By
using a suite of tools, you can manage different versions of AB Suite elements, Folders,
and Dictionaries; develop, build, and test your applications.

TFS provides version control, a build system, and helps you to define and manage test
plans for system modeler projects.

Version Management
Source Control is an AB Suite feature that provides source control of versionable AB Suite
elements, Folders, and Dictionaries. Source Control stores each version of an element so
that you can access and use earlier versions. With Check–in Policies, you can enforce
restrictions upon the type of changes before committing a Class, Folder into the source
control server. System Modeler supports any source control tool that is supported by
Microsoft Visual Studio IDE. The VS IDE supports two types of Source Control
Integrations:

• Source Control Plug-in API (MSSCCI API providers) – This provides the basic Source
Control functionality similar to Microsoft Visual Source Safe.

• VS Source Control Package – This provides a new, deep-integration with Visual Studio
Package. It is suitable for Source Control integration that demands a high level of
sophistication and autonomy in its Source Control model, similar to Team Foundation
Server (TFS). Refer to Getting Started with Team Foundation Server in the Visual
Studio Online Help for more information.

The hub of Source Control is the Source Control Bank. The Source Control Bank is a
storage facility that includes controlled copies of elements, but it does not replace the
Model. The Source Control Bank supports Source Control services, such as locking and
maintaining the history of an element, while the Model functions as a work area where
copies of the controlled elements are modified and tested before you move them back
into the Source Control Bank. The elements in a Model are automatically protected by
Source Control when it is active. You can add individual elements or a group of related
elements in the bank as one file. For example, you can add a <<Segment>> Class to the
Source Control Bank along with all its children such as <<Ispec>> Classes, <<Report>>
Classes, Attributes.

Once you add an element to the Source Control Bank, if you want to modify that element
and keep track of its versions, you must check it out. The Check Out procedure exports a
copy of the element from the Source Control Bank and then imports it into the Model,
where you can modify it. That element is locked under your userid in Source Control.
3826 5823-008 4–1

Managing Applications
When you check in a modified element, a new version of the element is created in
Source Control. If you attempt to modify an element that is under Source Control without
checking it out, it is automatically checked out irrespective of the setting that you may
have selected from the Tools, Options setting in Visual Studio under the Source Control
folder.

You can also 'Get' an element, which is to take a copy without checking it out, but the
element is not locked and can be checked out and modified by another user. The current
version in a Model is replaced with the version that is the subject of the “Get” action.

Source Control also allows you to 'Undo'pending changes, thereby discarding any
changes made to an element. Only the user, who owns the workspace or the Source
Control Administrator is permitted to undo the pending changes.

Source Control relies on the Source Control Services in Visual Studio and is subject to the
special conditions of Source Control in System Modeler. You can control the functionality
of Source Control by setting a number of user options.

Viewing Specifications, Differences, and Merging

You can view the specifications of an element in the Model, and an Agile Business Suite
format file. Using the System Modeler Compare and Merge Tools, you can also compare
two elements, or files side by side.

With the additional merge utility you can combine two elements, or files by reviewing
each difference between the two items and selecting which variant is included in the final
merge item.

You can also create a report on the differences between models, versions in the source
control bank, and EXML files.

These utilities can be accessed from the development environment by using the System
Modeler Tools or directly from the Source Control Utilities.

Note: A source control tool must be installedto report on differences in versions in
a source control bank.

System Modeler Tools

The view, merge, and report differences utilities can be accessed from within the
development environment from the Tools, System Modeler Tools menu.

You can view the differences between elements or files, merge them into a third output
file or create a report that identifies the differences between two files.

Note: A source control tool must be installed to report on differences between
versions in a source control bank.
4–2 3826 5823-008

Managing Applications
Viewing Differences between Two Specifications

The View Differences utility allows you to view the differences between the
specifications of two elements or files.

To view differences, perform the following:

1. Open a System Modeler project in Visual Studio.

2. Select the model or element in the Class View.

3. On the Tools menu, select System Modeler Tools, and then click View Differences
menu item to open the Compare Elements/Files Wizard.

Compare Elements/Files Wizard

The Compare Elements/Wizard allows you to view differences between the
specifications of two elements or files.

The Compare Elements/Files Wizard displays two dialog pages; First Compare Options,
Second Compare Options. These pages allow you to select the elements, files that form
the basis of the compared output, and select suitable export formatting methods.

First Compare Options

This page allows you to select the first model elements, file that form the basis on which
the compared output is generated, and contains two radio buttons with associated edit
controls. Select one of the radio buttons; the edit controls are enabled depending on
which radio button is selected.

• Model Element

1. Use the browse button to select a model element

2. Once you have selected the model element, select from the list of available
Export Format.

Following are the list of choices by which the export can be performed.

– Normal – Exports the selected object and all its “child” elements.

– VersionControl – Exports the selected element and all the “child”
elements that form part of the selected element.

Additionally, if the selected element is version controlled as a child of an
element that has not been selected, the export includes that “parent”
element as well.

If any of the “child” elements of the selected element are versioned
separately from the selected element, these “child” elements are excluded
from the export.

3. Click Next to move to the “Second Compare Options” page of the dialog box.
3826 5823-008 4–3

Managing Applications
• File Name

1. Use browse to select the .model file to be included in the selection. These files
are usually created by performing an export of an existing model, or its
element(s).

2. Click Next to move to the “Second Compare Options” page of the dialog box.

Second Compare Options

The Second Compare Options page allows you to select the second model element that
forms the comparison based on which the compared output is generated. The fields
should be completed in a similar way to those in the “First Compare Options” page.

Click Finish to open the Compare View window.

Merging differences

The merge utility combines two elements, or files by reviewing the difference between
the two items, and selecting which variant is included in the final merged item.

You can merge the differences between elements and files into a third output file.

To merge differences, perform the following:

1. Open a System Modeler project in Visual Studio.

2. Select the model or element in the Class View.

3. On the Tools menu, select System Modeler Tools, and then click Merge
Differences menu item to open the Merge Elements/Files Wizard.

Merge Elements/Files Wizard

The Merge Elements/Files Wizard allows you to combine two elements or files to
generate the final merged file.

The Merge Elements/Files Wizard displays three dialog pages; First Compare Options,
Second Compare Options, and Merge Options. These pages allow you to select the files
that form the basis of the merged output file, specify a location to where the merged
output file is saved, and select suitable export formatting methods.

First Compare Options

This page allows you to select the first model elements, files that form the basis on which
the final merged file is generated, and contains two radio buttons with associated edit
controls. Select one of the radio buttons; the edit controls are enabled depending on
which radio button is selected.
4–4 3826 5823-008

Managing Applications
• Model Element

1. Use browse to select a model element.

2. Once you have selected the model element, select from the list of available
Export Format.

Following are the list of choices by which the export can be performed.

– Normal – Exports the selected object and all its “child” elements.

– VersionControl – Exports the selected element and all the “child”
elements that form part of the selected element.

Additionally, if the selected element is version controlled as a child of an
element that has not been selected, the export includes that “parent”
element as well.

If any of the “child” elements of the selected element are versioned
separately from the selected element, these “child” elements are excluded
from the export.

3. Click Next to move to the “Second Compare Options” page of the dialog box.

• File Name

1. Use the browse to select the .model file to be included in the selection. These
files are usually created by performing an export of an existing model, or its
element(s).

2. Click Next to move to the “Second Compare Options” page of the dialog box.

Second Compare Options

The Second Compare Options page allows you to select the second model element that
forms the comparison based on which the merged output file is generated. The fields
should be completed in a similar way to those in the “First Compare Options” page.

Click Next to move to the ”Merge Options” page of the dialog box.

Merge Options

1. Enter or browse for a file that holds the merged output of the two files.

2. Select Import Merge Result, if you want the merged file to be imported into your
model immediately.

3. Click Finish to open the Merge Options window.

Creating a Differences Report

The Report Differences utility allows you to produce a report on the differences between
two models, two labeled versions of elements in the source control bank, or the .model
files in two different directories. You can also create a report on any mixture of those
options, such as a model and a set of .model files in a directory. However, you should
ensure that the differences reported upon are of value as the wizard does not determine
the suitability of the objects being selected for the report.
3826 5823-008 4–5

Managing Applications
To compare labeled versions of elements in the source control bank, perform the
following:

1. Perform a ‘Get Latest’ or ‘Get By Label’ by using the Source Control Client.

This places all the files of the project in the target directory.

2. Invoke the Report Differences Generation Wizard to compare the target directory
with an AB Suite model or another directory.

You can use the Tools, System Modeler Tools, Report Differences menu to produce a
report in XML format that displays the differences between two files, or two models.

To create a differences report, perform the following:

1. Open a System Modeler project in Visual Studio.

2. Select the model in the Class View.

3. On the Tools menu, select System Modeler Tools, and then click Report
Differences to display the Report Differences Generation Wizard.

Report Differences Generation Wizard

The Report Differences Generation Wizard allows you to produce a report on the
differences between two models, two labeled versions of elements in the source control
bank, or the .model files in two different directories.

The Report Differences Generation Wizard displays three dialog pages; First Compare
Options, Second Compare Options, Report Format Options. These pages allow you to
select the files that form the basis of the differences report, select suitable formatting of
the report, and specify a location to where the report is saved.

First Compare Options

The First Compare Options page allows you to select the first object that forms the basis
of comparison on which the report is based, and contains two radio buttons with
associated edit controls. Select one of the radio buttons; the edit controls are enabled
depending on the radio button selected.

• Model Database

If you want to compare a complete Model database, select this radio button and
perform the following:

1. In the Server Name list box, select from the list of available servers the location of
the server on which the model database is located.

Note: The server initially displayed is the one on which the current model is
stored.

2. Once you have selected the server, select from the list of available databases, the
one which you want to be part of the differences report.

Note: The Model name is automatically displayed based on the database
name selected.
4–6 3826 5823-008

Managing Applications
3. Click Next to move to the Second Compare Options page of the dialog box.

• Folder

1. Use browse to select a folder that either contains a model, labeled version of an
element in the source control bank, or the .model file to be included in the
selection. The .model files are usually created by performing an export of an
existing model, or its element(s).

2. Click Next to move to the “Second Compare Options” page of the dialog box.

Second Compare Options

1. The Second Compare Options page allows you to select the second object that forms
the comparison on which the report is based. The fields should be completed in a
similar way to those in the “First Compare Options” page.

2. Click Next to move to the “Report Format Options” page of the dialog box.

Report Format Options

The Report Format Options page allows you to specify the output formatting of the report
and the output file.

• Report Title Group

– Standard: If you want the title of the report to contain the standard title, select
this radio button.

– Custom: If you want to specify a different title, select this radio button and enter
the text for the title in the edit box.

• Stylesheet Group

– Standard: If you want the report to use the standard XML stylesheet for
formatting, select this radio button. The standard stylesheet is located in the bin
directory of the installation folder.

– Custom: If you want to specify a custom stylesheet for the report formatting,
select this radio button and browse for you custom stylesheet.

Note: The custom stylesheet must have been previously created and
available on your system.

• Result Group

– FileName: The Filename edit box allows you to specify the location and output file
name to which you want the report file to be saved. You can also use the Browse
button to select the location and the output file name.

– View Report: If you want to view the report immediately after it has been created,
select the View Report check-box, otherwise the report file is saved and you
can view it later.

– Display Files Full Path in the Report: If you want the report to include the full path
name where the report is created, select this check-box.

3. Click Finish to view the differences between the compared objects in XML format.
3826 5823-008 4–7

Managing Applications
Source Control Services in Visual Studio

System Modeler allows you to perform most of the operations in Source Control within
Visual Studio. There is an exception to the list of operations, which is listed in the later
subsection. The exception is primarily because System Modeler is a model-based system
as opposed to the common file based system with which Visual Studio usually interacts.

Visual Studio allows integration of a variety of version control tools with its Source Control
services. Options are available to specify how Source Control services should respond to
operations invoked by the user. These are available from the Tools, Options menu
within the Source Control folder. Refer to the Visual Studio Online Help for overview
information on the Visual Studio Options dialog box.

For options specific to using Source Control for System Modeler, refer to Setting User
Options in Source Control.

The Visual Studio Online Help provides extremely detailed information on the Visual
Studio Source Control services, for example, on TFS and describes the working and the
operations that can be carried out with it. You should refer to this information if you are
not familiar with the concepts of Source Control, prior to using the System Modeler
Source Control and its documentation.

The information in this section of the System Modeler help includes the functionality
specific to using Source Control with System Modeler.

Source Control in System Modeler

Irrespective of the tool that is used to supply Source Control services, all functions
provided by System Modeler are accessed using the Visual Studio Source Control and
TFS project collection from menu item under the File menu, Team menu, or through
context menus. Refer to the online tutorial of Visual Studio, Getting Started with Team
Foundation Server for connecting to Team Foundation Server and creating a Team Project.
Due to the structural difference in System Modeler, the following menu item is not
suitable and therefore is not available within a System Modeler project, or it exhibits a
different behavior.

Context Menus

In addition to the menu items accessed from the File, Source Control menu, you can
select an element and right-click to display a context menu. These offer the same source
control functions within System Modeler as any other Visual Studio project.

Menu Accessed from... Description

Exclude <<Element
Name>> From Source
Control.

File, Source Control menu when an
element is selected In Class view or
Solution Explorer.

Not available for a Model
based system.
4–8 3826 5823-008

Managing Applications
Source Control Utilities

To be able to view differences, or merge, elements directly in the System Modeler
Source Control Utilities, they must be exported so that the elements are available in the
correct format. The Export utility provides a means to perform this action.

To export an element, perform the following:

1. From Class view or the Members pane, select the element or group of elements that
you wish to export.

2. From the File menu, select Export.

The Export Wizard with the selected elements checked on the tree view is displayed.

Refer to the Import/Export Wizard Online Help for more information on using the
wizard.

To access the wizard externally, go to Start > Apps > Agile Business Suite 6.1 >
Model Exporter.

Elements exported from Developer models are contained in the Agile Business Suite
XML file.

Once the elements have been exported into System Modeler Export Files you can open
the files in the Version Control Utilities.

The Differences utility can also be invoked from the command line by using the following
command and parameters:

Compare <file name 1> <file name 2>

Where <file name 1> is the first file to view in the Compare View window, and <file name
2> is the second file to view in the Compare View window.

The Merge utility can also be invoked from the command line by using the following
command and parameters:

Merge <file name 1> <file name 2> <file name 3>

Where <file name 1> is the first file to view in the Merge View window, <file name 2> is
the second file to view in the Merge View window, and <file name 3> is the name of the
resulting merged Interchange file.

Setting Version Files

The Version Files utility allows you to set the VersionFile for versionable elements like
Namespaces and Diagrams. This utility sets the VersionFile property to ensure that the
element is unique within the model.

Note: The element with a version file name specified holds all the elements in this
domain that do not have the version file name specified.
3826 5823-008 4–9

Managing Applications
To invoke the Set Version Files utility, perform the following:

1. Open a System Modeler project in Visual Studio.

2. Select the model in the Class View.

3. On the Tools menu, select System Modeler Tools, and then click Set Version
Files menu item to open the Set Version Files Wizard.

Set Version Files Wizard

The Set Version Files Wizard allows you to set the VersionFile for versionable elements
like Namespaces and Diagrams. This utility sets the VersionFile property to ensure that
the element is unique within the model.

Granularity of Versioning

The elements in AB Suite can be versioned individually or collectively in a single file. This
wizard allows for the granularity of the elements that does not have a version control file
set, to be set.

The two options available are:

• Complex Structures/Component – All Non-Primitive objects is set into their own
separate version control file.

• Primitive and Complex Structures/Segment Members – All elements owned by the
Model, or the Segment, (plus profiles) is set into their own separate version control
file.

File Name Format

The Set Version Files wizard creates a version file for each element that is versionable. It
sets the Version File property to either <ElementName>.model or <SegmentName>/
<ElementName>.model to ensure that the name is unique within the model.

Click Finish to set the version file of the model elements.

Setting User Options

Several user options are available for Source Control within the Options dialog box. You
can also set the VersionFile Property for newly created Classes, Folders, Dictionaries,
or Diagrams in the Policies page.

To access the Source Control page, select Options from the Tools menu and select
the Source Control page. From this page, you can select the following options:

• Plug-in Selection

• Environment

• Team Foundation Server
4–10 3826 5823-008

Managing Applications
Plug-in Selection

Current source control plug-in – This field specifies the source-control plug-in to
use with Microsoft Visual Studio and allows changes to plug-in specific options.

Environment

You can control default values for environment settings of version control by using a set
of following options.

Get everything when a solution or project is opened check box – This option
enables a get operation and downloads the files to your workplace when you open a
solution or project file.

Check in everything when closing a solution or project check box – This
option prompts you to check-in elements when you close a solution or project.

Display silent check out command in menus check box – This option displays
the Check Out for Edit Now command on the File menu and suppresses the
Check Out dialog box.

Keep items checked out when checking in check box – This option specifies
that when you check in items to update the Source Control store, the items should
remain checked out to you.

Team Foundation Server

You can configure Team Foundation version control to use a proxy server, which caches
copies of version control files in the location of a distributed team. This significantly
reduces bandwidth requirements for remote developers by using a proxy server. To
perform this procedure, you must be a member of the Administrators or Users security
group on the computer where Visual Studio is installed.

Use proxy server for file downloads check box – This option allows you to specify
the server name and port to configure an AB Suite client to use Team Foundation proxy
server.

Note: Team Foundation Server Proxy listens for client requests on port 8081.

To access the System Modeler Policies page, select Options from the Tools menu and
choose the Policies page. From this page, you can select the following options:

Confirm Move on owner change – This option prompts you to confirm when an
element is moved to a new owner. The settings available are Ask, Don’t Ask, and
Ignore.

Set the VersionFile Property on creation – This option enables you to set the
VersionFile Property for newly created Classes, Folders, Dictionaries, or Diagrams.
3826 5823-008 4–11

Managing Applications
The settings available are Ask, Don’t Ask, and Ignore.

• Ask: Prompts you whether to assign a value to the VersionFile Property or not?

• Don't Ask: Assigns a value to the VersionFile Property

• Ignore: No value is assigned to the VersionFile Property.

You can additionally set the VersionFile Property of the following:

• All Classes

• All Classes and Folders

• All Classes owned by the Model or a Segment

All Classes and Folders owned by the Model or a Segment

Versionable Objects Control Status

You can make all elements within the System Modeler versionable. The Solution Explorer
and Class View windows display the source control status of elements by using the
following signal icons:

Signal Icons

Signal icons indicate information about the status of your elements.

Checked In

Element is checked into a source control database.

Checked Out Exclusive

Element is checked out from Source Control to one developer only. Other developers
cannot access this element. Select a checked out element and select the context menu
item, Source Control Properties to display information of the user who has the element
checked out.

Note: Shared check out is not available in System Modeler due to restrictions of the
model-based system.

+ Pending Addition

An element is displayed with a plus (+) symbol that denotes a pending addition. The
element is added to the source files list in the Pending Changes window.
4–12 3826 5823-008

Managing Applications
Setting up the Source Control Bank in an AB Suite
Environment

In an AB Suite Development environment, always ensure that files representing Dev,
Test, and Prod environment are present. The Source Control Bank and the respective
databases are populated with the three model files. The aim of the following steps is to
create a file history for each versionable element. For example, the Sample model has
three model files, Production, Test, and Development.

For performance reasons, you should include the version files in folders. Visual Studio
prefers the files to be hierarchically arranged in folders within the project node. Thereby,
try reorganizing the files of the Sample model as shown in the right pane of the following
figure.

You can move or add version files when project and files are managed with Source
Control, but the act of moving a file to a folder, is a ‘Remove’ and ‘Add’ in to Source
Control.
3826 5823-008 4–13

Managing Applications
To add or move version files, perform the following:

1. Import Prod.model into a new database.

2. Create folders and add files to the folders.

3. Add Label, ‘Production’ to all the files. Refer to Using Labels in Source Control to add
labels.

4. Check out all the files.

5. Import the Test.model into the new database created in step 1.

6. Check in all the files and add Label, ‘Test’ to all the files. Refer to Using Labels in
Source Control to add labels.

7. Check out all the files.

8. Import the Dev.model into the new database created in step 1.

9. Check in all the files and add Label ‘Development’ to all the files. Refer to Using
Labels in Source Control to add labels.

Always ensure that the three model files have the following output.

Using Source Control

Other than the exceptions identified in Source Control in System Modeler, using Source
Control to manipulate versioned elements in System Modeler is the same as in any other
Visual Studio project. Refer to Visual Studio Source Control services for more information
on Source Control in Visual Studio. The following information covers the basic operations
information covers the basic operations.

• Adding Elements, Folders, Dictionaries to the Source Control Bank

• Checking In an Element

• Checking Out an Element

• Getting an Element

• If you do not want to synchronize the workspace and the database automatically,
perform the following:

• Using Command Line Interface

• Comparing Versions
4–14 3826 5823-008

Managing Applications
Before you can work with files that are in Source Control, you must create a workspace
on your local computer to which you copy the files. Refer to Creating a Workspace with
your Team Project in Source Control to create a workspace in TFS.

Adding Elements, Folders, Dictionaries to the Source Control Bank

All elements, Folders, Dictionaries are versionable. Any element that is added in Source
Control as part of its parent can be individually versioned separately from its parent. For
instance, this may be a requirement if you have a number of <Ispec> classes within a
segment which different developers wish to work on independently.

To prevent one developer locking the entire set of elements by checking out one element,
you can separately version the child elements, and break them away from their parent
element. You can move or add version files when project and files are managed with
Source Control, but the act of moving a file to a folder, is a ‘Remove’ and ‘Add’ in Source
Control.

The elements can either exist in the Source Control Bank individually or as part of some
ancestor that has been versioned. The top node (Model) is always versioned, and so
everything in the Model is initially versioned as part of the Model, unless you have set the
VersionFile Property of specific Elements in the Model. In that case, the source bank
contains versioned files representing the Model and each of the Elements with their
VersionFile Property set. The VersionFile Property of an element in a Model be
assigned a value when created depending on the settings in the Policies page. If the
VersionFile Property of elements in a Model is set and the newly added elements are
not initially versioned as part of the Model, the Model is not locked. Note that everything
in a Model belongs to some versioned file in the source bank, be it the Model node file or
another file.

To make an Element, Folder, Dictionary versionable, perform the following:

1. Select the element, Folder, Dictionary in Class View, or Members Tab of the
document window.

Note: Select the element to be versioned separately, if you want to version an
element separately from the parent.

2. If it is not already open, open the Properties window from the View, Properties
Window menu item.

3. Navigate to the VersionFile Property.

4. Type a name for the file that contains details of the element in the Source Control
Bank. The file name must be unique across the entire Model.

The versioned element(s) file name(s) is now displayed in the Solution Explorer
window. Although, the versioned element is not yet added to the source control bank,
but is in a “checked out” state. The red tick symbol next to the element icon
indicates the checkout state from both Class View and Solution Explorer
windows.

Note: When you add an initial element to Source Control, the entire Model is
also added. This is due to the dependency that elements have with each other. On
importing the .smproj file from Source Control, the Import wizard allows you to
import all the model files along with the .smproj file in one go.
3826 5823-008 4–15

Managing Applications
When an element is separately versioned from its parents, ensure to note the following
behavior:

• The parent of the separately versioned element is also checked out. The parent is
checked out to create the separation of the element and the parent. The parent
should be checked back into the Source Control to protect its integrity.

• The now separately versioned element includes its children as part of the separated
group.

• The element can be the subject of all Source Control operations independently from
the parent.

• The parent of the element can be the subject of all Source Control operations
independently from the separated element, and independently from other separately
versioned elements.

If Source Control detects a newly added or removed versionable element that is added or
removed by a different user, the project file and Source Control information for the user
and session should be updated. The project file is checked out and you are prompted to
add the new versionable elements to the Source Control.

Following are the two options available when prompted for adding the newly detected
elements:

• Select Cancel, if you did not add the new elements.

The project file is checked out and you can see the new elements in Solution
Explorer, Class View.

• Select OK, if you are not sure whether you or some other user added the new
elements. If the file or element exists, then a warning message appears that a file or
element with the name already exists.

The project file is checked out and you can see the new elements in Solution
Explorer, Class View.

Note: Since the checkout procedure of the project file may reload the project,
you might need to do the operation again that added or removed the new
elements.

The parent and all siblings of the new element are checked out prior to including the new
element, unless one or more of the siblings was separately versioned. This ensures that
the controlled parent and possible siblings of the new element are associated with it.

Note that when a project is added to Source Control, all the files are added to one single
folder. AB Suite System Modeler allows users to add or remove folders to the Solution
Explorer. A folder created in the Solution Explorer is also represented by a folder on the
hard disk.

Files can be moved to and from a folder (in the Solution Explorer) by:

• Selecting files and performing a cut or paste operation.

• Using the Add New Item dialog on a folder node in the Solution explorer.
4–16 3826 5823-008

Managing Applications
When a file is moved to or from a folder and the file exits on disk, the file on disk also
moves to the new location. If the file is under Source Control, the history of the file is lost,
because the file is deleted from the Source Control bank in the old location and added to
the Source Control bank at the new location. Read the user manual of the Source Control
tool of your choice on how to recover a deleted file and how to move files if you want to
preserve this history.

Migrating an existing version control bank

If you have an existing version control bank, you can migrate the elements in the bank by
using the History Migrator Utility. Refer to the History Migrator Online Help for more
information on this tool.

After migration, three model files representing Dev, Test, and Prod environments exist.

Checking In an Element

Checking in an element exports the element from the Model and creates a new version
of the file containing the selected element in the Source Control Bank. Team Foundation
version control files are checked in to the source control server by using the Pending
Changes window.

Any load errors that you encounter during check in are written to the Visual Studio Source
Control Output Window.

To display and check in pending changes, perform the following:

1. View pending changes by performing any one of the following:

• In Source Control Explorer, right-click any element that contains pending
changes (indicated by this symbol:), and then click Check In Pending
Changes.

• In Solution Explorer, right-click one or more solutions, projects, or files, and
then click Check In.

• On the View menu, point to Other Windows, and click Pending Changes.

2. In the Source Files channel, clear the check boxes for any elements that you do not
want to check in, and type any applicable comments in the Comment box.

3. If you select more than one element, the version file name does not appear in the
Menu.

4. Click Check In.

Checking Out an Element

Checking out an element exports a copy of the selected element from the Version Control
Bank and then imports it into the System Modeler, where you can modify it. When you
check out a file, it is reserved under your userid.
3826 5823-008 4–17

Managing Applications
To remove the reservation on an element, the TFS Administrator must undo the checkout
performed by another user. This can be easily done by a command line utility available
with Team Explorer. The command line can be accessed by launching the Visual Studio
Command Prompt window. Refer to the MSDN documentation for using the TFS
command line.

You can then remove the reservation on the file by using the Reservation Tab. Refer to
Reservation Tab for more information.

Any load errors that you encounter during check out are written to the Visual Studio
Source Control Output Window.

To check out an element, perform the following:

1. Select the element(s) in the Solution Explorer or Class View window.

2. Select File, Source Control, Check Out <version file name> menu item, or
Check Out from the context menu. The element is checked out and the status icon
changes from a lock to a red tick mark.

If you select more than one element, the version file name does not appear in the Menu.

Getting an Element

‘Getting‘ a version of an element from the Version Bank makes a copy of the latest
version without locking the element. When you get a file, it is not locked under your
userid and another user can check out the file and modify it, unless you have previously
checked out the file. In such a scenario, it silently discards any changes you have made
since checking out.

There are three Get commands in Version Control:

• Get Latest Version – Loads the latest version of an element and its versioned
children from the Source Control Bank without locking the element.

Any load errors that you encounter while getting elements are written to the Visual
Studio Source Control Output Window.

Getting the latest version of an element

To get the latest version of an element, perform the following:

1. Create and identify a workspace in TFS. Refer to Creating a Workspace with your
Team Project in Source Control.

2. Select the element(s) in the Solution Explorer or Class View.

3. Select File, Source Control, Get <version file name> menu item, or Get from
the context menu.

The latest version of the selected element is copied to the workspace from Source
Control.
4–18 3826 5823-008

Managing Applications
Note: If you select more than one element, the version file name does not
appear in the Menu

• Get Specific Version - Retrieves a specific version of all elements from the
Source Control Bank without locking any element.

Getting a specific version of an element

To get a specific version of an element in a Model, perform the following:

1. Create and identify a workspace in TFS. Refer to Creating a Workspace with your
Team Project in Source Control.

2. Select the element in the Solution Explorer.

3. Select File, Source Control, Get Specific Version menu item, or Get
Specific Version from the context menu.

The specified version of the selected element is copied to the workspace from
Source Control.

• Get Latest Version (recursive) - Loads the latest version of all elements
from the Source Control Bank without locking any element. This menu command
is only available at the Model level of the tree structure. It effectively gets an
entire model and all its versioned elements, even where some of the element
may be separately versioned.

Getting the latest version of an element recursively

To get the latest version of all elements in a Model recursively, perform the following:

1. Create and identify a workspace in TFS. Refer to Creating a Workspace with your
Team Project in Source Control.

2. Select the Model in the Solution Explorer.

3. Select the File, Source Control, Get Latest Version (Recursive) menu
item, or Get Latest Version (Recursive) from the context menu.

The workspace and the database get synchronized automatically and the latest
version of the selected model is copied to the workspace from Source Control.

If you do not want to synchronize the workspace and the database automatically,
perform the following:

1. In the Solution Explorer window, right-click the project and select Unload
Project.

2. Right-click the project, and then select Edit <AB Suite Project
Name>.smproj.

3. In the <AB Suite Project Name>.smproj code editor set the <SccMaintainFiles>
and <SccMaintainModel> tags to False.

WARNING
This silently discards all changes made to any checked out element since the
checkout.
3826 5823-008 4–19

Managing Applications
Or

1. Open the <AB Suite Project Name>.smproj file in text editor, such as Notepad.

2. Set the <SccMaintainFiles> and <SccMaintainModel> tags to False.

Note: If you set the <SccMaintainFiles> to True and <SccMaintainModel> tags to
False, the File Changes Detected window appears when you select Get Latest Version
(Recursive) option. The File Changes Detected window displays the file names that
are added, modified, or deleted. You can get the latest version of only the files that
you want by selecting the check box next to the file names.

If you do not want to synchronize the workspace and the database automatically, perform
the following:

Viewing Pending Changes

The revisions to files in Team Foundation version control are saved to your local
workspace until you check in these changes. Such changes are referred to as pending
changes. You can view and manage pending changes by using the Pending Changes
and Check In windows. From the Pending Changes window, you can:

• View and check in pending changes in your workspace.

Refer to Checking In an Element in Source Control for more information on viewing
and checking in pending changes.

• Undo pending changes.

To undo pending changes in Source Control Explorer, perform the following:

1. In Source Control Explorer, right-click any element for which you want to
undo pending changes, and click Undo or Undo Pending Changes.

2. In the Undo Pending Changes dialog box, select the check box of each file for
which you want to undo pending changes, and click Undo Changes.

– In Source Control Explorer, the pending change type is removed in the
Pending Change column.

– If you undo an edit, your copy of the file is replaced with an unmodified
version you checked out.

– If you undo a delete, the version you deleted is restored (unless you have
performed a get operation since pending the delete; in which case the
version you last tried to get is downloaded).

– If you undo an add, the file is left undisturbed.

• Compare elements in a pending change to a different version
4–20 3826 5823-008

Managing Applications
To compare files in a pending change to a different version, perform the following:

1. On the View menu, click Other Windows, and then click Pending Changes.

The Pending Changes window is displayed.

2. In the Pending Changes window, right-click the element that you want to
compare to another version, click Compare and then click With Unmodified
Version, With Workspace Version or With Latest Version.

3. If you are prompted with the Source Control dialog box, click Save and
continue to save your changes to the disk before you continue with the
compare.

The two elements are presented with their differences highlighted, or if the
elements are the same, a dialog box appears that shows that the elements are
identical.

Refer to View and Manage All Pending Changes in your Workspace in Visual Studio
Online Help for more information on performing the operations on pending changes
window.

Using Command Line Interface

You can accomplish common Source Control operations by using a command line
interface. This allows you to carry out the Source Control operations without being in the
System Modeler environment, or the Source Control application. The Command Line
Interface from the Source Control provider works in conjunction with the Import and
Export tools. A Source Control provider provides a Command Line Interface to perform a
Get, CheckIn or CheckOut of files. You can use AB Suite Export or Import command to
either Export a version file ‘element’ or Import a version file ‘element’.

The following commands that are permitted in Command Line Interface are:

1. CheckIn – Check in the indicated elements.

2. CheckOut – Check out the indicated elements.

3. GetLatest or Get by Label – Get the latest version of the indicated elements.

Note: The security implementation of the standard Microsoft Visual Studio Source
Control API does not allow passing of passwords. This means that even though these
are command line functions, they still display an authentication dialog when accessing
the source control bank. The dialog varies depending on the source control provider.

CheckIn

The CheckIn command line interface enables you to perform Check in functions from
command prompt or within a script.
3826 5823-008 4–21

Managing Applications
The following command line syntax is used to export the versioned elements from AB
Suite Model and CheckIn versioned elements into a Source Control bank:

1. Type Export.exe at the command prompt to export the version file elements from an
AB Suite Model.

Export.exe -m FooDev -f C:\Temp\Class2.Model -vf Class2.model

Note: The -vf parameter indicates the version files to export when using
Export.exe command.

2. Use the Team Foundation Command line utility to check-in the file(s)
tf checkin [/author:author name] [/comment:("comment"|@comment file)]
[/noprompt] [/notes:("Note Name"="note text"|@notefile)]
[/override:(reason|@reasonfile)] [/recursive] [/saved] [/validate] [itemspec] [/
bypass] [/login:username,[password]]

where:

Refer to Checkin Command in the Visual Studio Online Help for more information on
parameters.

For example; to CheckIn Sample model by suppressing all prompts, use the following
command.

tf checkin Sample.model /noprompt

For help on these parameters enter tf parameter /? at the command prompt.

If you wish to capture and view a specific version of a file in a temporary folder for logging
purposes, use the following View command as an example:

c:\temp>tf view c:\temp\input.txt > c:\temp\checkin.txt

CheckOut

The CheckOut command line interface enables you to perform Check out functions from
command prompt or within a script.

The following command line syntax is used for Checking out versioned elements into
Source Control Bank and import versioned elements from Source Control Bank.

1. Use the Team Foundation Command line utility to check out the file(s)
tf checkout [/lock:(none|checkin|checkout)] [/recursive]

Parameter Description

/noprompt Suppresses any prompts for input from you..

/recursive Checks in all elements in the specified or implied working folder and subfolders.

itemspec Specifies a file or folder to check in.
4–22 3826 5823-008

Managing Applications
2. Type Import.exe to import the version file element(s) from an AB Suite Model file(s)
Import.exe -m FooDev -vf Sample.Model

Note: The -vf parameter indicates the version files to import when using import.exe
command.

where:

Refer to Checkout Command in the Visual Studio Online Help for more information on
parameters.

For example; to check out Sample model, use the following command:

tf checkout Sample/Sample.model

Get Latest or Get by Label

The Team Foundation Command line utility provides a command line interface to perform
Get latest functions.

1. Perform a ‘Get Latest’ or ‘Get by Label’ by using the following Team Foundation
Command line utility.

tf get [itemspec] [/version:versionspec] [/all] [/overwrite] [/force]
[/preview] [/recursive] [/remap] [/noprompt] [/login:username,[password]]

2. Type Import command to import all files.
Import.exe -m FooDev -vf Sample.smproj

Note: The -vf parameter indicates the version files to import when using import.exe
command.

where:

Refer to Get Command in the Visual Studio Online Help for more information on
parameters.

To get complete information about Team Foundation command-line tool, tf, refer to Team
Foundation Command-Line Reference in the Visual Studio Online Help.

Parameter Description

/recursive Checks out all files that match the itemspec in the current directory and in all
the subfolders of the current directory.

Parameter Description

/recursive Recursively retrieves all elements that match your itemspec.

/nonprompt Suppresses any dialog boxes that would have been displayed during this
operation.
3826 5823-008 4–23

Managing Applications
Comparing Versions

You are able to compare the latest revision of an element in the Source Control bank with
the current copy of the element in the model.

With the additional System Modeler Merge Export File utility, you can combine two
elements or revisions by reviewing each difference between the two items and selecting
which variant is included in the final merged file. You can also create a report on the
differences between objects, revisions, and export files.

The System Modeler Compare and Merge Tools that is accessed from File, Source
Control, and Compare menu item provide these functions. You can also access them
from the Compare Versions item on the context menu. Refer to Compare Two Files in
the Visual Studio Online Help for more information on how to compare different
versions of an element.

Note: The Compare Revisions function is only available when you select a System
Modeler element within Solution Explorer, or the Class View window.

Using Source Control with TFS

The following information gives an overview of the operations specific to TFS.

• Connecting to Team Projects

• Creating a Workspace with your Team Project

• Viewing Historical Data about an Element

• Using Labels

Connecting to Team Projects

You can organize your projects into groups by creating team project collections. Before
connecting to team project, you should create a team project from the Team Explorer.

To connect to a team project collection, point to Team menu and click Manage
Connections > Connect to Team Project. Refer to Creating a Team Project and
Connecting to a Team Project Collection in the Visual Studio Online Help for more
information.

To create a team project, right-click the team project collection and select New Team
Project. Refer to Creating a Team Project and Connecting to a Team Project Collection in
the Visual StudioOnline Help for more information.

The new team project appears in Team Explorer.
4–24 3826 5823-008

Managing Applications
Creating a Workspace with your Team Project

A workspace includes folders on the local machine that is mapped to version-controlled
folders on the Team Foundation version control server. You can create this workspace by
using Visual Studio Application Lifecycle Management (ALM) or by opening a Command
Prompt window. After you create a workspace, you typically download all of the files from
the version control server into your workspace.

Refer to Create a Workspace and Get Files in the Visual Studio Online Help for more
information on creating a workspace by using ALM.

To create a workspace manually, perform the following:

1. On the File menu, click Source Control, and then click Workspaces.

2. In the Manage Workspaces dialog box, click Add.

Note: You can also click the default workspace and then click Edit if you want to
reuse the default workspace.

3. For each folder that you want to map, perform the following:

a. Under Working folders, click the first empty row in the Source Control
Folder column, and then click the ellipses (...).

b. In the Browse for Folder dialog box, click the folder on the server that contains
the files that you want to work with, and then click OK.

c. Under Working folders, click the first empty row in the Local Folder column,
and then click the ellipses (...)

d. In the Browse for Folder dialog box, click the local folder into which you want
to copy the files.

e. (Optional) Click Make New Folder, and type a name for the new folder where
your local copies should be stored.

f. Click OK.

Viewing Historical Data about an Element

Team Foundation version control maintains historical data related to every version of
every element that was checked in. You can view the History window by right clicking and
selecting View History in the Source Control Explorer. Refer to using the History
Window in the Visual Studio Online Help for more information about the data displayed
in this window or the actions that you can take.

Using Labels

Labels allow you to take a snapshot of your files so that later, you can refer back to that
snapshot. You can

• Add a label

• List, view, find, edit, rename, remove labels

• Roll back a large set of files to a labeled version
3826 5823-008 4–25

Managing Applications
Refer to Use Labels to Take a Snapshot of Your Files in the Visual Studio Online Help for
more information on applying and using labels.

Source Control Operations

The Source Control wizard is activated when you open a solution under Source Control. It
enables you to either use an existing model or create a new model.

To associate a project with the AB Suite model database, perform the following:

1. Open the solution file from the workspace.

The files are automatically added to the projects directory.

The System Modeler Project wizard appears that includes the following two options
to select from:

• Select New to create a new database.

a. From the Server Name list, select a server.

b. In the Database Name box, enter the database name.

c. In the Model Name box, enter the model name.

d. Click Finish.

On completion, the model files in the workspace are imported automatically to the
database.

Or

• Select Existing to synchronize the files with an existing database.

a. From the Server Name list, select a server.

b. From the Database Name list, select the database name.

c. In the Model Name box, enter the model name.

d. Click Finish.

In case of any differences between the workspace and database, the File Detection
dialog box appears to resolve the differences.
4–26 3826 5823-008

Managing Applications
Creating AB Suite Environment

This subsection describes the steps to create or update AB Suite environments such as,
Development, Test, or Production with a Source Control database.

Set up a Development Environment

The steps to set up a Development Environment include, perform the following:

1. Connect to Team Projects by using Team Explorer.

Refer to Connecting to Team Projects in Source Control for more information on
connecting to Team Projects by using Team Explorer and other clients.

2. In Team Explorer, double-click the Source Control folder node that is associated
with the team project you want to work with.

Source Control Explorer opens with the respective team project highlighted.

3. Create a workspace and select it as your workspace for Development Environment.
Refer to Creating a Workspace with your Team Project in Source Control for more
information on creating and updating a workspace.
3826 5823-008 4–27

Managing Applications
4. Select the working project in Source Control Explorer, and select Get Specific
Version and Get by Label “Development”. Refer to Getting an Element in Source
Control for more information on getting specific version or getting by label.

This copies all the files to the local folder. For example, C:\Workspaces\Development.

Following is the folder structure and files in the local machine.

The Get by Label “Development” step can also be achieved by using the Team
Foundation command line utility. You can navigate to the working folder with the CD
command and use the following command to get the files that are labeled as
‘Development’. Refer to Command Line Interface in Source Control for more
information on using Get Latest/Get by Label command line utility.

C:\Workspaces\Development>tf get /version:Ldevelopment

You can get a copy of the latest files in the local folder by running the following
command in the command line:

Import -m <model name> -vf <filename>

5. Open Visual Studio development environment, and then open the Solution or the
Project file.

The Application Project Wizard appears.

6. Select New or Existing.

Note: Select New if you want to associate an existing project, which is under
source control, with a new database. Select Existing if you want to associate an
existing project, which is under source control, with an existing database.

• If you select New, perform the following:

a. From the Server Name list, select a server name.

b. In the Database Name box, enter a database name.

c. In the Model Name box, enter a model name.
4–28 3826 5823-008

Managing Applications
• If you select Existing, perform the following:

a. From the Server Name list, select a server name.

b. From the Database Name list, select a database name.

8. Click Next.

9. Click Finish.

Note: When you associate an existing project with a new database, the database
is initialized by importing all the version files that are present in the project file.
However, when you associate an existing project with an existing database, it is
assumed that you are dealing with a multi-user environment and the database is
up-to-date.

After performing these steps, you can perform the CheckIn or CheckOut operations.

Update or Refresh an Existing Development Environment

Following are the two ways to update an existing development environment with the
latest changes:

• Using the VS IDE

• Using the Source Control Client with the import utility

Updating by using the VS IDE

1. Open the Solution or Project file.

2. Select the solution or project in the Solution Explorer.

3. Right-click the solution or project and select Get Latest Version (Recursive) from
the context menu.

This uploads all the changed files.

Updating by using the Source Control Client

1. Perform step1 through step 3 from subsection Setting up a Development
Environment.

2. Right-click your working project in Source Control Explorer and select Get
Latest Version.

All out-of-date files are copied in the local folder. For example,
C:\Workspaces\Development

3. In the Import Wizard, select the project file (smproj) to be imported.

4. Select the database to be updated.

5. Select Replace to avoid resolution conflicts.

6. Click OK to complete the import.
3826 5823-008 4–29

Managing Applications
You can also perform step 3 through step 6 by using a batch file with the following
commands:

C:\Workspaces\Development >tf get
Import.exe -c -m <databaseName> -s <hostName>
C:\Workspaces\Development\Sample\Sample.smproj

Note: The above steps only imports the changed files while importing a .smproj file.

Set up a Test Environment

To set up a Test environment include, perform the following:

1. Connect to Team Projects by using Team Explorer.

Refer to Connecting to Team Projects in Source Control for more information on
connecting to Team Projects by using Team Explorer and other clients.

2. In the Team Explorer, double-click the Source Control folder node that is
associated with the team project you want to work with.

Source Control Explorer opens with the respective team project highlighted.
4–30 3826 5823-008

Managing Applications
3. Create a workspace and select it as your workspace for the Test Environment. Refer
to Creating a Workspace with your Team Project in Source Control for creating and
updating a workspace. Following is the folder structure and files in the local machine.

4. Select the working project in Source Control Explorer, and select Get Specific
Version and Get by Label “Test”. Refer to Getting an Element in Source Control
for more information on getting specific version or getting by label.

You can get a copy of the latest files in the local folder by running the following
command in the command line:

Import -m <model name> -vf <filename>

5. Open Visual Studio development environment, and then open the Solution or the
Project file.

The Application Project Wizard appears.

6. Select New or Existing.

Note: Select New if you want to associate an existing project, which is under
source control, with a new database. Select Existing if you want to associate an
existing project, which is under source control, with an existing database.
3826 5823-008 4–31

Managing Applications
• If you select New, perform the following:

a. From the Server Name list, select a server name.

b. In the Database Name box, enter a database name.

c. In the Model Name box, enter a model name.

• If you select Existing, perform the following:

a. From the Server Name list, select a server name.

b. From the Database Name list, select a database name.

7. Click Next.

8. Click Finish.

Note: When you associate an existing project with a new database, the database
is initialized by importing all the version files that are present in the project file.
However, when you associate an existing project with an existing database, it is
assumed that you are dealing with a multi-user environment and the database it
up-to-date.

9. Click Build to build and deploy the system.

Note: The above steps only imports the changed files while importing a .smproj file.

Set up a Production Environment

The steps mentioned in the Production environment are necessary if you perform builds
in this environment and do not use the runtime transfer files from the Test environment.

1. Connect to Team Projects by using Team Explorer.

Refer to Connecting to Team Projects in Source Control for more information on
connecting to Team Projects by using Team Explorer and other clients.

2. In the Team Explorer, double-click the Source Control folder node that is
associated with the team project you want to work with.

Source Control Explorer opens with the respective team project highlighted.
4–32 3826 5823-008

Managing Applications
3. Create a workspace and select it as your workspace for Production Environment.
Refer to Creating a Workspace with your Team Project in Source Control for more
information on creating and updating a workspace.

4. Select the working project in Source Control Explorer, and select Get Specific
Version and Get by Label “Production”. Refer to Getting an Element in Source
Control for more information on getting specific version or getting by label.

You can get a copy of the latest files in the local folder by running the following
command in the command line:

Import -m <model name> -vf <filename>

5. Open Visual Studio development environment, and then open the Solution or the
Project file.

The Application Project Wizard appears.

6. Select New or Existing.

Note: Select New if you want to associate an existing project, which is under
source control, with a new database. Select Existing if you want to associate an
existing project, which is under source control, with an existing database.
3826 5823-008 4–33

Managing Applications
• If you select New, perform the following:

a. From the Server Name list, select a server name.

b. In the Database Name box, enter a database name.

c. In the Model Name box, enter a model name.

• If you select Existing, perform the following:

a. From the Server Name list, select a server name.

b. From the Database Name list, select a database name.

7. Click Next.

8. Click Finish.

Note: When you associate an existing project with a new database, the database
is initialized by importing all the version files that are present in the project file.
However, when you associate an existing project with an existing database, it is
assumed that you are dealing with a multi-user environment and the database it
up-to-date.

9. Click Build to build and deploy the system.

Release Management
In addition to giving you a more meaningful way to refer to versions, version labels can be
used to build a product release. Version labels allow you to do a Get or Checkout
operation on all versions with a specified label. By assigning a release-specific label to the
versions of all elements required for a release of your product, you can retrieve all of
these elements in one operation.

To build a product release, perform the following:

1. Ensure that all versions of elements to be included in the release have been labeled
with the version label identifying them for that release, for example WindowsRel2V1.

2. Perform a Get or Checkout operation to retrieve all versions with version label
WindowsRel2V1 from the Source Control Bank.

When you perform the operation, you can load all the retrieved versions into the Model,
then use Builder to define a System and generate directly to a target host. Refer to
Building a Product Release by Labels for more information about release management.

Building a Product Release by Labels

Assigning Version Labels

A version label can be assigned to one version at a time, but to make labeling of a number
of versions easier, Version Control also allows you to assign a label to:

The current versions in the Model, for all elements or for selected elements in a Model.
4–34 3826 5823-008

Managing Applications
The latest version for all elements or for selected elements in a Model.

Refer to the documentation provided with your source control tool for more information
on how to assign labels.

Assembling the Release

To assemble the versions required for a release, perform a Get or Checkout on a Version
by Label operation and load a copy of all versions with the specified version label into the
Model. In the diagram below, version 1.3 for <<Ispec>> Class C1, version 1.4, for
<<Report >> Class R1, version 1.2.1.2, for Attribute1 version 1.2.1.2 is retrieved to build
the release.

Delivering the Release

After the versions required for the release have been copied to the Model, use Builder to
define a System and generate directly to the target host.
3826 5823-008 4–35

Managing Applications
Example

The diagram below gives an example of two <<Ispec>> Classes that are added to the
Source Control Bank and modified for two projects.

(1) <<Ispec>> Class1 and <<Ispec>> Class2 are added to the Source Control Bank,
creating version 1.1 on a main branch for each element.

(2) A decision is taken to develop variants of <<Ispec>> Class1 for the Domestic Release
of the product and Overseas release. Version 1.1 is checked out, rewritten for Overseas,
and checked in to a new branch called OverseasProj. The main branch is given a branch
label DomesticProj.

<<Ispec>> Class2 is the same for both Domestic Release and Overseas release. Its main
branch is given two labels: DomesticProj and OverseasProj.

(3) <<Ispec>> Class1 and <<Ispec>> Class2 are modified.

Version label OverseasRel is assigned to <<Ispec>> Class1 version 1.1.1.2 and to
<<Ispec>> Class2 version 1.3. A Get or Checkout by Label operation is performed to
build Overseas Release 1.

Version label DomesticRel is assigned to <<Ispec>> Class1 version 1.3 and to
<<Ispec>> Class2 version 1.3. A Get or Checkout by Label operation is performed to
build Domestic Release 1.
4–36 3826 5823-008

Managing Applications
Integrity Management
Integrity Management is an inherent feature designed to ensure that the Developer
Model is synchronized with the Source Control Bank. This is accomplished by protecting
controlled elements, that is, elements which have been added to the Source Control
Bank. Protection is provided by identifying any controlled element that has not been
checked out from the Source Control Bank as being read-only.

Note: There is a performance overhead when using Integrity Management. The size
of the impact depends on the number of dependencies on the element that is being
changed, and the granularity of the versionable objects.

Refer to Working with Integrity Management for more information about this feature.

Working with Integrity Management

Each time you perform an operation that might change a versionable element, Integrity
Management checks to see what other elements might be affected by the change and
takes remedial action.

Some examples of how Integrity Management affects Source Control are included below.

Updating

When modifying an element, which is not checked out, it is checked out automatically
before any modification can be made. When an element is already checked out,
Developer locks the element until the modification is complete. When other elements are
impacted by this modification, they are also checked out automatically.

Checking Out

For a Check Out operation, you arenot prompted to confirm the overwrite of changed
elements in the Model. The Check Out will go ahead and overwrite what is in the Model.

Adding

When a new element is added to the model, it is versioned by default as part of its
parent, if the parent has the version file property set.

Deleting

When deleting an element, it checks out its parent if the parent has the version file
property set, or if this child element has the version file property set. The version file in
the source control tool isnot marked as deleted. It is your responsibility to perform regular
purges.

Any dependent elements arealso checked out, as is the case with updates described
earlier.
3826 5823-008 4–37

Managing Applications
Automated Test Tool
Automated Test Tool (ATT) menu within System Modeler can be used to unit test Agile
Business Suite (AB Suite) applications and AB Suite Client Framework applications. This
tool is integrated with the AB Suite development environment. You can record, play back,
and change the inputs to transactions at runtime to verify the changes in an AB Suite
application. It is also used to verify the working of an application when there is a change in
the AB Suite model or a model is migrated from one release of AB Suite to another.

You can use the System Modeler functions while an application is running and
transactions are being performed. The transactions executed at runtime are dynamically
recorded as a series of test steps.

ATT menu allows you to perform the following for each test step:

• View the data exchanged during a transaction and verify it at the time of recording.

• Pause the recording as transactions are executed. This is useful for large test runs,
where it might be error prone to revisit a long test sequence and insert proper
verifications.

• Play back test steps to validate the application.

The Visual Studio File menu lets you create a Unit Test Project to organize test cases. You
can access the ATT menu from the Visual Studio menu bar to edit, validate, and play back
tests. The Visual Studio Test menu provides the functionality required to debug and run
test cases. Refer to References for more information on the ATT menu user interface.

Recording Test Cases

Before you start recording transactions with System Modeler, you need to perform the
following:

1. Configure the application configuration file.

In the application configuration file, you have to first enable recording and specify the
mode of recording. Test cases can be recorded in the Connect or Disconnect mode.
You can also specify the port number and the server IP used to connect to the
runtime application.

2. Create a Unit Test Project.

After you configure the application configuration file, you need to create a test case in
a Unit Test Project to record the transactions. Refer to Creating a Unit Test Project for
more information on creating a unit test project.

Configuring to Record

In addition to the default Winforms client, System Modeler supports recording with
Component Enabler (CE) clients. Refer to Configuring Component Enabler Clients for
more information on configuring the CE clients.
4–38 3826 5823-008

Managing Applications
Configuring to Record with Winforms

1. Open the Winform configuration file used for your session. The default Winform
configuration file is Ispec.xml in the location <Package Installation
Directory>\<Solution Configuration>_<Solution Platform>\<Segment
name>\Core\Bin.

2. Find the entry < ATTRecord ></ ATTRecord> and specify the following parameters:

Note: The <xmlfile> </xmlfile> tag specifies the path and name of the recorded file
when you record in the Disconnect mode.

The following is an example of configuring the Winform config file, such as ispec.xml file
to enable recording in the Connect mode with the Winforms client:

Creating a Unit Test Project

After you enable recording and set the recording mode, you must create a test case in a
Unit Test Project. A test case is a collection of test steps and is saved with the .smtest file
extension. The transactions executed at runtime are recorded as a series of test steps in
a SMTest file. Test steps are listed in the order that they are recorded and indicate the
type of transactions that were performed at runtime. Refer to Transaction Types for more
information on the types of transactions that can be recorded.

Unit Test Project

A System Modeler Test Project is a test solution that holds the recorded and playback test
cases. A Unit Test Project can contain multiple recorded and playback test cases. The Unit
Test Project is listed in Solution Explorer. It is recommended that you create a new test
solution when you start recording for the first time.

Parameter Description

ATTRecord Specifies whether recording is enabled. Set this to true to enable
recording.

ATTRecordMode Specifies whether you want to record in the Connect or Disconnect mode.

ATTRecordServer Specifies the socket server being used to connect to the runtime
application. Configure this value based on your socket server setting.

ATTRecordPort Specifies the Port being used to connect to the C# test project within
System Modeler when recording a test in “connect” mode. This should
correspond to the Listener Port Number defined within the global settings
file, of your test solution in System Modeler.

<ATTRecord enable ="true" mode="connect" server="127.0.0.1" port="8888">
<XmlFile>C:\Testcase.smtest</XmlFile>
</ATTRecord>
3826 5823-008 4–39

Managing Applications
To create a new Unit Test Project in Microsoft Visual Studio 2015, perform the following:

1. Click File > New > Project…

2. From the left pane, select Test from the Visual C# project types in the Add New
Project window.

Note: System Modeler supports only the C# unit test project types.

3. In the New Project dialog box, select .NET Framework 4.6.1 or higher from the
drop-down list or you can change the Target Framework field after the unit test
project is created. Refer to Step 7 to set the .NET Framework after the unit test
project is created.

Note: You need to set the .NET Framework to 4.6.1 or higher for the current
application to that ensure ATT works correctly.

4. Select Unit Test Project.

5. Enter a project name in the Name field.

This is the .sln solution file used to hold all the tests. The Location field is
automatically populated.

6. Click OK.

A Unit Test Project is created.

To change the .NET Framework after the Unit Test Project is created, right-click the Unit
Test Project, select Properties, and modify the Target Framework field to .NET
Framework 4.6.1 or higher.

Recording Test Cases in the Connect Mode

Ensure that you have configured the application configuration file and created a unit test
project before you start recording transactions. Refer to Configuring to Record and
Creating a Unit Test Project for more information.

Note: The global settings file is automatically generated on performing System
Modeler operations, such as recording or generating a C# file.

In the Connect mode, start recording in System Modeler first and then launch the client
application. You can refer to the recorded steps in the New SMTest window in this mode.

To record a new test case in the Connect mode, perform the following:

1. Modify the application configuration file and ensure that the recording Port Number is
configured and the recording mode is set to Connect. Refer to Configuring to Record
for more information.

2. Create a new Unit Test Project for the test case. Refer to Creating a Unit Test Project
for more information.

3. From the ATT menu, select Record to start recording the transactions.
4–40 3826 5823-008

Managing Applications
4. Start the client application and perform transactions. For every transaction, System
Modeler adds a new test step to the SMTest case and records the input data.

5. From the ATT menu, select Stop when you complete the transactions to be recorded.

Configuring and Playing Back Test Cases

After you record a test case, you can play back the recorded test case. System Modeler
establishes a connection to the host application and the test is processed by stepping
through the recorded test steps sequentially. However, you must ensure that the system
connection information is configured in the global settings file and is selected prior to
playback.

Configuring for Playback

Before you play back using System Modeler, you need to configure the System Modeler
environment and connection information of the client application to enable the System
Modeler to communicate with the runtime system and client application. While
configuring the System Modeler environment and connection information, you can
specify the skipped fields, log details, and session details.

Notes:

For AB Suite applications

• Ensure to generate the CE Bundle before you deploy the application for playback.

• Ensure that you create a view for the deployed client application via the Runtime
Administration Tool.

You must configure the following for playback in System Modeler:

• General

• Session Details

• Connection Details

These configuration options can be specified in the global settings file of the Solution
Items. These settings are globally applicable to all the test cases in the Unit Test Project.

Notes:

• For AB Suite applications, you must configure the Session details and for AB
Suite Client Framework applications, you must configure the Connection details.

• For AB Suite Messenger Client applications, configuration of Session details and
Connection details is not required.
3826 5823-008 4–41

Managing Applications
Configuring General Details

In the General Details tab, you can configure the common settings for Session and
Connection. You must configure the Port Number and optionally you can specify the fields
to be skipped before you start recording. The information for these fields are not recorded
and are skipped during playback.

To configure the general details for test cases, perform the following:

1. In the Listener Information pane

• In the Port Number field, enter the port used for playback.

2. In the Skipped Fields pane

• In the Name field, enter the name of the field to be skipped.

• In the Application field, enter the application name which the field belongs to.

• In the Description field, provide a description of the skipped fields.

Notes:

• The field names added to the skipped fields list are case-sensitive.

• If you want to skip the xml data element recorded using messenger client, you
should specify the XPath structure in the Field Name field. Consider the following
example:
4–42 3826 5823-008

Managing Applications
If you want to skip the xml element, <ID>8<ID>, you should enter /CustomerResponse/
ID in the Field Name of the Skipped Fields pane as shown in the following. When
you playback the recorded messenger client test case, the xml element ID value under
CustomerResponse is ignored.

Configuring Session Details

In the Session Details tab, you can add multiple sessions and specify connection
information for each session that is required to connect to the runtime system during
playback. You must configure at least one session for playback.

To configure session details for test cases, perform the following:

1. Click Session in the left pane.

2. In the Sessions table, enter a name and description of a session in the Name and
Description columns, respectively. You can define multiple sessions here.

3. In the Session Details pane

• In the Application field, enter the name of the application deployed.

• In the Bundle field, enter the name of the deployed Bundle. For example,
order_entry.

• In the URL field, enter the URL of the runtime server specified in the
configuration file of the deployed application.

• In the View field, enter the name of the View that is configured in the
Administration Tool to connect to the client application.

Note: You can either select the value from the drop-down list or enter it
manually.
3826 5823-008 4–43

Managing Applications
• In the Package Prefix field, enter the package prefix that was specified in the
deployment properties. For example, com.unisys.

• In the Username field, enter the name of the Application User.

• In the Password field, enter the password for the Application User.

• In the Domain field, enter the domain of the Application User.

• In the Timeout field, enter the number of seconds for the client application to
time out if the server does not respond to a transaction request within the
specified time.

• In the CE Output field, select the CE output directory. By default, the value is
‘C:\NGEN_CE\Classes’.

• Click Test Connection to test whether the connection has been established.

Note: A warning message appears if the connection fails.

4. In the General Logging and CE Logging (during playback) panes:

• Select the log level number from the Level list.

Refer to the Agile Business Suite Runtime for Windows® Operating System
Administration Guide for more information on log levels.

5. Enter the location and name of the log file in the Filename field.

Configuring Connection Details

In the Connection Details tab, you need to configure the connection information for Client
Framework applications, which is required to connect to the runtime system during
playback.

1. In the Session Details pane

• In the Session Name field, enter the name of the connection.

• In the System field, enter the name of the application deployed.

• In the Host field, enter the host name used to deploy the application.

• In the Station Name field, enter the station name used for connection

• In the LogLevel field, enter the log level used to trace the test process.

• In the LogFolder field, enter the default path present in the global settings file,
to store the log files generated during test.

• Click Test Connection to test whether the connection has been established.

Note: A warning message appears if the connection fails.

Note: The Playback through Debugger is used to specify whether the connection
is using a Debugger session. If checked, then the connection can playback through
a debugger session. If not the connection cannot playback through a debugger
session.
4–44 3826 5823-008

Managing Applications
Playing Back Test Steps

The recorded test steps generate C# test methods similar to the existing C# methods.
You can play back the C# Test methods that have been generated for the recorded test
cases. The playback submits the C# test method to the server and processes the results
returned by the server.

The following playback options are available within the System Modeler:

• Playback using Visual Studio Environment

• Playback using Team Foundation Server (TFS)

• Playback using Command Line

Note: The C# test cases can be configured and played back using the Microsoft Test
Manager (MTM). Refer to the MSDN documentation for more information.

Test Explorer Window

The SMTests in a unit test project can be viewed in the Test Explorer window. The Test
Explorer window displays items that correspond to the C# test methods. You can group
tests and initiate playback. The lower pane of the Test Explorer window displays a
summary of the test results after a test executes. You can open the Test Output window
and visit the link to the XML file to view details of the playback steps. Select the CheckIn
option in the Team Explorer window.

Playback using Visual Studio

This feature allows you to play back a complete sequence in System Modeler. Perform
the following in Microsoft Visual Studio 2015 to playback all the steps:

1. Configure the connection information in the global settings file.

Refer to Configuring for Playback for more information on configuring for playback.

2. Click Save on the toolbar.

3. To build the solution, click Build on the Build menu.

4. Select Test > Windows > Test Explorer to open the Test Explorer window.

5. Select the C# test method from the test explorer window, right-click, and select Run
Selected Tests.

A summary of the playback session is displayed in the lower pane of the Test Explorer
window. If the playback fails, the System Modeler displays the reason for the failure of a
step.

Playback using TFS

You can playback test steps by using TFS. To playback test steps from TFS, you must
create a build definition.

Note: Refer to Building Applications by Using TFS for more information on
establishing a connection to TFS.
3826 5823-008 4–45

Managing Applications
Adding Solution to the TFS Server

You must add the solution to the TFS server to enable playing back test cases using TFS.
To add the solution to the TFS server, perform the following:

1. Select the solution on the Solution Explorer window.

2. Right-click and select Add Solution to Source Control.

The Add Solution to Source Control dialog box appears.

3. Click Ok.

4. Right-click the solution and select Check In.

5. Select the CheckIn option in the Team Explorer window.

The solution gets added to the TFS server.

6. Create a build definition. Refer to Creating a Build Definition for information on
creating a Build Definition.

7. Queue the created build definition. Refer to Using Build Definitions for information on
Queueing the build definition.

Playback using Command Line Interface

You can play back an SMTest through the Visual Studio 2015 Command Prompt. The
mstest command runs tests in test files. You can execute the playback command from
the command line and view the outcome. The test file name and configuration file can be
specified through arguments passed to the command. Refer to the MSDN
documentation for more information on the mstest command.

Setting the Low Account Month

The Low Account Month (LAM) value is used to prevent an application from accepting a
transaction with a date (contained in the built-in attribute ActMth) that is older than the
date when the application was deployed. By default, the value is the year and month in
which the application was initiated.

An error that the Account Month is not open is displayed if you play back tests that were
recorded before the current system was deployed. It is recommended that you set the
LAM to a value that is less than the LAM of such tests.

To set the Low Account Month for the Windows® Runtime, perform the following:

1. Open the Administration Tool.

2. Right-click the deployed system, click All Tasks > Configure…

3. On the Customize page, enter a value in the Low field in the High and Low
Account Months pane.

4. Click OK.
4–46 3826 5823-008

Managing Applications
To set the Low Account Month (LAM) for the MCP Runtime:

Ensure that you are logged on to the system from the MCP host with the Controller
security access level.

From the home position of page 2 of the session where you are logged onto your system,

Enter :LAM [mmyy]

For example, :LAM 9806 sets the Low Account Month to June 1998. If no value is
entered, the current value of LAM is displayed.

Refer to Administration Commands in the Agile Business Suite Runtime for ClearPath
MCP Administration Guide for more information on setting the Controller security level.

Migrating Test Case Recordings

The Recordings created with AB Suite 2.0, 3.0, 4.0, or 5.0 can be migrated to AB Suite 6.1
by adding the existing files to a C# test project.

Migrating Test Cases and Test Suites to AB Suite 6.1

PTo migrate a test case or a test suite to AB suite 6.1, perform the following:

1. Right-click the Unit Test Project in the Solution Explorer view and click Add >
Existing Item…

The Add Existing Item dialog box is displayed.

2. Browse and select the test cases or test suite you want to migrate, and click Add.

The Test cases or test suite is migrated and an SMTest file is automatically generated.
The SMTest file appears in Solution Explorer.

Notes:

• To generate the C# file, you need to select the SMTest file and click Save.
The C# files are generated automatically.

• Multiple test cases can be migrated simultaneously.

References

ATT Menu User Interface

The ATT Menu User Interface comprises of the ATT menu options:

Note: The ATT menu is available on the Visual Studio menu bar once you create a
System Modeler Test Project.
3826 5823-008 4–47

Managing Applications
ATT Menu Options

The ATT menu is available on the Visual Studio menu bar. The options available on the ATT
menu let you navigate through all the functions of System Modeler ATT. The ATT Menu
provides access to the various System Modeler ATT functionalities. The following table
describes the menu options:

Configuring Component Enabler Clients

System Modeler supports recording with the following Component Enabler clients:

• VB.Net winforms

• ASP.Net webforms

• Presentation Client

• WPF Client

• Messenger Client

Note: It is assumed that you have generated a Component Enabler (CE) bundle and
deployed the runtime application. The CE bundle is required for playback. Refer to the
Agile Business Suite Component Enabler User Guide for more information on creating
application bundles for different clients.

Option Icon Description

Record Starts recording a new test case and System
Modeler ATT creates a new SMTest case, and
adds the recorded step to it.

Pause/Resume Pauses or Resumes recording of test steps.

Stop Stops recording of test steps and generates the
related SMTest files.

Cancel Cancels recording of test steps.
4–48 3826 5823-008

Managing Applications
Configuring to Record with VB.Net Winforms

1. Open the config.xml file from the \bin folder under the VB.NET client project
directory, for example, C:\NGEN_CE\ VB.NETClient\Sample\bin

2. Find the entry < ATTRecord ></ ATTRecord> in the config.xml file and specify the
following parameters:

Note: The <xmlfile> </xmlfile> tag specifies the path and name of the recorded file
when you record in the Disconnect mode.

The following is an example of configuring the config.xml to record in the Disconnect
mode with the VB.Net client.

Configuring to Record with ASP.NET Web Forms

1. Open the Web.Config file from the Views folder of the ASP.NET client project
directory.

2. Find the entry <Plugin> </Plugin> and specify the following parameters:

Parameter Description

Enable Specifies whether recording is enabled. Set this to true to enable recording.

Mode Specifies whether to record in the Connect or Disconnect mode.

Server Specifies the socket server used to connect to the runtime application. Configure
this value based on your socket server setting.

Port Specifies the Port used to connect. Configure this value based on your port setting.

<ATTRecord enable ="true" mode="disconnect" server="127.0.0.1" port="8888">
<XmlFile>C:\NGEN_CE\VB.NET Client\Sample\bin\TestCase.smtest</XmlFile> </ATTRecord>

Parameter Description

ATTRecord Specifies whether recording is enabled. Set this to true to enable
recording .

ATTRecordMode Specifies whether you want to record in the Connect or Disconnect
mode.

ATTRecordServer Specifies the socket server used to connect to the runtime
application. Configure this value based on your socket server setting.

ATTRecordPort Specifies the Port used to connect to the runtime application.
Configure this value based on your port setting.

ATTRecordXMLFilePath Specifies the path and name of the file in which the test case is
recorded when the record mode is set to Disconnect.
3826 5823-008 4–49

Managing Applications
The following is an example configuration in the Web.Config file to record in the Connect
mode with the ASP.Net client:

Configuring to Record with a Java-Based Presentation Client

There are two ways to configure the Java-based Presentation Client.

• Open and edit the config.xml file directly using a text editor.

• Open the Configuration Assistant and edit the configuration file. The Configuration
Assistant is installed with the Component Enabler (CE) Development Environment
with the path, C:\NGEN_CE.

Note: Although the Presentation Client generates Java IspecModel files to record,
always ensure that C# IspecModel files are generated to play back the recorded files.
Since C# IspecModel files are used to play back, it is a good practice to generate Java
and C# IspecModel files to avoid any problem.

Using the Configuration File

Find the entry < ATTRecord > </ ATTRecord> and set the following parameters:

Note: The <xmlfile> </xmlfile> tag specifies the path and name of the recorded file
when you record in the Disconnect mode.

<add key="ATTRecord" value="true"/>
<add key="ATTRecordMode" value="connect"/>
<add key="ATTRecordServer" value="127.0.0.1"/>
<add key="ATTRecordPort" value="8888"/>
<add key="ATTRecordXMLFilePath" value="C:\NGEN_CE\TestCase.smtest"/>

Parameter Description

enable Specifies whether recording is enabled. Set this to true to enable recording.

mode Specifies whether you want to record in the Connect or Disconnect mode.

server Specifies the socket server being used to connect . Configure this value based on
your socket server setting.

port Specifies the Port being used to connect to. Configure this value based on your
port setting.

xmlFile Specifies the path and name of the file in which the test case is recorded when
the record mode is set to Disconnect.
4–50 3826 5823-008

Managing Applications
The following is an example of the configuration set in config.xml to enable recording in
the Connect Mode with the Presentation Client:Using the Configuration Assistant

The Configuration Assistant is installed with the Component Enabler Development
Environment and lets you edit the application configuration file.

1. Point to the bottom-left corner of the screen for Windows Server 2012 R2 and click
the Start.

The Start screen appears with the list of applications.

2. Click Configuration Assistant or type Configuration Assistant on the desktop.

You can also right-click the Start screen and click All Apps for the list of applications.

Configuring to Record with a WPF Client

1. Open the WpfClient_Config.rtxml file from the Access Layer API Deploy folder.

2. Find the entry < ATTRecord ></ ATTRecord> and specify the following parameters:

<attRecord>
<enable>true</enable>
<mode>connect</mode>
<server>127.0.0.1</server>
<port>8888</port>
<xmlFile>c:\temp\testcase.smtest</xmlFile>
</attrecord>

Parameter Description

ATTRecord Specifies whether recording is enabled. Set this to true to enable
recording.

ATTRecordMode Specifies whether you want to record in the Connect or Disconnect mode.

ATTRecordServer Specifies the socket server being used to connect to the runtime
application. Configure this value based on your socket server setting.
3826 5823-008 4–51

Managing Applications
The following is an example configuration in the WpfClient_Config.rtxml file to record in
the Disconnect mode with the WPF client:

Configuring to Record with Messenger Client

1. Open the Messenger Client.

2. Enter the following parameters.

ATTRecordPort Specifies the Port being used to connect to the runtime application.
Configure this value based on your port setting.

File Specifies the path and name of the recorded file when you record in the
Disconnect mode.

RecordDynamicLists Specifies whether the lists sent through the SendDynamic command can
be recorded. Set this to true to enable recording of the lists sent through
this command.

<ATTRecord enable ="true" mode="disconnect" server="127.0.0.1" port="8888">
<File>C:\Temp\Recordings\Testcase.smtest</File>
<RecordDynamicLists>True</RecordDynamicLists>
</ATTRecord>

Parameters Description

Record Settings

Record Transactions Select this option to set record settings.

Mode Specifies whether to record in the
Connect or Disconnect mode.

Host Specifies the host used to connect when
you record in the Connect mode.

File Name Specifies the path for the recorded file
when you record in the Disconnect mode.

Parameter Description
4–52 3826 5823-008

Managing Applications
Recording Test Cases in the Disconnect Mode

Recording in the Disconnect mode is optional. It is simple and useful if you want to record
directly without starting Visual Studio. You can execute transactions on the client
applications which are then recorded in the XML file specified in the configuration file. You
can later edit the test case in System Modeler Test List Editor. The recording progress is
not visible in System Modeler.

To record a test case in the Disconnect mode, perform the following:

1. Modify the application configuration file and ensure that the recording mode is set to
Disconnect. Refer to Configuring to Record for more information.

2. Start the client application and perform transactions on the application.

3. Close the session or directly close the application.

System Modeler automatically creates a test case file that records the transactions and
input information as test steps. The test file is saved in the location specified in the
application configuration file.

Note: Multiple sessions cannot be recorded for a client application.

Using the SampleTest Scripts

The SampleTest application enables you to run the SampleTest scripts placed within the
AB Suite 6.1 Bin directory.

To run the sample scripts, perform the following:

1. Restore the SampleTest application by performing the following:

a. On the File menu, point to New, and then click Project.

The New Project dialog box appears.

b. In the Project Types pane, expand Templates, expand System Modeler, and
then select AB Suite Application from Backup.

The System Modeler Project wizard appears.

c. In the Selection field, click the … button to browse for the batch file.

Note: The SampleTest.bck file is present in the following location:

C:\Program Files (x86)\Unisys\AB Suite 6.1\Bin\

d. Click Next.

The project creation confirmation message appears in the wizard.

e. Click Finish.

The sample application is restored.

f. Click Close

The sample AB Suite SampleTest application appears in the Solution Explorer
window.
3826 5823-008 4–53

Managing Applications
2. To build the SampleTest application, in the Solution Explorer window, select the
SampleTest application, right-click and select Build. Alternatively, on the Build
menu, select Build.

3. To playback the test scripts in the Test Explorer window, right click the test scripts
and select Run Selected Tests.

Note: Before you can run the test scripts, ensure that the WPF client is installed.

The test result appears in the lower pane of the Test Explorer window.

You can backup any System Modeler recording as a test project (.bck file) and then
restore it into a System Modeler environment on a different machine. Refer to Performing
Backup of AB Suite Solutions and Restoring the AB Suite Solutions for more information.

Transaction Types

System Modeler Test List Editor

An SMTest is displayed in a New SMTest window. Each node represents a transaction
executed on the runtime system via the client. A test step is recorded in the same order it
occurs, the latest one being the last node

There are three types of test steps based on the type of transactions:

• Colon Command

• SubmitIspec

• SelectIspec

For each test step, the details of the transaction are recorded. The details include
information, such as Ispec name, status messages, return codes, field names and their
values, and test comments. These details can be viewed and edited according to the test
scenario requirement.

Colon Command
• This section describes the details for a colon command. Every colon command

records information under five categories, as follows:Name – The name given to the
test step that consists of the colon command.

• Send Data – Records the colon command executed.

• Received Data – Records the result of the executed colon command.

• Validation Data – Conditions that specify how the colon command is validated.

• Documentation – Describes the colon command.
4–54 3826 5823-008

Managing Applications
Validation Data

SubmitIspec

This section describes the details for a SubmitIspec test step. Every SubmitIspec test
step records information under five categories:

• Name – The name given to the SubmitIspec test step.

• Send Data – Records the details of the previous SubmitIspec step executed.

• Received Data – Records the details of the current SubmitIspec step executed.

• Validation Data – Conditions that specify how the SubmitIspec is validated.

• Documentation – Describes the SubmitIspec test step.

A detailed description of the fields in each category is given below.

Send Data

Information Description

Condition You can specify the validation condition using this option. Depending on the
test requirement, you can set the validation condition to one of the following:

• ‘=’ – Checks if the input is equal to the value specified in the expected
value field.

• ‘<>’ – Checks if the input is not equal to the value specified in the
expected value field.

• ‘Include’ – Checks if the input contains the string specified in the
expected value field.

Received
Messages/
Accepts

This is the expected value against which all subsequent playback values are
checked for when the test case is run.

Category Information Description

General Result Name This is the name of the previous SubmitIspec or SelectIspec
Selection test step.

Ispec details Property This lists all the fields contained within the Ispec.

Value This displays the value corresponding to the Field Name.

Comments You can add comments against each of the displayed fields.
3826 5823-008 4–55

Managing Applications
Received Data

Validation Data

Note: The values displayed in the Ispec details fields are the values as recorded in
the database. They do not display the values as presented on the presentation.

Category Information Description

General Result Name This is the name of last Ispec of current SubmitIspec test
step.

Status This holds status line messages and errors passed back to
the client by the host.

Errors These are system-generated error messages added as part
of the LDL+ logic.

Ispec details Property This lists all the fields contained within the Ispec.

Value This displays the value corresponding to the Field Name.

Comments You can add comments against each of the displayed fields.

Category Information Description

General
Validation

Name This is the name of the Ispec processed in the current
SubmitIspec step.

Status This holds the expected status line messages and errors.

Errors This holds the expected errors.

Copy From
Data

This displays the copy ispec.

Ispec details Skip Select this check box to ignore this field during playback.

Property This lists all the fields contained within the Ispec.

Value This displays the value corresponding to the Field Name. This
is the expected value for playback. The condition for
comparison is determined by the value set in the Condition
column.

Condition This column specifies the validation condition. Depending on
the test requirement, you can set the validation condition to
one of the following:

• ‘=’ – Checks if the input is equal to the value specified in
the value column.

• ‘<>’ – Checks if the input is not equal to the value
specified in the value column.

• ‘Include’ – Checks if the input contains the string
specified in the value column.
4–56 3826 5823-008

Managing Applications
For example, consider a list box with the following screen values:

The values displayed in the Ispec details table are as stored in the database.SelectIspec -
Transaction Details Area

This section describes the details for a SelectIspec selection test step. Every test step
records information under five categories:

• Name – Name given to the SelectIspec test step.

• Send Data – Records the details of the previous SelectIspec step executed.

• Received Data – Records the details of the current Ispec processed in the test step.

• Validation Data – Conditions that specify how the SelectIspec step is validated.

• Documentation – Describes the SelectIspec test step.

A detailed description of the fields in each category is given below:

Send Data

Received Data

Screen Values Stored in Database as...

Asia Pacific AP

North America NA

South America SA

Europe EU

Category Information Description

General Result Name This is the name of the previous SelectIspec test step.

Ispec details Property This lists all the fields contained within the Ispec.

Value This displays the value corresponding to the Field Name.

Comments You can add comments against each of the displayed fields.

Category Information Description

General
Result

 Name This is the name of the current Ispec processed in the test
step.

Status This holds any status line messages and errors passed back to
the client by the host.

Errors These are system generated error messages added as part of
the LDL+ logic.
3826 5823-008 4–57

Managing Applications
Validation Data

Note: The values displayed in the Ispec details fields are the values as recorded in
the database. They do not display the values as presented on the presentation.

For example, consider a list box with the following screen values:

Ispec details Property This lists all the fields contained within the Ispec.

Value This displays the value corresponding to the Field Name.

Comments You can add comments against each of the displayed fields.

Category Information Description

General
Validation

Name This is the name of the Ispec processed in the current
SubmitIspec step.

Status This holds the expected status line messages and errors.

Errors This holds the expected errors.

Return Code This holds the expected return code.

Ispec details Skip Select this check box to ignore this field during playback.

Property This lists all the fields contained within the Ispec.

Value This displays the value corresponding to the Field Name. This
is the expected value for playback. The condition for
comparison is determined by the value set in the Condition
column.

Condition This specifies the validation condition. Depending on the test
requirement, you can set the validation condition to one of
the following:

• ‘=’ – Checks if the input is equal to the value specified in
the value column.

• ‘<>’ – Checks if the input is not equal to the value
specified in the value column.

• ‘Include’ – Checks if the input contains the string
specified in the value column.

Screen Values Stored in Database as...

Asia Pacific AP

North America NA

South America SA

Europe EU

Category Information Description
4–58 3826 5823-008

Appendix A
References

This section includes information about System Modeler, using the sample AB Suite
applications, using the Logic Editor window, using the Microsoft build platform, a
hierarchical list of error messages, and other reference documents that apply to
developing applications in an Integrated Development Environment (IDE).

Sample AB Suite Applications
You can create new AB Suite projects by using the sample AB Suite application or the
sample AB Suite Client Framework application.

Creating a Project with a Sample AB Suite Application

To create a project with a sample AB Suite application, perform the following:

1. On the File menu, point to New, and then click Project.

The New Project dialog box appears.

2. In the Project Types pane, expand Templates, expand Agile Business Suite, and
then click Samples.

3. In the Templates pane, select Sample Application.

4. In the Name box, enter the project name.

5. In the Location box, enter the path or browse to the location where you want to
store the new project.

6. Click OK.

The New Application Wizard appears.

7. From the Server Name list, select the SQL server. By default, this field displays the
system name.

8. In the Database Name box, enter the model name. By default, this field displays
the solution name.

9. In the Model Name box, enter the model name. By default, this field displays the
solution name.

10. Click Next.

The project creation confirmation message appears in the wizard.
3826 5823-008 A–1

References
11. Click Finish.

The sample AB Suite application is restored.

12. Click Close.

The sample AB Suite application appears in the Class View window.

Creating a Project with a Sample AB Suite Client
Framework Application

To create a project with a sample AB Suite Client Framework application, perform the
following:

1. On the File menu, point to New, and then click Project.

The New Project dialog box appears.

2. In the Project Types pane, expand Templates, expand Agile Business Suite, and
then click Samples.

3. In the Templates pane, select Sample Client Framework Application.

4. In the Name box, enter the project name.

5. In the Location box, enter the path or browse to the location where you want to
store the new project.

6. Click OK.

The New Application Wizard appears.

7. From the Server Name list, select the SQL server. By default, this field displays the
system name.

8. In the Database Name box, enter the model name. By default, this field displays
the solution name.

9. In the Model Name box, enter the model name. By default, this field displays the
solution name.

10. Click Next.

The project creation confirmation message appears in the wizard.

11. Click Finish.

The Sample AB Suite Client Framework application is restored.

12. Click Close.

The sample AB Suite Client Framework application appears in the Class View window.
A–2 3826 5823-008

References
Describing AB Suite Icons
The following table describes and illustrates AB Suite 6.1 icons:

Icon Name Icon

Add New Item

Attribute New (Template-based)

Attribute Private (Template-based)

Attribute Protected (Template-based)

Attribute Public (Template-based)

Attribute Unresolved (Template-based)

Attribute New (Inherits-based)

Attribute Private (Inherits-based)

Attribute Protected (Inherits-based)

Attribute Public (Inherits-based)

Attribute Unresolved (Inherit-based)
3826 5823-008 A–3

References
Build Preview

Class New

Class Private

Class Protected

Class Public

Class Unresolved

CopyEvent New

CopyEvent Private

CopyEvent Protected

CopyEvent Public

CopyIspec New

CopyIspec Private

CopyIspec Protected

Icon Name Icon
A–4 3826 5823-008

References
CopyIspec Public

Dependencies Tab

Diagram

Diagram New

Diagram Unresolved

Dictionary

Dictionary Open Status

Documentation Tab

Event New

Event Private

Event Protected

Event Public

External Class

Icon Name Icon
3826 5823-008 A–5

References
Folder

Folder Open Status

Folder Unresolved

Frame New

Frame Private

Frame Protected

Frame Public

Group New

Group Private

Group Protected

Group Public

Inheritance Tab

Insertable New

Insertable Private

Icon Name Icon
A–6 3826 5823-008

References
Insertable Protected

Insertable Public

Interface

Ispec New

Ispec Private

Ispec Protected

Ispec Public

Language Tab

List

Logic Tab

Logic Status Tab

Location

Location New

Icon Name Icon
3826 5823-008 A–7

References
Location Unresolved

Members Tab

Members Parameter Tab

Members Variable Tab

Messenger

Method Overrides Tab

Method New

Method Private

Method Protected

Method Public

Method Unresolved

Model

Output Manager Report Wizard

Icon Name Icon
A–8 3826 5823-008

References
Painter Tab

Parameter (Template-based)

Parameter (Inherits-based)

Parameter Unresolved (Template-based)

Parameter Unresolved (Inherits-based)

Presentation

Primitive

Profile Conditions Tab

Profile Data Tab

Profile Keys Tab

Profile New

Profile Private

Profile Protected

Icon Name Icon

3826 5823-008 A–9

References
Profile Unresolved

Project

Properties Tab

Quick Navigation

Reference

Reference New

Report New

Report Private

Report Protected

Report Public

Search

Segment

Serialization

SQL Script New

Icon Name Icon
A–10 3826 5823-008

References
SQL Script Private

SQL Script Protected

SQL Script Public

Synchronize

Teach

Teach New

Teach Unresolved

UML Editor Tab

Unresolved Tab

Value

Value Checking Tab

Variable (Template-based)

Variable (Inherits-based)

Icon Name Icon
3826 5823-008 A–11

References
Web Service

XSD Import

Icon Name Icon
A–12 3826 5823-008

References
System Modeler
This section of System Modeler provides additional information about some of the user
interface elements of the integrated development environment (IDE).

Searching an Element

You can search within a project for named elements that match a string, regular
expression or wildcard expression. The search can be performed through the entire
project, or restricted to a selected element or a selected element and its members. The
search is performed from the Search Dialog Box in which you enter the search
parameters.

Note: Search can also be started from the Members list of any element. When
started from the Members list, multiple items can be selected.

The search results are displayed in the Search Results List. From this window a found
item can be displayed in its default editor window.

To initiate a search, perform the following:

1. Open the Class View window by selecting Class View from the View menu.

2. Sort the hierarchical list into the most appropriate form to locate the element you
want to use. If necessary, click the plus (+) symbol next to a node to list all the
elements within the node.

3. Select the element.

4. From the Edit menu, select Search, or use the right-click context menu and select
Search.

Note: You can also use the Visual Studio Find and Replace functions to initiate a
search. Refer to the MSDN documentation for using the Visual Studio Find and Replace
functions.

Search Dialog Box

Use the Search Dialog Box to enter the parameters of the search using the fields
described below. When you have entered the parameters click Search to begin the
search.

Find what – Enter the text, along with wildcards or regular expressions, for which you
want to search. Alternatively, select the drop-down list to display the last items entered.
Selecting one of these sets other fields, except the In: field, to the values previously
used.

Wedge button – View a quick reference list of Wildcard or Regular Expression syntax.
Selecting an item in this list inserts the syntax element in the Find what field.
3826 5823-008 A–13

References
Match case – Search only for occurrences that match the combination of uppercase and
lowercase characters you enter in the Find what field.

Match whole word – Search only for whole words rather than matching the text
entered in the Find what field as it occurs within words. If checked, the matches are only
words delimited by white space or some punctuation (such as a full stop, comma or
mathematical symbol).

The following example illustrates the usage of the Match whole word option:

Suppose you want to search ‘Attribute1 :abc’ string in the Logic Editor, in which the word
to be searched includes a space before ‘:’.

If you select the Match whole word option, and then search for ‘Attribute1’, the Search
Results List window displays only the Attribute1 string in the Logic Editor.

If you clear the Match whole word option, and then search for ‘Attribute1’, the Search
Results List window displays both the Attribute1 string in the Logic Editor and the
element Attribute1.

Therefore, if you want to search the whole name of an element, select the Match whole
word option for an accurate search.

Use – Specifies that certain characters entered in the Find what field match text patterns.
The exact interpretation depends on which pattern-matching syntax is selected in the edit
box adjacent to the Use check box, either Wildcards or Regular Expressions. The edit box
is enabled only when the Use check box is checked.

• Wildcards – Specifies that the use of certain characters in the Find what text box
represent a class of character or sequence of characters. Refer to Wildcards for a
complete list.

• Regular expressions – Specifies that the use of certain characters in the Find what
field represent notations for patterns of text rather than the literal character. Refer to
Regular Expressions for a complete list.

After selecting Wildcards, or Regular expressions, click the wedge button to the right of
the selection to display a context menu, which lists some of the more common options
that you can insert.

Recursive – Specifies whether to search in the sub elements.

Look In – Allows you to define the scope of the search. This can be “Selected Object”
or “Solution.”

For – Lists matched elements. The checked types are the ones that are matched. If you
have requested a recursive search, the search looks in all child elements of the selected
element.

In – Lists properties of elements in the Model that can be searched. The checked types
are ones that are searched. The properties able to be searched are; Alias, Superclass,
Names, Logic, Documentation, Descriptions, Inheritance, Values.
A–14 3826 5823-008

References
Buttons

Search Button – Begin the search

Close Button – Close the dialog box

Stop Button – Stop a currently running search

You can stop the search at any time by opening the Search dialog and pressing the Stop
button. When the search begins the Search dialog box closes and the Search Results List
window opens and displays the matched results.

Wildcards

The following expressions can replace characters or digits in your search string and are
the same expressions as used by Visual Studio wildcards.

Note: You must select the Use check box in the Search dialog box and select
Wildcards before using any of the following expressions as part of your search
criteria.

Regular Expressions

Regular expressions are a concise and flexible notation for finding and replacing patterns
of text. The regular expressions used within System Modeler are a subset of the
expressions used in Visual Studio, with a simplified syntax.

You can use the following regular expressions in the Search dialog box to refine and
expand your search. These expressions can be used to match characters or digits in your
search string within Development Environment.

Note: You must select the Use check box in the Search dialog box before using any
of the following expressions as part of your search criteria.

Expression Syntax Description

Any single character ? Matches any single character.

Any single digit # Matches any single digit. For example, 7# matches numbers
that include 7 followed by another number, such as 71, but
not 17.

Characters not in set [!] Matches any one character that is not specified in the set.
For example, 7[abc] matches with 7a, 7b or 7c, but not 71.

One or more characters * Matches any one or more characters. For example, new*
matches any text that includes “new”, such as newfile.txt.

Set of characters [] Matches any one of the characters specified in the set. For
example, 7[abc] matches with 7a, 7b or 7c, but not 71 or 7d,
7[a-c] produces the same match.
3826 5823-008 A–15

References
Complete Character List

Character Description Example

. (Period) Any single character. b.d matches ‘bed’ and ‘bad’ but not
“bead”.

* None or more of the preceding
characters or expressions.

a*ck matches ‘luck’, ‘back’ and ‘barrack’
but not ‘brace’.

+ At least one or more of the
preceding characters or
expressions.

a+ck matches ‘back’ and ‘barracks’ but
not ‘luck’.

^ The beginning of a line. ^luck matches the word ‘luck’ only when
it appears as the first set of characters in
a line of the editor.

$ The end of a line. luck$ matches the word ‘luck’ only when
it appears as the last set of characters
possible at the end of a line in the editor.

< The beginning of a word. <ba matches words such as ‘bad’ and
‘back’ that begin with the letters ‘ba’.

> The end of a word. ck> matches words such as ‘luck’ and
‘back’ that end with the letters ‘ck’..

() or { } Any sequence of characters
between the braces.

(very)+good finds ‘verygood’,
“veryverygood”and so on. Note that it
isnot found ‘vgood’, ‘ygood’, or ‘vergood’
because the sequence ‘very’ is not in any
of those strings.

| Matches either the expression
before or the one after the OR
symbol (|). Mostly used in a group.

(sun|mon)day matches ‘sunday’ and
“monday”.

[] Any of the characters contained in
the brackets, or any of the ASCII
range of characters separated by a
hyphen (-).

b[aeiou]d matches bad, bed, bid, bod, and
bud.

r[eo]+d matches red, rod, reed, rood,
reod and roed.

x[0-9] matches x0, x1, x2, and so on.

[^] Any character except this following
the caret (^) character in the
brackets, or any of the ASCII range
of characters separated by a hyphen
(-).

x[^0-9] matches xa, xb, xc, and so on but
not x0, x1, x2, and so on.

:b Any white-space character. The :b
finds tabs and spaces.

Good:bday matches the phrase ‘Good
day’ in text but not Goodday.

:z Any unsigned decimal integer. :z matches any integer, such as ‘2’, ‘567’,
‘99’ etc. but not ‘luck’.

Equivalent to- [0 - 9]+.
A–16 3826 5823-008

References
Search Results List Window

The Search Results List window displays all found items. For each item found, the results
list displays:

• Item full name – This includes the full path so that the user can find the item to open
it manually.

• Item type or class.

• Item sub-type or part of main item in which the search string was found, for example,
Name, Documentation, Logic.

• Number of occurrences found for the element.

• Line number in which the match was found, for each match. This applies only to
Logic and similar text.

• Line of text in which the match was found. This applies only to Logic and similar text.
Only one match is shown per line.

The details listed are displayed for each part of the item. The items are displayed in a tree
list, where the root of each tree is the found item. The parts of the item that matches are
displayed as branches of the root.

If the system security setting determines that you do not have access to the item of the
search, the list displays only the “Item full name” and “Number of occurrences found”.
Additionally, you arenot able to open the item for editing.

The title bar of the Search Result window indicates the status of the search. It shows the
search term, whether the search is running or complete, and the total number of matches
found.

:i Any LDL+ identifier. :i matches any LDL+ identifier like
‘amount1’, ‘amount_$’ etc. but not
‘1amount’.

Equivalent to- [a-zA-Z_$][a-zA-Z0-9_$]*

:q Any quoted string. :q matches ‘luck’ and 'luck' but not the 't
of don't.

Equivalent to- ((\”[^\”]*\”)|('[^']*')).

\ Removes the pattern match
characteristic in the Find What text
box from the special characters
listed above.

100$ matches 100 at the end of a line,
but 100\$ matches the character string
100$ anywhere on a line.

Character Description Example
3826 5823-008 A–17

References
The Search Results window is a toolbar window. It can be docked or positioned as
required. A new window is used for each search that is made.

Note: If an item in the list is changed after the search has been completed so that it
no longer matches the search criteria, the list does not automatically refresh to
remove it.

When the search is complete you can perform the following operations:

• Refresh the list to rerun the search from the View, Refresh menu item.

• Select an entry in the list and double-click it to open the item in its default editor. The
editor displays the pane containing the match and, where appropriate, select the
matched text.

Building Comment Pages

You can create a detailed report of your Agile Business Suite model using the Build
Comment Pages function. This function allows you to create a hierarchical written display
of your Visual Studio Agile Business Suite project.

Using this function, you can either:

• Build the report of the entire model. Or

• Build a report on individual elements or classes.

Refer to Select a Scope for more information.

Whichever method you chose you receive a report which lists the base class, all
subclasses and their members. The report identifies the name of the element, any
description that you have previously provided for it, along with its member visibility and
the base class to which it belongs. In addition, the report includes the security details of
an element in the generated output.

The report is displayed in the Visual Studio designer window and saved as an HTML file in
a folder of your choice.

From the Build Comment Pages…. dialog box, you can select the following details of an
element to include them in the report:

• Property, Translations and Configuration details

– Configurations are only included for those elements that have configuration
details defined.

• Logics of Methods and Profiles

• Diagrams that show a UML class diagram of an element and its classes

• Documentation that represents the textual information included in the
Documentation tab of each element
A–18 3826 5823-008

References
• Statistics that shows the count of each element type, such as attributes, folders, and
classes, present in the model

• Security details of an element are enabled if the AccessControlled property is set to
“True” for a model

A report also contains hyperlinks of properties that reference another element, such as
Owner and Inherits.

When you build a comment page, it generates a report on the Agile Business Suite
model.

To build a report on your Agile Business Suite model, perform the following:

1. Select the Model in Class View.

2. Select Build Comment Pages... from the Build menu.

The Build Comment Pages… dialog box appears.

3. Perform one of the following in the Build Comment Pages… dialog box:

• To build a report on the entire model, select the Entire Model option. However, by
default, this option is selected. Or

• Select the Selection option to build a report only on selected classes or to include
individual elements in the report.

Refer to Select a Scope for more information.

4. If you select the Selection option in the previous step, select the Segment classes
you want to include in the report.

5. Select the type of information you want to include for each element in the Include
group box.

6. Enter or browse for the location to save the HTML file of the report in the Save In:
section

7. Click OK to build the report.

Select a Scope

A scope is a domain that contains elements that you want to include in a report. You can
include elements such as Namespaces, Ispecs, and Methods as a scope. For example:

• If you select an Insertable as a scope, only the Insertable is included in the report

• If you select a Folder as a scope, the Folder and all the elements and Classes of the
Folder are included in the report

The scope selection is helpful when you want to generate a report on specific elements in
the model.
3826 5823-008 A–19

References
To select a scope, perform the following:

1. Select Selection in the Build Comment Pages… dialog box to enable the
Add….

2. Click Add.....

The Select Scope dialog box appears.

3. In the Select Scope dialog box, navigate to the element that you want to include in
the report and select it.

4. Click OK.

The selected element appears in the Build Comment Pages… dialog box as a scope.

Select Security Option

If you select the Security check box, Security Matrix is generated and is available on the
home page of the generated system. Two tables are created that displays the security
settings for each user or group and for each element.

Following is the description of the tables:

1. Lists all the elements specified in the domain and their security groups including
hyperlinks to the actual element.

2. Lists all the Groups and Users specified in the domain and the elements of the
security groups including hyperlinks to the actual element.

Notes:

• An element appears in the list if the defined security setting of the element is
different than its Owner.

• For Groups, the group name appears as a hyperlink. This link provides a new
page that lists the users within the group.

• Each element is hyperlinked to its home page that displays the Security Matrix.

The home page of an element displays the Security Matrix that includes the local defined
and derived security setting. The derived security setting is displayed as a hyperlink to the
element from where the security is derived. The local defined settings do not a have a
hyperlink.

Using Class Diagram Editor

The Class Diagram is a graphical representation for both classes and their relationships.
With the specialized editor, modifications can be made to both the appearance and class
structures. A toolbox also known as “UML Designer Toolbox” provides the ability to add
new diagram elements. Any changes to the appearance of the diagram are lost without a
save. All structural changes are saved immediately.
A–20 3826 5823-008

References
The Class diagram Editor is a graphical editor that helps you to document and maintain a
selection of classes. They are added with a name to any class (including the model) and
can be organized using Folders and other Class Diagrams.

The changes made to the Class Diagram are immediately reflected in the class view, and
the changes made in the Class View immediately affect the appearance of the Class
Diagram Editor.

The Class Diagram Editor is used to modify and manipulate class diagrams. The
modifications that you can make in Class Diagram Editor are:

• Adding and removing classes as diagram members.

• Specifying properties of diagram members, such as name and description.

• Adding and removing attributes and methods from diagram members.

• Adding and removing relationships between diagram members.

• Specifying properties of relationships between diagram members.

• Specifying the appearance of diagram members in terms of font type, line style, and
fill color.

• Specifying the display of diagram members in terms of the inclusion of attributes,
methods, kind, visibility, and initial value.

• Specifying the spatial layout of diagram members.

Refer to Manipulating Entities and Entity Properties for more information.

The modifications that you make in Class Diagram Editor are persistent and are reflected
in the other model views, such as the Properties window or Class View as soon as each
discrete operation is performed.

Note: The modifications that affect the model is reflected immediately whereas to
reflect the appearance changes such as font type or font color requires an explicit
Save.

Manipulating Entities

Adding Entities

You can add Classes and relationships in the Class Diagram Editor using one of the
following methods:

• To add an existing class, drag the class (or classes) from other model views (such as
the Class View) into the Class Diagram Editor.

Or

• To add a new class or relationship, drag the required entity from the UML Designer
Toolbox into the Class Diagram Editor. You can also double-click the required entity on
the UML Designer toolbox to place the new entity in the Class Diagram Editor.
3826 5823-008 A–21

References
Removing Entities

You can remove the classes and relationships by selecting the required entity (or entities)
and pressing DELETE, or by right-clicking them and selecting Remove. On clicking
Remove, you are prompted to confirm the deletion of the required entity (or entities).
They are removed from the class diagram only but retained in the model.

Selecting Multiple Entities

There are two ways to select multiple entities in Class Diagram Editor:

• To select multiple entities that are adjacent, drag a boundary around the entities that
you want to select.

• To select multiple entities that are not adjacent, select a single entity, press SHIFT or
CTRL key, then click the other entities that you want to select.

Moving Entities

To move the entities in the Class Diagram Editor, drag them to position them as required.

Relationships between classes are automatically redrawn as their constituent classes are
moved. To make any changes in an existing relationship, select the relationship in the
Class Diagram Editor, and then drag the handles which are displayed as green boxes at
each end of the relationship. When dragged, these handles snaps to the class closest to
the current cursor position.

 Refer to Class Diagram Editor Settings for more information on how to use the grid to
help position entities.

Modifying Appearance

You can modify the appearance of class diagram members by selecting the required
entities, right-clicking, and expanding Format, and then selecting one of the following
options:

• Text

This option displays the Display Options dialog box with the Text tab in the
foreground.

You can adjust the text format, such as font, size, and color and style, such as bold,
italic, strikethrough, and underline as required

• Line

This option displays the Display Options dialog box with the Line tab in the
foreground.

You can adjust the line style such as pattern, weight, and color as required.
A–22 3826 5823-008

References
• Fill

This option displays the Display Options dialog box with the Fill tab in the foreground.

You can adjust the fill style like color as required.

Refer to Class Diagram Editor Settings for more information on how to set default
colors.

Modifying Display

You can modify the display of class diagram members by selecting the required entity in
the Class Diagram Editor, right-clicking and selecting Shape Display Options. This displays
the UML Shape Display Options dialog box, which specifies the display of the selected
class diagram member in the following categories:

• General

In this category, you can specify the display of name, stereotype, method
parameters, and attribute visibilities as required.

• Attributes

In this category, you can specify the display of the attribute types, initial values, and
multiplicities as required.

• Suppress

In this category, you can specify the display of the attributes and methods as
required.

To apply these display settings to subsequently added entities, select the Apply to
subsequently dropped element of the same type check box in the UML Shape
Display Options dialog box.

Entity Properties

You can access the properties of class diagram members by double-clicking the required
member. Alternatively, you can access the properties by selecting the required class
diagram member, right-clicking it, and selecting Properties. This displays the
Specification dialog box of the selected class member.

The Specification dialog box includes four tabs, General, Members, Dependencies,
Documentation.

General

The General tab of the Property dialog box resembles the Properties tab document
window. It allows access to the following properties of the selected entity:

• Name

• Description

• Author

• Class (stereotype, multiplicity, visibility, abstraction, and persistence)
3826 5823-008 A–23

References
• Inheritance (superclass and subclasses)

• Derived Types

Note: Any change made in the General Tab reflects in the other property windows.

Members

The Members tab of the Property dialog box resembles the Members tab document
window. It allows access to the members of the selected entity.

Dependencies

The Dependencies tab of the Property dialog box resembles the Dependencies tab
document window. It allows access to the relationships of the selected entity to other
entities.

Documentation

The Documentation tab of the Property dialog box resembles the Documentation tab
document window. It allows access to notes and additional information about the
selected entity.

Context Menu Options

The context menu appears when you right-click the required entity. The context menu
shows the details of classes and their constituent members along with the relationships
they share with other classes. You can also synchronize a class in the Class Diagram
Editor with the class view using the context menu. The following context menu options
are available for a class in Class Diagram Editor.

The Class diagram automatically shows relationships between classes. A quick way to
include classes that have a generalization relationship is to select the class and choose
the appropriate option from the context menu.

• Show base classes

1. In the Class Diagram Editor, select the class for which you want to view the base
class.

2. On the Class Diagram context menu, select Show Base Classes.

The base class of the selected class appears in the diagram. For any inheritance,
lines appear between the subclass and its superclass. This line is a solid line, with
a hollow arrowhead at the parent entity.

• Show derived classes

1. In the class diagram, select the class for which you want to view the derived
classes.

2. On the Class Diagram context menu, select Show Derived Classes

The derived classes of the selected class appear in the diagram. For any
inheritance, lines appear between the superclass and its subclasses. This line is a
solid line, with a hollow arrowhead at the parent entity.
A–24 3826 5823-008

References
• Synchronize Class View

In Class Diagram Editor, you can synchronize the currently selected diagram member
with the class view.

To synchronize a diagram member, perform the following:

1. In the Class Diagram Editor, select the diagram member to be synchronized.

2. Select Synchronize Class View.

The element is synchronized with the class view and is selected in the Class View.

Class Diagram Editor Settings

You can customize the Class Diagram Editor with a grid setting that provides horizontal
and vertical guidelines to help align the entities in the class diagram.

To select default grid settings, perform the following:

1. Select Options from the Tools Menu.

2. Navigate to the UML Designer folder in the Options dialog box.

3. Expand Display to access the following options:

• Snap To Grid – Specifies whether entities in the class diagram are snapped to
grid intersection points when resized or moved. By default, this is selected.

• Show Grid – Specifies whether the grid is displayed. By default, this is selected.

• Horizontal spacing – Sets the distance between horizontal grid lines. By
default, the value is 10 pixels.

• Vertical spacing – Sets the distance between vertical grid lines. By default, the
value is 10 pixels.

Class Diagram Editor Views

You can manipulate the view in the Class Diagram Editor to display the class diagram at
different levels of magnification. If the class diagram is too large to fit within the current
size of the window, you can manipulate the view to display a specific area of the class
diagram.

To select magnification, expand Zoom from the View menu to set either of the
following options:

• Zoom 15%, Zoom 25%, Zoom 50%, Zoom 75%, Zoom 100% – Sets the
magnification level according to the selected value.

• Zoom In, Zoom Out – Sets the magnification level incrementally.

• Fit Window – Sets the class diagram to an appropriate magnification in order to fit
within the current size of the window.
3826 5823-008 A–25

References
To select display area, perform the following:

1. Click and hold the Overview icon that appears as a 'Hand' in the bottom right corner
of the scroll bars. This displays an overview of the entire class diagram.

Note: The Overview icon is only enabled when the scroll bars are enabled – that
is, when the class diagram extends beyond the boundaries of the current view.

2. Drag to select the area of the class diagram to display.

UML Designer Toolbox

The UML Designer toolbox lists the available entities that can be placed in a class diagram
using the Class Diagram Editor. The following entities are available in this toolbox.

Class

Adding a class from the UML toolbox has the same effect as adding a class from any of
the other System Modeler views. Refer to Adding System Modeler Items for more
information.

Generalization

In a System Modeler context, a generalization relationship specifies the superclass of a
target class. To create a generalization relationship in class diagram, perform the
following:

1. Double-click Generalization on the UML toolbox.

2. Click the superclass on the Class Diagram tab.

3. Click the target class.

Alternatively, you can also drag Generalization from the UML toolbox to the superclass on
the Class Diagram tab and click the target class.

Lookup Dependency

A lookup dependency relationship specifies a lookup using the predefined attributes as
the key values for the target class.

To create a lookup dependency in a class diagram, perform the following:

1. Double-click Lookup Dependency on the UML toolbox

2. Click the dependent ispec attribute on the Class Diagram tab

3. Click the target class.

Alternatively, you can also drag Lookup Dependency from the UML Designer toolbox to
the dependent ispec attribute on the Class Diagram tab and click the target class.
A–26 3826 5823-008

References
Diagram

Adding a diagram from the UML toolbox has the same effect as adding a diagram from
any of the other System Modeler views. Refer to Adding System Modeler Items for more
information.

Comment

A comment allows descriptive text to be embedded in a class diagram. They do not have
any semantic meaning.

To create a comment, double-click Comment on the UML Designer toolbox to place a
comment at a default position on the Class Diagram tab. Alternatively, you can also drag
Comment from the UML toolbox to the desired position on the Class Diagram tab.

After the comment is added in the Class Diagram tab, select the comment to display a
yellow diamond that can be dragged to associate the comment with other class diagram
entities. The comment entity must have an association to a class entity otherwise the
comment entity isnot saved.

Composition

A composition relationship combines the target class as an attribute of the source class.

To create a composition relationship in class diagram, perform the following:

1. Double-click Composition on the UML toolbox.

2. Click the attribute superclass on the Class Diagram tab.

3. Click the target class.

Alternatively, you can also drag Composition from the UML toolbox to the attribute
superclass on the Class Diagram tab and click the target class.

Changing Model Database Server

You can change the AB Suite model database or the AB Suite Client Framework model
database to a different server. To do this, you must change the previous server name
contained in the .smsfm file of the AB Suite application or the AB Suite Client Framework
application after importing the model to the new server.

To change the server name, perform the following:

1. Open the <AB Suite Application>.smsfm file or the <AB Suite Client Framework
Application>.smsfm file using Notepad.

Note: The <AB Suite Application>.smsfm or the <AB Suite Client Framework
Application>.smsfm is stored in the location, <Default location>\<AB Suite
application>\<AB Suite application>.

2. Specify the new server name in place of the previous server.

For example, Change ServerName=”PreviousServer” to ServerName=”NewServer”.
3826 5823-008 A–27

References
3. Save and close the <AB Suite Application>.smsfm file or the <AB Suite Client
Framework Application>.smsfm file.

Using Enterprise Output Manager Reports

Enterprise Output Manager reports are specially formatted reports designed to be used
with the Enterprise Output Manager print management application.

The Enterprise Output Manager Application

The Enterprise Output Manager application (EOM) is a comprehensive print management
and file distribution solution for mixed platform networks.

The primary function of the Enterprise Output Manager application is to automatically
route print files from any supported platform to any other supported platform. However,
the main advantage when paired with NextGen Developer is to increase flexibility in
designing and printing reports.

Enterprise Output Manager software is needed to both design and print Enterprise
Output Manager reports. It is the responsibility of the Enterprise Output Manager
administrator to set up Enterprise Output Manager for use with Developer. This includes
setting up appropriate print attributes with either the supplied NextGen Data-Dependent
Attribute (DDA) or user written DDAs. Refer to the Enterprise Output Manager
Configuration and Operations Guide for more information on instructions on setting up
Enterprise Output Manager for printing.

Before Creating an Enterprise Output Manager Report

There are several steps required prior to creating a Enterprise Output Manager Report in
Developer:

1. Create a Windows Metafile (.WMF) using any off the shelf application you prefer. This
file should contain the design and layout of your report and is used as the template.

2. Using the Enterprise Output Manager File Format Utility, add the relevant attributes
and fields to the .WMF file and save as a form file (.DFF).

3. Import the form file into Developer using the Enterprise Output Manager wizard. This
process creates the necessary logic for printing the basic Enterprise Output Manager
report.

The basic structure of the report is automatically generated by the Enterprise Output
Manager wizard, providing a skeleton for further development. While the generated
report should run, it is unlikely to produce the required result.

There is no restriction on what logic you can add to your report. You can access as many
structures as you like, using any logic commands. However, as there is no page layout,
logic commands that rely on a page format are meaningless in Enterprise Output
Manager. For example, Glb.Linecount and Glb.Pagecount are two of the commands that
have no meaning in an Enterprise Output Manager report.
A–28 3826 5823-008

References
Creating a Form File

To define the attributes and fields in the Enterprise Output Manager Form File Utility
(DFFU), perform the following:

1. Start the Form File Utility.

2. Load the Windows Metafile you previously created.

3. Select Enterprise Application Environment DFF File from the Options menu.

4. Click Add Field on the tool bar.

5. Draw a field on the form. The Property Inspector box is displayed.

6. Use the Property Inspector box to name the field, assign the relevant attribute, and
create multiple rows or columns, as needed.

Fields defined with a Attribute Reference name is used in the report.

When Attribute Reference and SAME.AS Reference values are defined for a field, an
attribute is created for the report in Developer. Refer to Wizard Output.

7. Repeat steps 5 and 6 until you have entered all the fields you require.

8. Save as a .DFF file.

Refer to the Enterprise Output Manager Configuration and Operations Guide for more
information on using the Form File Utility.

Note: The Form File Utility allows up to 60 characters for the Attribute Reference
and Same.As Reference values. System Modeler allows names of up to 64 characters
in length. This means that some valid System Modeler names may not be valid in the
Form File Utility. This limitation also affects the use of System Modeler qualified
names in the Form File Utility.

Add Enterprise Output Manager Reports

The Enterprise Output Manager wizard enables you to add Enterprise Output Manager
Reports to your application.

Before you use the wizard, ensure you have a form file (.DFF), created with the Enterprise
Output Manager File Format utility. Your form file should have the relevant attributes and
fields required in your report.

To start the Enterprise Output Manager wizard, perform the following:

1. Select the position in your project that you want to add the report.

Enterprise Output Manager reports can be added anywhere a standard report can be
added.

2. Right-click and select Add, then Add Enterprise Output Manager Report.

The first page of the Enterprise Output Manager wizard is displayed, Enterprise
Output Manager Form File .
3826 5823-008 A–29

References
3. Complete each page of the wizard as required and click Next to proceed to the next
wizard page.

The Enterprise Output Manager wizard performs the following processes:

• Add Enterprise Output Manager Reports

• Select Keys

• Select a Persistant Object

• Set Report Options

• Wizard Output

Select the Enterprise Output Manager Form File

Use this page to select the form file required for your report.

Enter, or browse for, the location of the required .DFF file and click OK.

Select Keys

Use this page to select the attributes to be the keys to the object that is used in the
report.

Fields List

Displays the attributes that are defined in the selected form file. Corresponding form file
field names are also displayed for each attribute.

Select the attributes to be defined as keys and click Add to move them to the Keys List.

Keys List

Displays the attributes you have selected as keys. To remove a key, select it and click
Remove.

It is important that this list displays the attributes in the same sequence as they are
defined in the persistent object your report is to reference. To change the sequence of the
keys, use the Up or Down buttons.

Select a Persistant Object

Use this page to select the persistent object on which to base your report. This can be a
class, profile, or event set.

Keys Selected

Displays the keys selected in the previous wizard page, Select Keys . This field is
displayed for reference only. To change the keys, click Back to access the previous page.
A–30 3826 5823-008

References
Matching Objects

Displays the classes, profiles, and event set that match the keys displayed in the Keys
Selected field.

Select the object you want to use as the basis for your report. If you select <NONE>, no
explicit database read loop is created in the main logic when the report is generated.

Objects are displayed in the list if the selected keys meet the following criteria:

• A class is displayed if the selected keys are a subset of the class’s keys and are in the
same sequence.

• A profile is displayed if the selected keys are a subset of the profile’s keys and are in
the same sequence. If any of the keys has a qualified name, the profile must be over
the qualified class.

• Event is displayed if all the selected keys are contained in the event set.

Set Report Options

Use this page to define options for your report.

Name

Enter a name for the report. The default name is the name of the form file.

Description

Enter a description for the report. The description defaults to Enterprise Output Manager
wizard generated report.

Report Frames

The names of the following default frames can be changed:

• Control

• Header

• Footer

• Details

If the field for any frame is cleared, that frame is not created.

Existing Report

If a report already exist with the name you have specified, you can select one of the
following actions to deal with the Main method:

• Do not add any logic.

No Enterprise Output Manager Wizard-created logic is added.
3826 5823-008 A–31

References
• Replace the existing logic.

Any existing logic is replaced by the new Enterprise Output Manager Wizard-created
logic.

• Add further logic.

Any existing logic is kept and new Enterprise Output Manager Wizard-created logic
added at the end of the Main method.

If the report you are adding does not exist, this field is not available.

When you have completed all the fields, click Finish to complete the wizard. Your
Enterprise Output Manager report is generated and displayed in the project. You can add
further logic as required.

Wizard Output

The Enterprise Output Manager wizard adds a report in the selected position in your
project. The Enterprise Output Manager report contains the following objects:

Note: You can have multiple row fields in the footer, but not in the header frame.
Multiple column fields used without multiple row fields, however, are not put in the
detail frame.

Main method

This method contains the logic to loop over and select all attributes in the selected
persistant object. Each attribute is printed using the Attributes read from the DFF.

If keys were selected in the wizard, a break is included in the loop logic to print the header
and footer whenever the key changes.

If no persistent object is select a simple loop is added, to be modified manually.

Attribute for the selected persistent object

An attribute is created for the selected persistent object. The object is inherit from the
selected persistent object. The name of this object is <SelectedObjectName_instance>.
If <NONE> was selected, this attribute is not created.

Control frame

This frame is used to supply report information to Enterprise Output Manager. It is printed
at the start of a report.

Details frame

This frame is the central table area of the form file.

The detail area is defined by the first field that has more than one row. The Enterprise
Output Manager wizard uses the first multiple row field on the page and adds all other
fields with the same number of rows to make up a table.
A–32 3826 5823-008

References
All the fields above the table are put in the header frame and all fields below the table are
put in the footer frame. However, if your report has more than one table, you need to
enhance the report structure manually.

Header Frame

This frame tells Enterprise Output Manager to start a new page, and what form file to
use. It contains all the fields above the table contained in the Details frame.

The header frame is created even if there are no form file fields in it.

Footer Frame

This frame contains those fields that come after the table contained in the details frame.

The footer frame is created even if there are no form file fields in it.

Labels on the Frames

For each field in the DFF, two labels are painted on a frame. The first is the name of the
DFF field. On the same line is a label for the attribute to be displayed. If the Attribute
Reference for the field matches an attribute in the model, the label references this
attribute. If not, an attribute is created in the frame and the label references this attribute.

If the Attribute Reference is a qualified name, this is used to find the attribute in the
model. If it is not qualified and an attribute of that name is in the Selected Persistent
Object, the label refers to that attribute.

Attributes in Frames

When Attribute Reference and Same.As Reference values are defined for a field in the
form file, an attribute is created in the frame to which they belong in Developer if the
Attribute Reference does not match an attribute in the model.

The attribute is created with the following properties:

• Name – based on the entry in the Attribute Reference field.

• Primitive – assigned ‘String’.

• Length – calculated on the size of the field and the specified font.

• Inherits – based on the entry in the SAME.AS Reference field.

All other properties for the attribute are set to their default settings.
3826 5823-008 A–33

References
The following rules apply to assigning attribute properties:

• If the name of the attribute is the same as an existing type, it is used to define the
attribute.

• If the name of the attribute is qualified (for example, CUST.NAM where NAM is the
attribute and CUST is the ispec it belongs to) and matches either an existing attribute
in an ispec or an existing type, then all details except length are taken from the
existing attribute. The length is calculated based on the size of the field and the
specified font.

• If a valid attribute is specified in the SAME.AS Reference field, then details are taken
from that attribute.

• If a qualified name does not exist, or the field name is not a valid Developer name, an
attribute is not created. A message is written to the logic method generated for the
frame. This isa comment in the logic and indicates the problem with creating the
attribute.

Maintain Enterprise Output Manager Reports

Once an Enterprise Output Manager report is added to the project you can maintain it in
the same way as any other report.

If the output of the Enterprise Output Manager wizard needs to be amended, you need to
start again and make any required changes in step one of the report development cycle,
though you can keep the base template and form file from the previous effort.

Automatic maintenance of an Enterprise Output Manager report is not possible as there
is no direct link between the report and the form file that defines how it is printed. The
only link between the report and the form file definitions are the field names themselves.
However, the wizard is able to add, remove, or update any of the attribute references in
the header, footer, and detail frames. That is, when the wizard encounters:

• A new field, it adds the field definition to the painted frame.

• The same field, it changes the field attributes appropriately.

The following report properties are set by the Enterprise Output Manager wizard and
cannot be changed:

Report Properties Value

Default Device Enterprise Output Manager generated reports

Line Length 255

Report Frame Presentation Properties Value

Display attributes: Pitch, are not set.

Bright True or False

Big True or False
A–34 3826 5823-008

References
When you are painting a report, do not exceed the line length of 255 characters.
Enterprise Output Manager only receives a maximum of 255 characters per line.

You can set the remaining options or change their defaults as required.

After a print job has been delivered to Enterprise Output Manager, it is possible to view
the print output in preview mode before it is printed.

Commands in the Data Dependent Attribute

The following commands are defined in the supplied NextGen Data Dependent Attribute
(DDA) and can be used to control print output by simply painting the commands, starting
in column one of the data file:

$BARCODE$
$BITMAPS$
$DEBUG$
$DEPHDR$
$FONT$
$NEWDFF$
$NEWPA$
$NEWPAGE$
$XQTFORM$

Notes:

• The printing of lines that do not conform to the syntax rules is suppressed

• The syntax items $BARCODE$, $BITMAP$, $DEBUG$, and $FONT$, are not
automatically generated by the Enterprise Output Manager wizard. The syntax
must be added after the wizard is run.

Under True or False

Underscore True or False

Reverse True or False

Upperscore True or False

Reset True or False

Pitch Pitch set to 132

Control Codes True or False

Numeric attributes:

Decimal Character

Separator

Blank When Zero

Floating Sign

All set to Default

Report Frame Presentation Properties Value
3826 5823-008 A–35

References
$BARCODE$

Use this command to print barcodes. Enterprise Output Manager supports and enforces
specific barcode dependent features, such as automatic checksum generation and size
limitations.

$BARCODE$ barcodestyle "field name" field value

The following variations of barcode style have been defined:

• CODE39

• PostNet

• 2of5

CUST_$BARCODE$

This item is called by LINC_$BARCODE$ after the standard barcode definitions have
been processed. User defined barcode definitions can be entered in the
CUST_$BARCODE$ item to make upgrades to future versions of the NextGen DDA
easier. Changes to the NextGen DDA require the DDA design key. Following is an
example of DDA code:

If field_type EQ "BarcodeStyle" Begin
>Print Barcode BarcodeStyle; file_value Field Vairiable=field_name
>Set Variable num_result=$NumericResult
End Block

$BITMAPS$

Use this command to position graphic files, such as logos and signatures. Enterprise
Output Manager scales the file to the size of the field.

$BITMAP$ "field name" graphicsfilename ["directory alias"]

By default, the directory alias is $CommandFile.

This command supports the following formats:

• BMP

• DFF

• EMF

• WMF

$DEBUG$

This command controls the level of error message display.

$DEBUG$ Level Max-Error
A–36 3826 5823-008

References
Level specifies the level of diagnostic detail:

0 – no debug messages.

1 – messages are inserted in the print debug file, when the print debug is turned on in the
physical printer configuration.

2 – same as 1, plus messages in event log. This is the default setting.

3 – same as 2, plus variable dump included in print debug file.

4 – same as 3, plus popup message for each error.

Max-Error specifies the maximum number of error messages per print job. By default, the
setting is 20.

$DEPHDR$

Lines beginning with this command are used to pass variables to Enterprise Output
Manager. One use for them is for file masking. They are ignored by the NextGen DDA,
but are used by file masks in Enterprise Output Manager to route print output.

$DEPHDR$ token [token]

Tokens can be separated by spaces or commas. To include spaces or commas as part of a
token you must enclose the token in double quotes. Enterprise Output Manager accepts
a maximum of ten tokens with a maximum total length of 170 characters. Multiple tokens
on the same line are accepted. You can have multiple $DEPHDR$ lines but they should be
contained in the first 4000 bytes of the print file. The Enterprise Output Manager wizard
generates $DEPHDR$ lines. The lines include information such as the application name,
report name, and the name if the user running the report.

$FONT$

This command changes the currently active font attributes. Font attributes are normally
associated with the field in the form file. To enable dynamic font changes the font
attributes for the relevant fields must be set to none. Enterprise Output Manager then
uses the current active font to display the field.

$FONT$ fontidentifier

The following variations of font identifier have been defined:

• COURIERNEW-R-10

• COURIERNEW-B-10

• COURIERNEW-I-10

• COURIERNEW-BI-10
3826 5823-008 A–37

References
CUST_$FONT$

This item is called by LINC_$FONT$ after the standard font definitions have been
processed. User defined font definitions can be entered in the CUST_$FONT$ item to
make future version upgrade of the NextGen DDA easier. Changes to the DDA require the
DDA design key. Following is an example of DDA code:

If field_type EQ "COURIERNEW_R_10" Begin
>Execute Windows Font Change Font=(Courier New, 10.0,,,,R=0,G=0,B=0)
?
>Exit
End Block

$NEWDFF$

For multiple paged printouts that also include different page layouts, it is possible to code
a runtime control for switching to another form file:

$NEWDFF$ "<DFF Filename>" "<Directory Alias>" [REPLACE]

When REPLACE is specified, Enterprise Output Manager replaces the current Top of
Form command with the new form file. If the form file contains a .WMF form, then this is
used on the following pages until either a new print attribute is loaded (unconditionally
replacing the Top Of Form command), or another $NEWDFF$ command with the
REPLACE field is processed.

When the REPLACE field is not present the Top Of Form command is not changed. Note
that when the $NEWDFF$ command is processed, the current Top Of Form command, if
it exists, has been executed already for the current page.

This command can be used multiple times on a page to change the field definitions. In
this case, users only need to include the REPLACE field at the start of a file. It is possible
to jump to as many forms in succession as desired.

$NEWPA$

This command changes the current print attribute when it is processed:

$NEWPA$ <print attribute name> [NOW]

When NOW is not included, the print attribute change is queued and executed at the next
page break.

When NOW is included, the print attribute changes immediately. The print continues at
the same logical page.

Notes:

• Not all attributes of a page can be changed immediately, for example, the page
orientation.

• If the number of logical pages of both the old attribute and new attribute are not
the same, then the result can be unpredictable.

If the new print attribute specifies a data command file, then the file is executed.
A–38 3826 5823-008

References
If a Top Of Page command is specified in the new print attribute, then it is set as the new
Top Of Page command. If the print attribute does not specify a Top Of Page command
then the current command file is cleared. Refer to the Enterprise Output Manager
Configuration and Operations Guide for more information on command files.

If the new print attribute specifies a DDA then the current DDA is replaced, and as a
result, so could the current form file template.

$NEWPAGE$

This control statement executes a form feed to a new output page.

A $NEWPAGE$ command is written to the output file when an Advance NewPage or
BeginPage Clear command is executed in the report logic.

$XQTFORM$

Use this control statement to execute a form command file when Enterprise Output
Manager drivers are used.

$XQTFORM$ <filename.ext> ["<directory alias>"] [BINARY]

The filename is required to be in 8.3 dos format. It can be a .WMF, .EMF, .DFF, or .PCL
macro.

The <directory alias> field is optional. If it is present it must have the value of a directory
alias as configured in Enterprise Output Manager. If either the directory alias or filename
do not exist then there is an error message when printing the data. The Enterprise Output
Manager wizard sets this to $CommandFile.

The BINARY option specifies that the file is a binary file. The BINARY option is only
meaningful for .PCL macros.

When this control statement is found, the command file is executed and the resulting
form is painted on the page. Typically, this command is used at the start of every page.
For example, reports generated by the Enterprise Output Manager wizard have this
command painted on the header frame.

Route Reports in Enterprise Output Manager

A report that has not been created using the Enterprise Output Manager wizard can also
be routed to, and printed by, Enterprise Output Manager. This involves writing logic and
painting the frames to output the necessary Enterprise Output Manager headers. It is not
necessary to change the default device to DP in order to route output to Enterprise
Output Manager, as the header information is sufficient.

Any report destined for output to Enterprise Output Manager can pass Enterprise Output
Manager control information through the first line of data in the print file, starting with the
$DEPHDR$ control image. This header information is automatically generated by the
Enterprise Output Manager wizard, but it can be added manually. This is achieved by
painting a frame with the necessary header information.
3826 5823-008 A–39

References
Enterprise Output Manager uses file masks to identify incoming print jobs. This process
assigns print attributes to the print jobs and assigns which printers they go to. If you want
to use the file mask information as defined by the Enterprise Output Manager wizard,
then the painted header information should match the following:

$DEPHDR$ <DEPHDR-T1>
$DEPHDR$ <DEPHDR-T2>
$DEPHDR$ <DEPHDR-T3>
$DEPHDR$ "<DEPHDR-T4>"
$DEPHDR$ <DEPHDR-T5>
$DEPHDR$ <DEPHDR-T6>
$DEPHDR$ <DEPHDR-T7>
$DEPHDR$ <DEPHDR-T8>
$DEPHDR$ <DEPHDR-T9>
$DEPHDR$ "<DEPHDR-T10>"

Where quotation marks are placed around variables that you expect to contain spaces,
and the attributes are defined as the following:

DEPHDR_T1: Primitive “String”, Length 10 : application name
DEPHDR_T2: Primitive “String”, Length 10 : report name
DEPHDR_T3: Primitive “String”, Length 10 : report language
DEPHDR_T4: Primitive “String”, Length 13 : generation date and time
DEPHDR_T5: Primitive “String”, Length 10 : mix number
DEPHDR_T6: Primitive “String”, Length 3 : number of copies
DEPHDR_T7: Primitive “String”, Length 2 : save days
DEPHDR_T8: Primitive “String”, Length 17 : initiated station
DEPHDR_T9: Primitive “String”, Length 17 : user
DEPHDR_T10: Primitive “String”, Length 50 : print banner

When the user defines a file mask in Enterprise Output Manager the information
contained in the $DEPHDR$ headers are read into the file mask as the fields User Tag 1
through 10. The order of the $DEPHDR$ variables must match the order of User Tags as
defined in the file mask. When the mask matches, the print output is assigned to a print
attribute and a printer.

You are able to change the file mask if required, but it is your responsibility to ensure the
information in the Enterprise Output Manager file mask matches the attributes supplied in
$DEPHDR$. Refer to the Enterprise Output Manager Configuration and Operations
Guide for more information.

Dynamic Display in Enterprise Output Manager Reports

It is possible to manipulate the Data Dependent Attribute (DDA) of an Enterprise Output
Manager report to change the report display attributes at the time of printing.

In some cases, reports need to display text in variable fonts, colors, or other attributes
depending on the data that is sent to Enterprise Output Manager. For example, a table of
values may print positive numbers in black and negative numbers in red.

If you intend to include dynamic attributes, do not provide a default font when defining
the field in Enterprise Output Manager. Invoke DDA logic to set the font depending on the
contents of the field at runtime.
A–40 3826 5823-008

References
When Enterprise Output Manager processes incoming data, the DDA command is
invoked and places the data into the appropriate field variable. Any operations that the
DDA is instructed to do are performed at this point. Enterprise Output Manager then
prints the data in the correct place on the page, according to the definition in the form file.

To be compatible with Developer, Enterprise Output Manager provides a generic NextGen
DDA, which can be used to process any form file that you create. Each report created
does not need to have its own copy of the DDA, the one default DDA can be shared.
However, it can be copied and tailored by the user. For example, the DDA can be
enhanced to process Output Codes, or to dynamically change fonts or colors depending
on data in the output file.

The DDA key is required to design them, to tailor, or copy the default DDA. If required,
each report can be associated with a specific DDA, but configuration is the responsibility
of the user. This requires configuring file masks that apply a print attribute, with its
associated DDA, to a given print job. Refer to the Enterprise Output Manager
Configuration and Operations Guide for more information.

Printing Enterprise Output Manager Reports

You need to set up an Enterprise Output Manager Queue and an LPR/LPD printer.

On the Windows operating system machine where the application runs, perform the
following:

1. Install TCP/IP Printing, if it is not already installed.

2. Create an LPR/LPD printer. Refer to Creating an LPR/LPD Printer.

3. Set the printer to allow 255 column lines. Refer to Setting the Printer Options.

In Enterprise Output Manager define a print queue that receives the report and prepares
it for printing, perform the following:

1. Define a Communications Path. Refer to Defining a Communications Path.

2. Define a Transfer Attribute. Refer to Defining a Transfer Attribute.

3. Define a Physical Printer for receiving printouts. Refer to Defining a Physical Printer
for Receiving Printouts.

4. Define a Physical Printer for printing the final report. Refer to Defining a Physical
Printer to Print the Reports.

5. Import the NextGen DDA. Refer to Importing the Agile Business Suite DDA.

6. Define a Print Attribute. Refer to Defining a Print Attribute.

7. Define a File Mask. Refer to Defining a File Mask.

When you have completed these steps, you are able to direct reports to the Enterprise
Output Manager queue. In Enterprise Output Manager you can preview the final report
before you print it.
3826 5823-008 A–41

References
Notes: Due to an issue with auto pagination, it is recommended to:

• Configure the printer setup for Windows to set the Enterprise Output Manager
LPD device for continuous forms (US std fanfold) without the line break, through
the device settings for the printer. If you do not do this, Windows automatically
paginates according to the device characteristics, which is normally 66 lines per
page.

• Set the report page length by setting the Glb.Formdepth, in logic, to a high
number. For example, 9000.

Creating an LPR/LPD Printer

1. Go to Start > Settings.

2. Double-click Add Printer.

The Add Printer wizard is started.

3. Select My Computer and click Next.

4. Click Add Port.

A list of printer ports is displayed.

5. Select LPR Port from the list, then click New Port.

The Add LPR Compatible Port dialog is displayed.

6. Enter the name or address of the server providing lpd in the corresponding field.

7. Enter the name of the queue in the second field.

This is the name to be used later in the Enterprise Output Manager set up. For
example, you can enter Enterprise Output ManagerQueue.

8. Click OK, then Close, to return to the Add printer wizard. Click Next.

9. Select Generic as the manufacturer and Generic/Text Only as the printer,
and click Next.

10. If asked, select to keep existing driver and click Next.

11. Enter a name for the printer and click Next.

12. Select Not shared and click Next.

13. Do not print a test page. Click Finish.

14. If the printer driver was not previously installed and you were not prompted at step
10, you are prompted for the path for the Windows installation files. Enter this path
and click OK.

Setting the Printer Options

The Windows Generic/Text Only print driver defaults to 80 column lines. To setup the
printer to allow 255 column lines, perform the following:

1. Point to Start > Settings > Devices and Printers.

2. From the File Menu, select Server Properties. Select the Forms tab, then select
the Create a New Form check box.
A–42 3826 5823-008

References
3. Enter a description in the Form Description for field, such as Wide255.

4. In the Measurements field, adjust the following:

• Under Paper Size, make the width 25.5in and the height 11.68in.

• Leave all Printer Area Margins set to zero.

5. Click Save Form, then OK when complete.

6. In the Printers folder, right-click the Generic/Text Only printer, and select
Document Defaults. Adjust the following:

For Enterprise Output Manager reports:

• On the Page Setup tab, select Continuous - No Page Break from the list in the
Paper Source field.

• On the Advanced tab:

Under Paper Output, select Paper Size. In the Change ‘Paper Size’ Setting field at
the bottom, select Wide255 (or the name you gave to the form created in step 3).

Under Paper Output, select Paper Source. In the Change ‘Paper Source’ Setting
field at the bottom, select Continuous - No Page Break.

For non-Enterprise Output Manager reports:

• On the Page Setup tab, select Continuous - Page Break from the list in the Paper
Source field.

• On the Advanced tab:

Under Paper Output, select Paper Size. In the Change ‘Paper Size’ Setting field at
the bottom, select Wide255 (or the name you gave to the form created in step 3).

Under Paper Output, select Paper Source. In the Change ‘Paper Source’ Setting
field at the bottom, select Continuous - Page Break.

7. When complete, click OK.

The form created in step 3 is now be the default paper size for this printer.

Defining a Communications Path

1. Start Enterprise Output Manager.

2. Select Configuration, then Communications.

3. Click Add/Copy Path.

4. Enter a password if required and click OK.

5. Enter a name for the Communications Path and click OK.

6. Select LPR/LPD as the peer type, enter * as the IP Address, and ensure Max total
activities is at least 1.

7. Select the Server page, ensure Activities is at least 1.

8. Click OK and then Done.
3826 5823-008 A–43

References
Defining a Transfer Attribute

1. Start Enterprise Output Manager if not already running.

2. Select Configuration, Transfer Attribute.

3. Click Add/Copy Attribute.

4. Enter a name for the Transfer Attribute. Click OK.

5. Select the Communications Path in the Primary Path field as you defined in Defining a
Communications Path , and select Transfer Enable.

6. Click OK and then Done.

Defining a Physical Printer for Receiving Printouts

1. Start Enterprise Output Manager if not already running.

2. Click LPR/LPD in the Add Printer field.

3. Enter a name for the printer. Click OK.

4. Select the Transfer Attribute that you defined previously in the Access Printer via
Transfer Attribute field. Click OK.

5. Select the new printer in the list and check Printer Available in the properties area.
Click Modify.

6. Click Done.

Defining a Physical Printer to Print the Reports

1. Start Enterprise Output Manager if not already running.

2. Click Win Pr in the Add Printer field.

3. Enter a name for the printer and click OK.

4. Select the printer to be used in the Windows Printer Name field. This is most likely to
be the printer you normally use when printing from the Windows environment. Click
OK.

5. Select the new printer in the list and select Printer Available in the properties area.
Click Modify.

6. Click Done.

Importing the Agile Business Suite DDA

1. Start Enterprise Output Manager if not already running.

2. Select Tools > Configuration Control > Import Configuration.

3. Enter, or browse for, the path to the directory where the file DDATTR.CFG is located.

4. Select Data Dependent Attribute in the Entity Type list.

5. Select LINC from the Entity Names list and click OK.

6. If requested, click Yes to confirm the change.

7. Click Done.
A–44 3826 5823-008

References
Defining a Print Attribute

1. Start Enterprise Output Manager if not already running.

2. Select Configuration, then Print Attribute.

3. Click Add/Copy Attribute.

4. Enter a name for the Print Attribute and click OK.

5. On the Advanced page, in the Data Dependent Attribute field, select LINC.

6. On the Hardware page, in the Printer Driver field, select Windows Driver.

7. Click OK and then Done.

Defining a File Mask

1. Start Enterprise Output Manager if not already running.

2. Select Configuration, then File Mask.

3. Click Add Mask.

4. Enter a name for the mask and click OK.

5. Double-click the new mask in the list of masks. The File Mask properties are
displayed.

6. Select the Masked Fields page.

7. In the Mask Field Name Style list, select LPR/LPD.

8. If there is anything in the Masked Field Summary, select each line and delete them.

9. In the Field list, select Host Queue.

10. In the Operator list, select EQ.

11. Enter the queue name that you defined in Creating an LPR/LPD Printer.

12. Click Add.

13. From the list on the Print Jobs page, select the Print Attribute that you defined in
Defining a Print Attribute.

14. In the Printer list, select the printer to be used for report printout.

15. Click Add.

16. Click OK and then Done.
3826 5823-008 A–45

References
Logic Editor
The Logic Editor in the Agile Business Suites Developer is used to create, edit, and save
logic for methods within System Modeler. It can also be used to validate methods. These
methods can include:

• Overridden Built-in scripts.

• Frame methods for reports.

• Segment methods.

• Insertable class methods.

• User-defined methods.

• Built-in SQL script methods – SQL commands cannot be validated, and consequently
any SQL errors may not be detected until deployment.

To open Logic Editor for a method, perform either of the following:

• Double-click the method in the Class View or Members tab.

• Right-click the method in the Class View or Members tab and click Open.

• Right-click the method in the Class View or Members tab and click Open With
and then select Logic.

Entering Logic

Use Logic Editor to enter logic for methods. Refer to Logic Commands for more
information on the usage and syntax of logic.

Note: SQL script methods are written in SQL. You should consult a SQL reference
for details on the scripting of these commands.

If you add attributes by dragging them from Class View to logic editor, full path of attribute
is shown, for example Test.Cust.CustId. This is the designed behavior of Visual Studio.
However, while validation the logic returns an error. So, you should always enter
attributes in logic editor manually instead of dragging-and-dropping them from Class View.

Logic is not saved and/or validated unless the Save and Validate commands are used
accordingly. Refer to Validating Logic for more information.

Getting help on logic commands

To get help on a specific logic command, move the cursor over the logic command text in
the Logic Editor document window and press F1.
A–46 3826 5823-008

References
Logic Editor Status Information

Logic Editor status information is displayed on the Microsoft Visual Studio status bar. This
information includes:

• The current cursor position (line number and column) in the Logic Editor document
window.

The current character position in the Logic Editor document window is not indicated.

• Help and warning messages.

• An overstrike (OVR) or insertion (INS) mode indicator for the Logic Editor document
window.

In overstrike mode, the cursor in the Logic Editor document window does not change
its display to a block, unlike the Microsoft Visual Studio Code and Text Editor.

Using Member Lists

Specify the display of member lists using the Tools, Options, Text Editor, LDL+, General,
Auto list members check box.

Using member lists

When a class name is appended with a period (.), a list of context-sensitive member items
is displayed in the Logic Editor document window.

You can use the List Members command from the Intellisense submenu of the Edit
menu to force display of a member list.

Navigate through a member list using the scroll bar, or the UP/DOWN ARROW keys.
Shortcut to a particular item by typing the first few letters of its name.

Press ENTER, TAB, or double-click a member list item to insert its name into the logic.

Press ESC or click outside the list box to close the member list.

The following items are displayed in the member list, depending upon the current cursor
position:

Cursor position Member list items

Start of a line Logic commands, attributes, and methods in scope

After a period (.) For class names, attributes in the identified class

At any other position Context determined unqualified variables or command options
3826 5823-008 A–47

References
Editing Logic

The following are some of the editing commands available from the Edit menu:

Refer to the Microsoft Visual Studio Online Help for more information on these
standard Microsoft Visual Studio editing commands.

Performing Quick Actions

Quick Actions enables you to resolve errors in logic by selecting an appropriate solution
from a list of suggested fixes. A Quick Action is denoted by the icon . When you see
a red squiggle, you can hover over it to display the quick action icon. Quick Actions
provide suggested fixes to:

• Correct a misspelled element's name. E.g. Change 'Actions' to 'Action_Line'

• Create a variable of an appropriate type. E.g. Create Variable 'Prepare.Actions'

• Create a variable of user defined type. E.g. Create Variable 'Prepare.Actions' from a
type

Note: Ensure to select Quick Actions option in the Tools > Options menu. Refer to
Setting LDL+ Editor Options for more information.

Command Usage Notes

Navigate To Navigates to the selected element in Class View.

Format Selection

(Advanced submenu)

Formats the selection according to the Command Style
defined in the Options menu.

You can define the format in Tools > Options > Text Editor >
LDL+ > Formatting > Command Style.

This option can be applied to all entered logic automatically in the
LDL+ > Formatting.

• Automatically format on enter

• Automatically format on paste

Refer to Setting LDL+ Editor Options for more information on
defining command format.

Format Document

(Advanced Submenu)

Formats the document according to the Command Style
defined in the Options menu.

You can define the format in Tools > Options > Text Editor >
LDL+ > Formatting > Command Style.

Refer to Setting LDL+ Editor Options for more information on
defining command format.

Parameter Info

(Intellisense submenu)

Displays the parameter information for the selected method.

You can enable/disable this option in Tools > Options > Text
Editor > LDL+ > Parameter information.

Comment/Uncomment
Selection

Inserts/removes a comment character from the selection.
A–48 3826 5823-008

References
To correct logic using Quick Actions, perform the following:

1. Right click the error indicated by red squiggle in editor and select Quick Actions….

2. Click Show potential fixes link.

A list of suggested fixes appears.

3. Select the appropriate fix from the list.

Notes:

• You can use the shortcut key Ctrl + .(period) anywhere on a line of logic with
errors to directly view the list of potential fixes.

• Quick action icon appears only when there is a valid selection.

• Potential fixes link appears only when there is a valid fix.

Using Reverse Auto-Completion

Reverse Auto-Completion feature of Agile Business Suite displays a list of qualified paths
to all accessible instances of a named attribute. You can scroll through the displayed list
and select a fully qualified name to replace the attribute name with. This is useful when
you know the name of an attribute but do not know the qualification path to that attribute.

To invoke the auto-completion dialog, perform the following:

1. Type the attribute name in the context in which it is used.

2. Press Ctrl+. (period sign) at the cursor that appears immediately after the attribute
name.
3826 5823-008 A–49

References
3. Select the appropriate choice from the list of possible qualification paths and press
Enter to replace the partial path with the complete qualified path.

Note: If the trailing part of the path is known, this can also be included with the
attribute name. To do this, position the cursor immediately after the owner name and
press Ctrl+. key combination.
For example, you can use this feature to enter the correct qualification path for an
attribute PRODUCT in Logic Editor. Type in the attribute name PRODUCT and press
the Ctrl+. key combination, a list of qualification paths is displayed.

Accessible attributes with the same name may exist in different namespaces such as
various Ispecs or Groups. Hence, the paths in the list will be qualified by 'Owner', 'Super',
'This' or 'Component' to provide an unambiguous and complete path for the attribute. The
auto-completion list in this example includes the following:

• Component.PRODUCT

• Event.PRODUCT

• Paudt.PRODUCT

• This.PRODUCT

Working with Peek Definition

Peek Definition enables you to view the definition of an Insertable, Method or Profile and
edit the definition inline, without switching away from the original logic. Using this
command, you can quickly view one method without loosing your place in the original
method.

Opening a Peek Definition Window

To open a peek definition window, perform the following:

1. Right-click the element for which you want to view definition.

2. Select Peek Definition.
A–50 3826 5823-008

References
Peek definition window appears below the selected element. This window does not hide
any of the other code in the logic editor. The code following the selected element appears
below the peek definition window.

Notes:

• Press Esc key or click Close icon in the definition window to close the definition
window.

• Click Promote to Document icon to promote the peek definition to a standard
document window.
3826 5823-008 A–51

References
Editing the Definition

You can edit and save the logic in the peek definition window. When you start editing the
definition, the logic that you are editing automatically opens in a separate tab in the code
editor. All the edit, undo, and save changes made in the Peek Definition window reflect in
the code in this tab.
A–52 3826 5823-008

References
Opening a Peek Definition window from within a Peek Definition window

You can open another peek definition window from the peek definition window. When
you open a definition window within the peek definition window, a set of breadcrumb
dots icon appear. You can navigate between peek definition windows using these
breadcrumb dots. The tooltip on each breadcrumb dot displays the file name and path of
the definition file.

Note: You can navigate between different peek definition windows using the set of
breadcrumbs appearing above the definition window.
3826 5823-008 A–53

References
Working with Code Definition Window

Code definition window displays the definition of the currently selected Insertable,
Method or Profile. You can only view definition for element in this window and cannot edit
it.

To view definition for element, perform the following:

1. Select the element in editor.

2. On the View menu, select Code Definition Window.

Code Definition Window appears below the logic editor window.

Validating Logic

Validate logic using the Validate command.

To validate logic in Logic Editor, perform the following:

1. Open the Logic Editor for the method you want to validate.

2. From the Build menu, select Validate.

To validate logic in Class View, perform the following:

1. In the Class View, select the methods you want to validate.

You can also select one or more classes if you want to validate all the methods they
own.
A–54 3826 5823-008

References
2. From the Build menu, select Validate.

Note: You can also use the shortcut key Ctrl+F7 to validate logic in the class view
and in the logic editor.

The validation process inspects both the syntax and semantics of the logic.

Syntax checking

Checks that each non-empty line of logic contains a valid logic command, and that each
logic command contains an appropriate number of parameters.

Semantic validation

Validates each logic command, in the context of checking that any attributes and/or
classes referred to by the logic command exist and have valid attributes. For example,
whether arguments of an Add logic command are number-primitives.

Any insertable classes are expanded before the validation process begins. Insertable
classes are not required to be semantically complete. Refer to Validating Insertable
Classes in Isolation for more information on validating insertable classes in isolation.

Validation errors are displayed in the Error list.

Validate

Logic is validated using the Validate command.

One of the following procedures can be used to validate logic:

• To validate a single method, initiate Logic Editor for the desired method, then from
the Build menu, select Validate.

• To validate an entire entity, select the desired entity in the Class view, Members list,
or Logic Status list; then from the Build menu, select Validate. Alternatively, right-click
the desired entity in the Class view, Members list, or Logic Status list; then select
Validate <element Name>.

Logic is first saved and validated. Errors, if any, are displayed in the Error list. The number
of errors found is displayed on the Microsoft Visual Studio status bar.

Customize the behavior of the Validate command using the Options command from the
Tools menu. Refer to Setting Validation Options for more information.

The Validate command can also be executed using a command line interface. The
following command line syntax is used for validating the elements in a model.

Validate.exe ((/m ModelName & /s ServerName) | /p ProjectName) /f FileName [/t][/r]
3826 5823-008 A–55

References
Where:

For help on these parameters, enter Validate /? at the command prompt.

If you wish to capture output to a file for logging purposes, use the following command as
an example:

Validate /m meta /s serverA /f c:\temp\input.txt >> c:\temp\validate.txt

One or more of the following output messages may be produced:

Parameter Description

[] Denotes an optional argument.

/m or /M

ModelName

Identifies the name of the model database to be used.

ModelName is a required parameter.

/s or /S

ServerName

Identifies the database instance with the model database.

ServerName is a required parameter.

/p or /P

ProjectFile

Identifies the name of the project file to be validated. This field must
include full path and the project file name and file extension.

ProjectFile is a required parameter.

/f or /F

FileName

Identifies the name and path of the file holding a list of fully qualified
names to be validated.

FileName is a required parameter.

/t or /T Prefixes all output lines with a date and time stamp. This is an optional
parameter.

/r or /R Reset validation status for all logics to force revalidation. This is an
optional parameter.

Message Type Message

Error Fatal Error: <exception message>

Error Model <ModelName> not found on Server <ServerName>

Error Model or Project name missing

Error Project file <ProjectName> not found, check name and path.

Error Cannot open file <FileName>, error = <ErrorCode>

Error No parameter

Error Invalid parameter

Error Model name missing

Error Server name missing

Error File name missing
A–56 3826 5823-008

References
With Informational messages, the processing continues by reading next record from the
file specified by the “/f” parameter.

Any Error messages prevent completion of the operation.

Note: You can cancel validation using the Cancel button, which is part of the Build/
Compile button group.

Logic Validation Errors

You can use Logic Editor to resolve logic validation errors. To get help on a specific error
item, click the error item in the Error list and press F1.

Validation errors are displayed in the Validation Output and standard Error window
provided by the Visual Studio IDE. The errors are displayed in the Error list, which includes
both direct errors and those indirectly resulting from Model changes. When the logic is
validated and errors are detected, the Error list is displayed. The Errors command from
the Other Windows submenu of the View menu can also be used to display or close
the Error list.

You can navigate to the corresponding line of logic from the Output window and Error list
window. You can view the Help on an error item by right-clicking an error item from the
Error Window and selecting Show Help.

Model Changes

Logic is sensitive to changes to the application model and consequently logic validation
errors may arise as a result of changes to the application model external to Logic Editor.

For example, the logic may include an automatic entry to an ispec class, and this logic
validated without error. However if the receiving ispec class is subsequently removed
from the application model, the logic then needs re-validating.

Informational >>> START validate of <FileNameEntry>

Informational Element: <ElementName>, Validate completed UNSUCCESSFULLY

Informational Element: <ElementName>, Validate completed SUCCESSFULLY

Informational Element: <ElementName> not found in Model

Informational Element: <ElementName>, is external and cannot be validated.

Informational Element: <ElementName>, Validate FAILED

Informational Element: <ElementName>, Found no elements to validate

Informational <TotalElementCount> Element(s) validated <TotalErrorCount> in error

Informational >>> END validate of <FileNameEntry>

Message Type Message
3826 5823-008 A–57

References
Microsoft Build Engine
Microsoft Build Engine (MSBuild) allows you to build an AB Suite application without
using the Visual Studio environment. It also provides you the flexibility to use the
powerful functionality of Team Foundation Server (TFS), which enables you to build an AB
Suite project on the TFS server while running a build definition on a TFS client.

An AB Suite application is directly built from a Command line by using the command line
arguments or by reading the settings from a customized MSBuildSettings.xml file.

Refer to the MSDN documentation for more information on MSBuild.

Using Command Line Arguments for Building

The MSBuild builds applications by using a series of command line arguments. To build an
AB Suite application from a command line, perform the following without using Visual
Studio environment:

1. Point to the bottom-left corner of the screen to enable the Start icon, click Start, and
then click Run.

2. Type cmd in the Run dialog box and press Enter to open a Command Prompt.

Note: You must run the command prompt as Administrator to build the System
Modeler with MS Build.

3. In the command prompt, change the working directory to:
C:\Windows\Microsoft.NET\Framework\vX.X.XXXXX

Note: vX.X.XXXXX is the latest.Net Framework version.

4. Type “MSBuild.exe /?”. This displays the complete usage of the utility.

Using Visual Studio environment:

1. Point to the bottom-left corner of the screen to enable the Start icon, click Start,
type and select Developer Command Prompt for VS2015 on the desktop.

Note: If the Developer Command Prompt is not present on the desktop, pin the
application to the desktop. Refer to the Windows 8 documentation for more
information.

2. Type “MSBuild.exe /?”. This displays the complete usage of the utility.

Building Applications Using Command Line

The syntax of MSBuild command line to build a project includes several switches to
specify the various features of the building process:

MSBuild.exe [ProjectFile] [Switches]
A–58 3826 5823-008

References
The syntax of MSBuild command line arguments for an AB Suite application is as follows:

Without using MSBuild Settings File

MSBuild.exe <ProjectPath> </p:c> </p:pf> [/p:d] [/p:s] [/p:el] [/p:ef] [/p:u] [/
p:bp] [/p:ac][/p:ap][/p:cc][/p:fc][/p:fp] [/p:fa] [/p:fob] [/p:od] [/p:bd] [/p:sdp]
[/p:edp] [/p:rca] [/target] [/flp:logfile] [/nologo / noconsolelogger]

Using MSBuild Settings File

MSBuild.exe <ProjectPath> </p: MSBuildSettingsFile> [/p:c] [/p:pf] [/p:d] [/p:s]
[p:el] [/p:ef] [/p:u] [/p:bp] [/p:ac][/p:ap][/p:cc][/p:fc][/p:fp] [/p:fa] [/p:fob] [/
p:od] [/p:bd] [/p:sdp] [/p:edp] [/p:rca] [/target] [/flp:logfile] [/nologo /
noconsolelogger]

Examples:

• Msbuild “C:\MSBuildSample.smproj” /Property: MSBuildSettingsFile=”c:\
MSBuildSettings.xml”

• Msbuild “C:\MSBuildSample.smproj” /target:clean /Property:
MSBuildSettingsFile=”c:\ MSBuildSettings.xml”

• Msbuild “C:\MSBuildSample.smproj” /
Property:Platform=Windows;Configuration=Release;UserCode=Cust;Password=Cus
t

• Msbuild “C:\MSBuildSample.smproj” /
Property:Platform=Windows;Configuration=Release;
UserCode=Cust;Password=Cust;ElementList= EAESAMPLE.Reports;
EAESAMPLE.ORDER_ENTRY.COMP_ORD

The following tables lists the command line arguments used to build an AB Suite
application, which are listed as Common, Windows, and MCP switches:

Common Switches

Switch Short Form Description

ProjectPath Specifies the complete path of an AB Suite project file that
needs to be built. This input is mandatory for MSBuild.exe.

Target /t Specifies the target to be built.

For example:

/target: rebuild

Property /p Specifies the properties to build or rebuild an application.

For example:

/p:c=release;pf= windows

LogFile /flp Specifies the name of the file where logging information is
stored. A log file is not created if a file name is not
specified.

For example:

/flp=MyLogFileFullName
3826 5823-008 A–59

References
Target Switches

Property Switches

NoConsoleLogg
er

/nologo Stops displaying logging message at the command
prompt. By default, logging messages are displayed.

For example:

/noconsolelogger /nologo

Switch Value Short Form Description

Clean Specifies removing the generated files for the selected
model. The cleaned elements are rebuilt next time an
application is built.

For example:

/target:Clean

Notes:

• For MS Build, the /target: Clean command must not
be used with /el command.

• For builder.exe, the /target: Clean command must not
be used with /re and /rf commands.

Rebuild b The elements associated with the build are rebuilt even if
they have not changed since the last build.

For example:

/target:Rebuild

Switch Short Form Description

Database d Specifies the name of a model containing the application
you wish to build.

For example:

/Property:d=MyDatbaseName

Note: This parameter is optional if the “sf” option is
used and if you specify the “<Database>” option in the
builder setting file.

Configuration c Specifies the name of a configuration that you wish to
build.

For example:

/Property:c=Release

Note: This parameter is optional if the “sf” option is
used and if you specify the “<Configuration>” option in
the builder setting file.

Switch Short Form Description
A–60 3826 5823-008

References
Platform pf Specifies the name of a platform on which the application
is built.

For example:

/Property:pf=MCP

Note: This parameter is optional if the “sf” option is
used and if you specify the “<Platform>” option in the
builder setting file.

MSBuildSetting
sFile

sf Specifies the path to the MSBuilder Settings File.

For example:

/Property:sf= MSBuildSettingsFileFullName

Note: MSBuilder Settings File is an XML file and
contains all the build details to build an AB Suite
application.

SQLServer s Specifies the SQL Server that contains the model stated
previously.

The server is the name of the SQL Server that contains the
model and “(Local)” is the default local SQL Server
instance.

For example:

/Property:s=MyDatabaseInstance

ElementsList el Specifies a deployable element, fully qualified name of a
single report, fully qualified name of a single ispec in the
model that you wish to build.

For example:

/Property:el=segment1;segment2;

ElementsFile ef Specifies a file name containing a list of elements you wish
to build.

For example:

/Property:ef=MyElementsFileFullName

UserCode u Specifies the user code to connect to the host machine.

For example:

/Property:u=MyUserCode

Password p Specifies the password used to connect to the host
machine.

For example:

/Propert:p=MyPassword

FolderOnlyBuild fob Builds the specified folder and does not build the sub
folders. If a deployable element argument is not specified,
this argument is ignored. This means, the whole model is
built using the “d” <model name> switch.

For example:

/Property:fob=True

Switch Short Form Description
3826 5823-008 A–61

References
Windows Switches for Property

MCP Switches for Property

OverwriteDatab
ase

od If set to true, overwrites the existing database.

For example:

/Property:od=True

BackupDatabas
e

bd If set to true, creates a backup of the runtime database.

For example:

/Property:bd=True

BuildPreview bp If set to true, the build displays a summary of the elements
that require regeneration.

For example:

/Property:bp=True

Switch Short Form Description

StartDeployPha
se

sdp Specifies the initiation of the deploy phase for a build.

For example:

/Property: sdp =generate

EndDeployPha
se

edp Specifies the termination of the deploy phase for a build.

For example:

/Property: edp =generate

EnableRCA rca If set to true, enables to analyze the online changes for
reports; that is, not ignoring the dependencies on report
build.

For example:

/Property: rca =True

Switch Short Form Description

AccessCode ac Specifies the Access Code for an MCP host.

For example:

/Propert:ac=MyAccessCode

AccessPasswo
rd

ap Specifies the Access Password for an MCP host.

For example:

/Property:ac=MyAccessPassword

ChargeCode cc Specifies the Charge Code for an MCP host.

For example:

/Propertycc=MyChargeCode

Switch Short Form Description
A–62 3826 5823-008

References
The following MSBuild switches are supported but do not have any effect on AB Suite
build and there is no change in the MSBuildSettings.xml file:

• /maxcpucount [:n]

• /toolsversion:<version>

• verbosity:<level>

• /consoleloggerparameters

• /fileLogger[n]

• /fileloggerparameters[n]:<parameters>

• /distributedFileLogger

• /logger:<logger>

• /validate

• /validate:<schema>

• /ignoreprojectextenstions : <extensions>

• /nodeReuse:<parameters>

• /preprocess[:file]

• /detailedsummary

• @<file>

• /noautoresponse

EnableRCA rca If set to true,

• Enables to analyze the online changes for reports; that is,
not ignoring the dependencies on report build.

For example:

/Property: rca =True

FTPUserCode fu Specifies the FTP User Code for an MCP host.

For example:

/Property:fc=MyFTPUserCode

FTPPassword fp Specifies the FTP Password for an MCP host.

For example:

/Property:fp=MyFTPPassword

FTPAccount fa Specifies the FTP Charge Code for an MCP host.

For example:

/Property:fa=MyFTPAccount

Switch Short Form Description
3826 5823-008 A–63

References
• /version

• /maxcpucount [:n]

Note: Refer to MSDN documentation for more information on the above mentioned
MSBuild options.

MSBuild Settings File

The MSBuildSettings.xml file consists of all the build details to build and clean the AB
Suite application. You can modify the value of any item with customized values and
MSBuild.exe reads the values to build or clean AB Suite application.

A sample MSBuildSettings.xml file is provided in the bin directory of AB Suite for you to
use. The following is the content of the sample MSBuildSettings.xml file:

<?xml version="1.0" ?>
<configuration xmlns="http://tempuri.org/config.xsd" version="1.0">

<Builder>
 <Database></Database>
 <SQLServer></SQLServer>
 <ImportProject>false</ImportProject>
 <BuildPreview>false</BuildPreview>

<FolderOnlyBuild>false</FolderOnlyBuild>
<Configuration>Release</Configuration>
<Platform>Windows</Platform>
<ElementList>

<Element></Element>
</ElementList>
<BackupDatabase>true</BackupDatabase>
<EnableRCA>false</EnableRCA>
<OverwriteDatabase>false</OverwriteDatabase>
<Windows>

<UserCode>Windows UserCode</UserCode>
<Password>Windows password</Password>
<Domain>Windows domain</Domain>
<StartDeployPhase>Generate</StartDeployPhase>
<EndDeployPhase>Generate</EndDeployPhase>

</Windows>
<MCP>

<UserCode>MCP UserCode</UserCode>
<Password>MCP Password</Password>
<AccessCode>MCP AccessCode</AccessCode>
<AccessPassword>MCP Access Password</AccessPassword>
<ChargeCode>MCP Charge Code</ChargeCode>
<FTPUserCode>FTP UserCode</FTPUserCode>
<FTPPassword>FTP Password</FTPPassword>
<FTPAccount>FTP Account</FTPAccount>
<DelayDate>YYYYMMDD</DelayDate>
<DelayTime>HHMM</DelayTime>
<NumberOfParallelGenerates>2</NumberOfParallelGenerates>
<NumberOfReorgTasks>1</NumberOfReorgTasks>
<NumberOfParallelCompiles>1</NumberOfParallelCompiles>

</MCP>
</Builder>

</configuration>
A–64 3826 5823-008

References
Meaning of the XML Tags in MSBuildSettings.xml

The following table lists the XML tags in the MSBuildSettings.xml file for each platform,
which are listed as common, Windows, and MCP tags:

Common XML tags

Windows XML tags

MCP XML tags

XML Tags Description

Database Specifies the name of the model containing the application you wish
to build.

SqlServer Specifies the SQL Server that contains the model stated previously.

The server is the name of the SQL Server that contains the model
and. “(Local)” is the default local SQL Server instance.

ImportProject If set to true, the project is imported.

Configuration Specifies the name of the configuration you wish to build.

UserCode Specifies the user code to connect to the host machine.

Password Specifies the password used to connect to the host machine.

Platform Specifies the name of the platform on which the application is built.

Elementlist Specifies the elements that are built apart from the model.

Backupdatabase If set to true, creates a backup of the runtime database.

OverwriteDatabase If set to true, overwrites the existing database.

BuildPreview If set to true, displays a summary of the elements that require
regeneration.

FolderOnlyBuild Builds the specified folder and does not build the subfolders. If a
deployable Element argument is not specified, this argument is
ignored. This means, the whole model is built using the “d” <model
name> switch.

XML Tags Description

Domain Specifies the domain name.

XML Tags Description

AccessCode Specifies the MCP AccessCode set on the target host under
which the application is generated.

AccessPassword Specifies the Password of the Accesscode used in the
AccessCode tag.
3826 5823-008 A–65

References
Building Applications by Using TFS

MSBuild allows you to build AB Suite applications on TFS. To build an application from
TFS, you must create a build definition.

Note: By opening an AB Suite solution, default values are assigned to the required
fields.

To create a Build Definition without a solution file being open, perform the following:

Connecting to TFS

You must connect to TFS before creating a build definition. To connect to TFS, perform
the following:

1. On the Team menu, click Manage Connections.

The Team Explorer window appears.

2. Click Manage Connections > Connect to Team Project.

The Connect to Team Foundation Server dialog box appears

3. Select Servers… to select a server or to add a new server.

ChargeCode Specifies the MCP ChargeCode set on the target host.

FTPUserCode Specifies a valid usercode for FTP connection to the host. This
usercode must be defined as a valid user in the FTP Server
software on the specified target host.

You must first log into the Builder Server by using MCP login
details before generating a System or Report,. The
information required to log in is determined by the target host.
In addition, an FTP session must be established for all hosts
and the FTP login details must be specified.

FTPPassword Specifies the password of the FTP username specified in the
FTPUserCode

FTPAccount Specifies the MCP chargecode for the FTP Server software
on the specified target host.

DelayDate Specifies the date to delay the host part of the build.

DelayTime Specifies the time to delay the host part of the build.

NumberOfParallelGenerates Specifies the number of Build threads used.

NumberOfReorgTasks Specifies the maximum number of reorganization tasks that
can occur simultaneously. By default, the value is 1 and can
range from 1 to 9999.

NumberOfParallelCompiles Specifies the number of compile threads (multithreading)
running concurrently. By default, the value is 1 and can range
from 1 to 9999.

XML Tags Description
A–66 3826 5823-008

References
4. Select Team Project Collections where the AB Suite Team Project is located.

5. Select Team Projects where the AB Suite version files are located.

6. Click Connect.

Creating a Build Definition

You must create and configure a build definition to build an application. To create and
configure build definitions, perform the following. The following example uses TFS 2015
to build the system for Windows runtime:

1. Select New Build Definition on the Team Explorer window from the Build context
menu.

The New Build Definition dialog box appears.

Note: Create a build agent before creating a New Build definition. Refer to the
Microsoft documentation for more information on configuring and managing your
build systems.

2. Click Add build step….

The ADD BUILD STEPS dialog box appears.

3. In the ADD BUILD STEPS dialog box, select Build.

4. Scroll through the displayed list and locate to Visual Studio Build.

5. Click Add to add the visual studio build.

6. Click Close to close the ADD BUILD STEPS dialog box

A build definition is created.

Note:To rename the build definition, right-click the build definition and click
Rename…. Enter the Name and click OK.

To set project, MSBuild Arguments, configuration, and platform parameters under the
Build tab, perform the following:

1. In the Solution field, browse the AB Suite project (System Modeler project
(.smproj)) file that needs to be build.

2. Enter the build arguments in the MS Build arguments field in the following format:
/t:buildmode /p:s=<build_sqlserver>;d=<model_database>;u=<host_usercode>;
p=<host_password>;sdp=generate;edp=install;ip=true

Description for various place holders in the build argument format is given in the
following table:

Switch/
Property Name Description

/t:buildmode Target Build mode: rebuild, build, or
clean.
3826 5823-008 A–67

References
3. Enter Release in the Configuration field.

4. Enter Windows in the Platform field.

5. Expand the Advanced node and select MSBuild x86 in MSBuild Architecture.

On the Options tab, perform the following:

1. Select the Multiconfiguration checkbox if you want to continue running other
configurations in case of any failure in the current configuration settings.

Or

Clear the Multiconfiguration checkbox if you do not want to continue running
other configurations in case of any failure in the current configuration settings.

On the Repository tab, perform the following:

1. Select Team Foundation Version Control from the list as Repository type.

2. Repository name field displays the repository name.

s SQLServer SQL Server that contains the
AB Suite model to build.

Local is the default local SQL
Server instance.

d Database Name of a database
containing the application you
want to build.

u UserCode User code to connect to the
host machine.

p Password Password used to connect to
the host machine.

sdp Start Deployment Phase Generate

MSI package is compiled and
created

edp End Deployment Phase Install

Installs the package in the
Package Installation Directory

ip ImportProject The project will be imported
and a new model database
(specified by the property d)
will be created if the database
does not exist when this
property is set to true.

Switch/
Property Name Description
A–68 3826 5823-008

References
On the Triggers tab, perform the following:

1. Select Continuous integration (CI) to build each check in.

2. Select Scheduled to schedule the build every week on a following day.

On the General tab, perform the following:

1. Select the Default Queue from the displayed list.

2. Enter the build description in the Description field.

3. Specify the maximum time (in minutes) for which the build can be executed on an
agent before being cancelled by server in the Build job timeout in minutes field.

Using Build Definitions

You can add the build definitions to a queue and trigger a build for an application. To set a
queue for a build definition, perform the following:

1. Select your application from the Team Explorer window, right-click and select
Queue New Build.

The Queue Build dialog box appears.

2. Click Queue.

The build begins and a message is displayed upon completion.

To view the build summary, perform the following:

1. Select My Builds on the Team Explorer window.

Builds created are listed under My Builds.

2. Double-click the build for which you want to view the build summary.

The build summary page displaying build details appears.

3. Click Download all logs as zip to download all build logs.
3826 5823-008 A–69

References
ReElDor Utility
ReElDor.exe is a standalone command line utility used for reformatting and refactoring
LDL+ logic on the models migrated from EAE 3r3. It performs the following functions:

• Minimize Insertable substitution strings (Refactor LDL+ logic to reduce insertable
substrings)

• Pretty Print (Reformat LDL+ logic using specified rules)

• Change insertable attribute to class for the correct usage of insertable

The utility logs its activities in a log file that is created in the working directory (by default,
the utility creates a ReElDor.log in
C:\ProgramData\Unisys\ABSuite\6.1\ReEldor\ReEldor.log unless a log file name is
provided using the –L parameter of the ReElDor utility).

Note: Backup the model before executing this utility so that you can revert to the
original model, if the changes made by the utility are not acceptable.

Minimize Insertable Substitution Strings

To minimize the Insertable substitution strings use the –I command line option of the
ReElDor utility. It walks through the specified model, and analyzes each insertable and the
methods that inserts the insertable, and updates the insertable substitution strings based
on some of the following rules:

1. Remove all the substitution strings that are exactly same in every Insert statement.

Example

// Before Refactor Insert statements
Insert IGLG (_DA1 = ABC.DA1 & _DA2 = ABC.DA2)
Insert IGLG (_DA1 = ABC.DA1 & _DA2 = XYZ.DA2)
// Before Refactor Insertable IGLG logic
Move "X" _DA1
Move "Y" _DA2

// After Refactor Insert statements
Insert IGLG (_DA2 = ABC.DA2)
Insert IGLG (_DA2 = XYZ.DA2)
// After Refactor Insertable IGLG logic
Move "X" ABC.DA1
Move "Y" _DA2

2. Remove common qualifiers from qualified names in substitution strings.

Example

//// Before Refactor Insert statements
Insert IGLG (_DA1 = GRPA.GRPB.DA1 & _DA2 = GRPA.GRPB.DA2 & _DA3 = GRPA.GRPB.DA3)
Insert IGLG (_DA1 = GRPX.GRPY.DA1 & _DA2 = GRPX.GRPY.DA2 & _DA3 = GRPX.GRPY.DA3)
// Before Refactor Insertable IGLG logic
Move 1 _DA1
Move 2 _DA2
Move 3 _DA3
// After Refactor Insert statements
Insert IGLG (_PARAM1 = GRPA.GRPB)
Insert IGLG (_PARAM1 = GRPX.GRPY)
A–70 3826 5823-008

References
// After Refactor Insertable IGLG logic
Move 1 _PARAM1.DA1
Move 2 _PARAM1.DA2
Move 3 _PARAM1.DA3

Command line options for minimizing Insertable substitution
strings

The command line for refactoring or reformatting insertable substitution strings is:

ReEldor -Insertables(I) [-SQLServer(SS) <SQLServer Instance name>] -Model(M) <model
name> [-Segment(S) <segment name>] [-Element(E) <element name>] [-NoUpdates] [-
NoValidate] [-LogFile(L) <file name>]

Where:

Pretty Print

Pretty Print utility can be initiated using the –PP or –PrettyPrint parameter of ReElDor
utility. It walks through the specified model, retrieves the logic for each method from the
model, applies the formatting options (as specified in the command line options for Pretty
Print), and updates the corresponding method with the newly reformatted logic.

Note: The utility uses internal structures stored in the model to perform its
activities. These internal structures are created during the validation phase (validation
either through import, developer, or build). So before initiating this tool, ensure that
the model has been validated.

Syntax Description

Insertables(I) Is a necessary parameter to enable insertable substitution string
refactoring.

SQLServer Instance
name

Named instance of the SQL Server to connect to. If not specified, the
default “local” instance is used.

Model(M) Name of the AB Suite Model to refactor. This is a necessary
parameter and can be used in the short form as –M instead of
–Model.

Segment(S) Name of the Segment to refactor. This is optional parameter and
defaults to the Model name, if not specified.

Element(E) Name of the Element/Folder to refactor. This is optional and defaults
to ALL elements in the Segment.

NoUpdates Only shows all the changes that could have been made. This does
not update the Model. By default, the behavior is to update the
Model.

NoValidate Does not validate any logic after the changes have been applied. By
default, the behavior is to validate.

LogFile(L) Name of log file. By default, it is ReEldor.log.
3826 5823-008 A–71

References
Command Line Options for Pretty Print

The command line for applying Pretty Print is:

ReEldor –PrettyPrint(PP) [-SQLServer(SS) <SQLServer Instance name>] -Model(M) <model
name> [-Segment(S) <segment name>] [-Element(E) <element name>] [-NoUpdates] [-
NoValidate] [-LogFile(L) <file name>] [-EndOfLineCommentColumn(EOLCC) <int>] [-
CommandAbbreviated(CA) | -CommandMixedCase(CMC) | -CommandUpperCase(CUC)] [-
DoWhen(DW) | -If] [-Operand1Col(O1C) <int>] [-Operand2Col(O2C) <int>] [-
OperandColumnAbsolute(OCA)]) [-TabSize(TS) <int>] [-IndentCase(IC)] [-
ReplaceTabsWithSpaces(RTWS)] [-MaximumLineLength(ML) <int> [-
ContinuationIndentCount(CI) <int>]]

Where:

Syntax Description

Model (M) Name of AB Suite Model to refactor. This is a necessary parameter
and can be used as a short form of –M instead of –Model.

SQL Server (SS) Specifies the name of the SQLServer instance that contains the AB
Suite model to refactor. This parameter is optional.

Segment (S) Name of Segment to refactor. This is optional parameter and defaults
to the Model name, if not specified.

Element (E) Name of Element/Folder to refactor. This is optional and defaults to
ALL elements in the Segment.

NoUpdates Only shows all the changes that could have been made. This does not
update the Model. By default, the behavior is to update the model.

NoValidate Does not validate any logic after the changes have been applied. By
default, the behavior is to validate.

LogFile (L) Name of the log file. By default, it is ReEldor.log.

EndOfLineCommentCol
umn (EOLCC)

The start column for end of line comments

CommandAbbreviated
(CA)

Displays commands in abbreviated form.

CommandMixedCase
(CMC)

Displays commands in mixed case. It is the default format.

CommandUpperCase
(CUC)

Displays commands in upper case.

DoWhen (DW) Uses DoWhen when DoWhen/If command is present in the logic. It is
the default value.

If Uses If when DoWhen/If is present in the logic.

Operand1Col (O1C) Starts the Operand one of commands in this column.

Operand2Col (O2C) Starts the Operand two of commands in this column.

OperandColumnAbsolut
e (OCA)

When specified with Operand1Col and Operand2Col the column
positions are absolute (refer to example 2 of applying Pretty Print for
details)
A–72 3826 5823-008

References
Change Insert Attribute to Class

Insert command uses insertable class or an attribute that has the same name as the
inherited insertable class. Change Insert Attribute to Class (CIAC) command identifies the
incorrect usage of insert command. It creates a new attribute with the same name as the
insertable class and replaces the existing attribute with the new attribute in the logic.

Command Line Options for CIAC

The command line for CIAC is:

ReEldor -CIAC [-SQLServer(SS) <SQLServer Instance name>] -Model(M) <model name> [-
Segment(S) <segment name>] [-Element(E) <element name>] [-NoUpdates] [-NoValidate] [-
LogFile(L) <file name>]

Where:

TabSize (TS) The number of spaces for each tab. By default, the value is 4.

IndentCase (IC) Indents case from the BeginCase. By default, the value is False.

ReplaceTabsWithSpaces
(RTWS)

Expands tabs with spaces. By default, the value is False.

MaximumLineLength
(ML)

Used to specify the maximum length of lines. By default, the value is
80.

Syntax Description

CIAC Identifies the INSERT statement and replaces the insertable attribute
that has the same name as the insertable class.

SQLServer Instance
name

Named instance of the SQL Server to connect to. If not specified,
the default “local” instance is used.

Model(M) Name of the AB Suite Model to refactor. This is a necessary
parameter and can be used in the short form as –M instead of
–Model.

Segment(S) Name of the Segment to refactor. This is optional parameter and
defaults to the Model name, if not specified.

Element(E) Name of the Element/Folder to refactor. This is optional and defaults
to ALL elements in the Segment.

NoUpdates Only shows all the changes that could have been made. This does
not update the Model. By default, the behavior is to update the
Model.

NoValidate Does not validate any logic after the changes have been applied. By
default, the behavior is to validate.

LogFile(L) Name of log file. By default, it is ReEldor.log.

Syntax Description
3826 5823-008 A–73

References
Examples for using ReElDor Utility

This section provides some examples on using the ReElDor utility for minimizing the
insertable string substitution and Pretty Print. Consider the following model AModel with
Segment ASegment for the examples that follow.

AModel
ASegment

Insertable IGLG
Main
Move "X" _DA1:Assign value X to incoming parameter
Move "Y" _DA2:Assign value Y to incoming parameter

Insertable IGLG2
Main
Move "X" _DA1:Assign value X to incoming parameter
Move "Y" _DA2:Assign value Y to incoming parameter

Report R1
Main

Insert IGLG (_DA1 = ABC.DA1 & _DA2 = ABC.DA2)
Move SYSOP.KDVSAPRO WG_WORK.WG_KDVSAPRO :KDVSAPRO
Move GLB.REPNAME GD_REPNAME :GD_REPNAME
Move GLB.ZEROS GG_HEADER_SRV_UIT.GG_PAR :GG_PAR
Insert IGLG (_DA1 = ABC.DA1 & _DA2 = XYZ.DA2)
DoWhen ((GG_HEADER_SRV_UIT.GG_FAR = GD_REP_FAR) AND \

(GD_REP_ASP = GC_NUM))
Insert IGLG (_DA1 = GRPA.GRPB.DA1 & _DA2 = GRPA.GRPB.DA2)
Move GLB.ZEROS GG_FAR

End
Report R2
Main
Insert IGLG2 (_DA1 = ABC.DA1 & _DA2 = ABC.DA2)

Examples on Refactoring Insertable Substitution Strings

Examples on Applying Pretty Print

Examples on CIAC

Examples on Refactoring Insertable Substitution Strings

Example 1

This example illustrates how the ReElDor utility can be used to refactor the insertable
substitution strings on a segment named ASegment and model named AModel, without
updating the model and storing the logic. The summary of the action performed by
executing the command is stored in a log file named AInsSub.log Use the following
command line to do this:

C:\Program Files\Unisys\NGEN\bin>reeldor -I -NoUpdates -M AModel -S ASegment -L
AInsSub.log

After its execution, the following summary is displayed in the command line:

*****Logic not updated due to setting of NoUpdate*****
Found 2 Elements in Segment ASegment
Refactor Insertable ASegment.IGLG
Refactor Insertable ASegment.IGLG2
Total Refactor Time: 0.4 seconds
Number of updated IGLGs: 1
A–74 3826 5823-008

References
Number of updated Methods: 4
Total Elapsed Time: 0.4 seconds

The logic in R1.Main and IGLG.Main/IGLG1.Main is left untouched.

Example 2

This example illustrates how the ReElDor utility can be used to refactor the insertable
substitution strings on a segment named ASegment and model named AModel when
NoUpdates is not specified in the command line.

The activity log is stored in the log file named AInsSubUpdate.log. Use the following
command line to do this:

C:\Program Files\Unisys\NGEN\bin>reeldor -I -M AModel -S ASegment -L
AInsSubUpdate.log

After its execution, the following summary is displayed in the command lines:

Found 2 Elements in Segment ASegment
Refactor Insertable ASegment.IGLG
Refactor Insertable ASegment.IGLG2
Total Refactor Time: 0.5 seconds
Validation Time: 0.3 seconds
Number of updated IGLGs: 1
Number of updated Methods: 4
Total Elapsed Time: 0.8 seconds

The resulting refactored logic is:

IGLG.Main:

Move "X" _PARAM1.DA1 :Assign value X to incoming parameter
Move "Y" _PARAM2.DA2 :Assign value Y to incoming parameter

IGLG2.Main:

Move "X" ABC.DA1 :Assign value X to incoming parameter
Move "Y" ABC.DA2 :Assign value Y to incoming parameter

R1.Main:

Insert IGLG (_PARAM1 = ABC\
 & _PARAM2 = ABC)
Move SYSOP.KDVSAPRO WG_WORK.WG_KDVSAPRO :KDVSAPRO
Move GLB.REPNAME GD_REPNAME :GD_REPNAME
Move GLB.ZEROS GG_HEADER_SRV_UIT.GG_PAR :GG_PAR
Insert IGLG (_PARAM1 = ABC\
 & _PARAM2 = XYZ)
DoWhen ((GG_HEADER_SRV_UIT.GG_FAR = GD_REP_FAR) AND \
 (GD_REP_ASP = GC_NUM))
Insert IGLG (_PARAM1 = GRPA.GRPB\
 & _PARAM2 = GRPA.GRPB)
 Move GLB.ZEROS GG_FAR
End

R2.Main:

Insert IGLG2
3826 5823-008 A–75

References
Examples on Applying Pretty Print

Example 1

This example illustrates how ReElDor utility can be used to reformat the LDL+ logic such
that all the end of line comments (if they exist) start from column 70 and start Operand1
at column 10 and Operand2 at column 30. Use the following command line to do this:

C:\Program Files\Unisys\NGEN\bin>reeldor –PP –EOLCC 70 –O1C 10 –O2C 30 -M AModel -S
ASegment -L APretty1.log

Where,

- EOLCC 70 is used to force all end of line comments to start from column 70

- O1C 10 is used to start operand1 from column 10

- 02C 30 is used to start operand 2 from column 30

After its execution, the following summary is displayed in the command line:

Found 4 Elements in Segment ASegment
Pretty R1.Main
Pretty IGLG.Main
Pretty IGLG2.Main
Pretty R2.Main
Total Refactor Time: 0.6 seconds
Validation Time: 0.2 seconds
Total Lines of Logic: 21
Number of Pretty Logics: 4
Total Elapsed Time: 0.9 seconds

The reformatted logic appears as follows:

IGLG.Main:

Move "X" _PARAM1.DA1 :Assign value X to
incoming parameter
Move "Y" _PARAM101.DA2 :Assign value Y to
incoming parameter

IGLG2.Main:

Move "X" ABC.DA1 :Assign value X to
incoming parameter
Move "Y" ABC.DA2 :Assign value Y to
incoming parameter

R1.Main:
Insert IGLG (_PARAM1 = ABC\
 & _PARAM101 = ABC)
Move SYSOP.KDVSAPRO WG_WORK.WG_KDVSAPRO :KDVSAPRO
Move GLB.REPNAME GD_REPNAME :GD_REPNAME
Move GLB.ZEROS GG_HEADER_SRV_UIT.GG_PAR :GG_PAR
Insert IGLG (_PARAM1 = ABC\
 & _PARAM101 = XYZ)
DoWhen ((GG_HEADER_SRV_UIT.GG_FAR = GD_REP_FAR) AND (GD_REP_ASP = GC_NUM))
Insert IGLG (_PARAM1 = GRPA.GRPB\
 & _PARAM101 = GRPA.GRPB)
 Move GLB.ZEROS GG_FAR
End
A–76 3826 5823-008

References
Example 2

This example illustrates how to use the ReElDor utility on some indented logic in R1.Main
as shown below:

R1.Main logic before refactoring:
Move SYSOP.KDVSAPRO WG_WORK.WG_KDVSAPRO :KDVSAPRO
Abort GA_SDK
DoWhen ((GG_HEADER_SRV_UIT.GG_FAR = GD_REP_FAR) AND (GD_REP_ASP = GC_NUM))
 Move GLB.ZEROS GG_FAR
 Add 1 GG_FAR
End

The above LDL+ logic needs to be reformatted such that Operand1 starts at column 10
and Operand2 at column 30. We can do this using either of the following two methods:

Method 1 – Using the OperandColumnAbsolute (OCA) Option
C:\Program Files\Unisys\NGEN\bin>reeldor -PP -O1C 10 -O2C 30 -OCA -M AModel -S
ASegment -L APretty1.log

When the –OperandColumnAbsolute (OCA) option is used for the indented logic it results
in the Operand1 and Operand2 columns being placed at the absolute respective positions
10 and 30 respectively.

The resulting reformatted logic of R1.Main after refactoring:

Move SYSOP.KDVSAPRO WG_WORK.WG_KDVSAPRO :KDVSAPRO
Abort GA_SDK
DoWhen ((GG_HEADER_SRV_UIT.GG_FAR = GD_REP_FAR) AND (GD_REP_ASP = GC_NUM))
 Move GLB.ZEROS GG_FAR
 Add 1 GG_FAR
End

Here the indented logic within the DoWhen block the Operand1 and Operand2 column
positions are at absolute positions, 10 and 30 respectively.

Method 2 – Without using the OperandColumnAbsolute (OCA) Option
C:\Program Files\Unisys\NGEN\bin>reeldor -PP -O1C 10 -O2C 30 -M AModel -S ASegment -L
APretty1.log

When the –OperandColumnAbsolute (OCA) option is not used for the indented logic it
results in the Operand1 and Operand2 columns to be positioned relative to the start
column of the command.

The resulting reformatted logic is:

R1.Main logic after refactoring:

Move SYSOP.KDVSAPRO WG_WORK.WG_KDVSAPRO :KDVSAPRO
Abort GA_SDK
DoWhen ((GG_HEADER_SRV_UIT.GG_FAR = GD_REP_FAR) AND (GD_REP_ASP = GC_NUM))
Move GLB.ZEROS GG_FAR
 Add 1 GG_FAR
End

Here the indented logic within the DoWhen block the Operand1 and Operand2 column
positions are relative to the start position of the command.
3826 5823-008 A–77

References
Example 3

This example illustrates how to use the ReElDor utility to reformat LDL+ logic using the
CA option to force the usage of command abbreviations. This results in the conversion
commands to their abbreviated form such as MOVE to MV, DoWhen to DW, etc.

The command line to be used is:

C:\Program Files\Unisys\NGEN\bin>reeldor -PP -CA -M AModel -S ASegment -L
APretty2.log

After its execution, the following summary is displayed in the command line:

Found 4 Elements in Segment ASegment
Pretty R1.Main
Pretty IGLG.Main
Pretty IGLG2.Main
Pretty R2.Main
Total Refactor Time: 0.5 seconds
Validation Time: 0.2 seconds
Total Lines of Logic: 21
Number of Pretty Logics: 4
Total Elapsed Time: 0.8 seconds

The resulting reformatted logic is:

IGLG.Main:

MV "X" _PARAM1.DA1 :Assign value X to incoming parameter
MV "Y" _PARAM101.DA2 :Assign value Y to incoming parameter

IGLG2.Main:

MV "X" ABC.DA1 :Assign value X to incoming parameter
MV "Y" ABC.DA2 :Assign value Y to incoming parameter

R1.Main:

INS IGLG (_PARAM1 = ABC\
 & _PARAM101 = ABC)
MV SYSOP.KDVSAPRO WG_WORK.WG_KDVSAPRO :KDVSAPRO
MV GLB.REPNAME GD_REPNAME :GD_REPNAME
MV GLB.ZEROS GG_HEADER_SRV_UIT.GG_PAR :GG_PAR
INS IGLG (_PARAM1 = ABC\
 & _PARAM101 = XYZ)
DW ((GG_HEADER_SRV_UIT.GG_FAR = GD_REP_FAR) AND (GD_REP_ASP = GC_NUM))

 INS IGLG (_PARAM1 = GRPA.GRPB\
 & _PARAM101 = GRPA.GRPB)
 MV GLB.ZEROS GG_FAR
END

R2.Main:

INS IGLG2

Examples on CIAC

This example illustrates how to use the ReElDor utility to identify the INSERT statement
and replaces the insertable attribute that has the same name as the insertable class.
A–78 3826 5823-008

References
Consider the following model structure:

AModel
ASegment

Insertable IGLG
Main

Move "X" _DA1:Assign value X to incoming parameter
Move "Y" _DA2:Assign value Y to incoming parameter

Report R1
InsAttr (inherited from IGLG)

Main
Insert InsAttr

In this example, when you validate R1.Main method, a validation error appears:

error 2214: The operand InsAttr cannot be inserted. INSERT statement can only insert
an Insertable class.

The command line to be used is:

C:\Program Files\Unisys\NGEN\bin>ReEldor -CIAC -M AModel -S ASegment -L CIAC.log

After its execution, the following summary is displayed in the command line:

Found 1 Elements in Segment ASegment
Validate R1.Main
******* Error in Validation of R1.Main ***********
======== Fix Start ========
Line:1: replace "InsAttr" with "IGLG" in logic "Insert InsAttr" of Method R1.Main
======== Fix end ========

Total Refactor Time: 10.7 seconds
Validate R1.Main
Validation Time: 0.4 seconds
Total Elapsed Time: 11.2 seconds

Then, the model structure changes to:

AModel
ASegment

Insertable IGLG
Main

Move "X" _DA1:Assign value X to incoming parameter
Move "Y" _DA2:Assign value Y to incoming parameter

Report R1
InsAttr (inherited from IGLG)
IGLG (inherited from InsAttr)

Main
Insert IGLG

The resulting refactored logic is:

R1.Main
Insert IGLG
3826 5823-008 A–79

References
Access Layer API—Logging Information
The Access Layer API log file records all actions that are executed when you connect to
the AB Suite Client Framework application and perform other transactions. It also shows
the details of messages being sent to and received from the host application. You can
refer to this log file to resolve issues with the client applications. It can be a useful debug
tool for Unisys support.

The log details from the Access Layer API log operations are logged in to the
AccessLayer.Connector.log file. By default, this log file is created in the Temp folder at the
following location:

C:\Temp\AccessLayer.Connector.log

AccessLayer.Connector.log

You can access the AccessLayer.Connector.log file each time you perform a task on the
Access Layer API.

<TechnologyFolderName>_Config.rtxml Configuration File

You can configure the tags in the <TechnologyFolderName>_Config.rtxml file to capture
the details of Client Framework Access Layer API operations. The
<TechnologyFolderName>_Config.rtxml file is located in the Access Layer API Deploy
folder.

You can configure the following tags in the <TechnologyFolderName>_Config.rtxml file to
record the operations performed using the Client Framework Access Layer API:

• <LogLevel>

• <LogFolder>

<LogLevel>

You must modify the <LogLevel> tag to indicate the level of logging performed. Following
are the different types of log levels:

• Info – Used to capture lightweight log information, such as connection details, send
request confirmation, and receive response confirmation.

• Debug – Used to capture detailed information.

• Error – Used to capture log exceptions.

<LogFolder>

You must modify the <LogFolder> tag to create the log file in a location other than the
default location.
A–80 3826 5823-008

References
For example, if you want to save the log file in C:\LogFile, you must modify the
<LogFolder> tag as follows:

<LogFolder> C:\LogFile </LogFolder>
3826 5823-008 A–81

References
Error Messages

--- A --- Error Messages

A Flag to the key '%1' is not valid - 2114

Cause: The destination attribute of the Flag command is a Key. Flag to a key is not
allowed.

Resolution: Do not flag to a 'key' attribute

Array '%1' needs to have %2 dimensions - 2121

Cause: The number of dimensions specified in the multiplicity of the Array (%1) is not
appropriate in this context.

Resolution: Ensure that the correct number of dimensions are specified.

Array Missing Selectors - 2147

Cause: The Array attribute is not fully selected.

Resolution: The Array attribute must be fully selected.

--- B --- Error Messages

There are currently no error messages listed in this category.

--- C --- Error Messages

Case command cannot be used after an Otherwise command - 2002

Cause: The structure of the BeginCase … Case … Otherwise … End block does not
allow a Case node after Otherwise. If used, otherwise must be the last 'node' in the
BeginCase block before the end.

Resolution: Move the Case construct to before the Otherwise command.

Case value is not compatible with Begin Case - 2108

Cause: A value specified on a Case command cannot be compared to the attribute or
expression specified in the BeginCase due to type incompatibility.

Resolution: Only use values which are compatible with the attribute or expression type
used on the BeginCase command.
A–82 3826 5823-008

References
Command cannot be used in a Copy From Main method - 2138

Cause: Incorrect usage of the command in main method of a Copy From ispec/event.

Resolution: Remove the command from the main method of a Copy From ispec/event.

Command name can only be used in a loop - 2006

Cause: The 'Break' command has been used in a context, which is not in a Loop. The
'Break' command may only be used inside a loop such as Determine, LookUp, ForEach,
or Loop

Resolution: Remove the break command. If necessary use a JumpTo <label> to
achieve the desired result.

Command name was not expected here - 2004

Cause: An 'Else', 'Continue', 'Case', or 'End' node was encountered in an unexpected
context. For example an 'Else' command was not within a DoWhen-End block, a
'Continue' was not within a block, a 'Case' was not within a 'BeginCase'-'End' block or an
'End' did not have a corresponding block start command.

Resolution: Correct the structure of the logic by removing the offending command or
containing it within an appropriate block.

Command name was not found - 2003

Cause: The command <name> is not a valid command. This may be simply due to a
typographical error.

Resolution: Replace <name> with a valid command name.

Command cannot be used in a Copy From Edit method - 2130

Cause: The 'Flag' and 'Recall' commands may not be used in the Edit method of a Copy
From Ispec or Event.

Resolution: Remove the offending command(s).

Command cannot be used in a System close GLG - 2129

Cause: The 'Roc', 'Run', and 'Wake' commands cannot be used in the SystemClose
Global Logic (method).

Resolution: Remove the offending command(s).

Command cannot be used in a System GLG - 2131

Cause: The 'Recall' command cannot be used in a System Global Logic (method)

Resolution: Remove the offending command(s)
3826 5823-008 A–83

References
Compare routine is invalid. - 1001

Cause: In the Match command, the compare routine must be one of
'CompareAscending' or 'CompareDescending'

Resolution: Use either 'CompareAscending' or 'CompareDescending'

Conditional Profile attributes must be persistent members - %1 - 2133

Cause: Attributes use in a profile constraint (condition) must be persistent members of
the class which owns the profile.

Resolution: Use only attributes which are persistent members of the profile owner.

Copy From Error - 2138

Cause: Command cannot be used in a Copy From Main method.

Resolution: Delete the command

CRITICAL POINT cannot be used inside a database access loop (DT, LU, ForEach) -
2166

Cause: Critical point being used within a database access loop (e.g. Determine loop /
Lookup / ForEach loop)

Resolution: Do not use critical point within a database access loop.

CRITICAL POINT can only be used inside a Report Main method - 2165

Cause: Critical point being used inside the Main method of the Report.

Resolution: Do not use critical point within the main method of the report.

--- D --- Error Messages

Date flag is invalid. - 1006

Cause: In the simple form of the DateConvert command, the format specifier must be
one of 'ToDayNumber, 'ToDate', or 'ToAlpha'

Resolution: Use only one of the approved format specifiers

Date format is invalid. - 1005

Cause: The format specifier in a DateConvert command is not one of those in the list
shown under the DateConvert command.

Resolution: Use only one of the approved format specifiers
A–84 3826 5823-008

References
Date format is invalid. - 1004

Cause: The format specifier in a MoveDate command is not one of those in the list
shown under the DateConvert command.

Resolution: Use only one of the approved format specifiers

Database name is invalid. - 1002

Cause: The database name used in an AccessExt command must be either 'DB1' or
'DB2'.

Resolution: Use one of the allowed database names.

--- E --- Error Messages

There are currently no error messages listed in this category.

--- F --- Error Messages

Forward definition of the label %1 was not found - 2001

Cause: The label %1 used in a JumpTo command was not found during a forward search
of the logic. Labels must be defined after later in the logic than any JumpTo command
which refers to them.

Resolution: Ensure that the appropriate Label command exists within the correct
scope.

--- G --- Error Messages

There are currently no error messages listed in this category.

--- H --- Error Messages

There are currently no error messages listed in this category.

--- I --- Error Messages

Incompatible Parameter - 2144

Cause: The parameter is incompatible with the method definition

Resolution: Check the definitions of the parameter and the define method parameter.
3826 5823-008 A–85

References
Index %1 of array '%2' should be type '%3' - 2122

Cause: An attribute used as an array index does not evaluate to a number.

Resolution: Correct the offending term.

Insertable attribute methods cannot be called - 2145

Cause: It is invalid to invoke a method on an Insertable Class instance.

Resolution: Only invoke Insertable class methods from with the Insertable Class Main
method.

Internal semantic error - 2999

Cause: An undefined internal semantic error has occurred.

Resolution: Report this error to ACUS support.

Internal Syntax Error - 1999

Cause: An internal syntax error has occurred

Resolution: Report this error to ACUS support.

Invalid arithmetic expression - 2126

Cause: A term was used in an arithmetic expression which does not evaluate to a
number.

Resolution: Correct the offending term.

Invalid conditional expression - 2127

Cause: Terms or expressions used in a conditional expression are the wrong type to
produce a Boolean result (true or false).

Resolution: Use terms or expressions which produce a true or false result when
evaluated

Invalid logical expression - 2128

Cause: Terms or expressions used in a conditional expression are the wrong type to
produce a Boolean result (true or false).

Resolution: Use terms or expressions which produce a true or false result when
evaluated
A–86 3826 5823-008

References
Invalid Insert - 2143

Cause: This command cannot be used in an Insertable class.

Resolution: Remove the command.

Invalid Set operation - 2111

Cause: The types use in the IN operator are incompatible - that is MYBool IN (12,13,14),
assuming MYBool is a boolean attribute.

Resolution: Ensure types are valid.

IO parameters - %1 cannot be a literal - %2 - 2160

Cause: A literal is being used as a parameter that has direction defined as InputOutput/
Output in the model

Resolution: Use an attribute instead of a literal.

Iterator %1 should inherit from the dataset - 2132

Cause: The iterator variable specified (%1) is not the correct type. It must inherit from
(be the same type as) one of the classes in the inheritance structure being iterated over.

Resolution: Set the type of the iterator variable to inherit from an appropriate class.

--- J --- Error Messages

Jump to label %1 is not allowed - 2005

Cause: You may not jump into a Loop or BeginCase-End block.

Resolution: JumpTo a label either before or after the block containing label %1

--- K --- Error Messages

Key List Error - 1012

Cause: The syntax of the keys is incorrect.

Resolution: Refer to the LDL+ syntax documentation.
3826 5823-008 A–87

References
--- L --- Error Messages

Label %1 has already been defined at line %2 - 2007

Cause: The label %1 has already been used within the method.

Resolution: Use a different label name to avoid duplication.

--- M --- Error Messages

Mapper can only be used with a Report Frame - 2106

Cause: This occurs in an Extract command where Mapper option can only be used with
a Frame.

Resolution: Correct the cause.

Match Extract File Incompatible - 2141

Cause: The Match comparison parameter is %1.

Resolution: Use %2.

Match File Error - 2140

Cause: The Match comparison parameter %1 must inherit from GLB.File.

Resolution: Correct the cause.

Match File the same - 2142

Cause: The same extract file cannot be used in a Match command.

Resolution: Change the extract file.

Method '%1' cannot be used here - 2146

Cause: The call to the method specified by %1 is incorrect in the current context.

Resolution: Don’t call the specified method in the current context.

Method '%1' needs to have %2 parameters - 2124

Cause: An incorrect number of parameters has been supplied on a call to the Method
'%1'

Resolution: Supply the correct number of parameters in the method call.
A–88 3826 5823-008

References
Method call error - 2146

Cause: Method cannot be used here

Resolution: Correct the cause.

--- N --- Error Messages

Number of operands is incorrect. - 1009

Cause: A command which has mandatory arguments does not have sufficient
arguments specified

Resolution: Supply the missing arguments according to the particular command.

Number of keys does not match the profile or ispec definition - 2112

Cause: A LookUp or Determine command does not have the correct number of keys
specified.

Resolution: Specify the correct number of keys.

Numeric literals can have a maximum of %1 digits - 2163

Cause: The length of numeric literal is more than 28 digits.

Resolution: Ensure that the numeric literal has a maximum of 28 digits

--- O --- Error Messages

Only one comparison function is allowed when using match with extract files - 2139

Cause: Using more than one comparison function while matching extract files without
specifying keys is not allowed.

Resolution: Use only one comparison function while doing a match on the extract files
without specifying keys.

Operand name could not be found. Check that it has the correct Visibility - 2117

Cause: The named operand could not be found within the current scope.

Resolution: Check that the operand does exist within the specified scope – it may need
qualification. Also check that the named entity has the correct visibility – public,
protected, etc.
3826 5823-008 A–89

References
Operand name should be a length of at least number - 2110

Cause: In the DateConvert command, the named operand is not long enough to contain
the converted date in the format specified.

Resolution: Ensure that the operand is at least long enough to contain the date in the
specified format.

Operand name should be a member of name - 2119

Cause: In the Determine Total command the attribute to be summed must be owned by
the class <name>.

Resolution: Use an attribute which is owned by class.

Operand name should be a method - 2123

Cause: The named operand should be a method.

Resolution: Only use a method where this operand has been used.

Operand name should be a shadow report - 2107

Cause: Only a Shadow report (OutputStream) can be used in the place where operand
<name> has been used.

Resolution: Use only a Shadow Report (OutputStream) where <name> has been used
in this command or make name to be of the correct type (ShadowReport/OutputStream).

Operand name should be an array - 2120

Cause: An array attribute was expected, but <name> is not an array. – that is DString :=
SDNumber[1,2,1] where SDNumber is not an array.

Resolution: Ensure entry is an array attribute.

Operand name should be an extract file - 2116

Cause: Where <name> has been used in the indicated command an array attribute is
expected (multiplicity > 1).

Resolution: Replace <name> with an attribute which is an array.

Operand name should be persistent - 2102

Cause: The indicated operand <name> must be persistent.

Resolution: Ensure that the operand has 'IsPersistent' = true.
A–90 3826 5823-008

References
Operand name should be type 'Number' - 2115

Cause: The 'position' and 'length' operands of the complex Move command must be
numeric.

Resolution: Change the type of the <named> operand to Number.

Operand name should be writeable - 2101

Cause: The destination/target operand named must be capable of being written to.

Resolution: Ensure that the named operand is not defined as 'read only'.

Operand %1 cannot be void (Check the that it has a return value) - 2105

Cause: A method was expected to return a value - ie MyNumber := AMethod(56) if
AMethod does not have a return value, then this error occurs.

Resolution: Ensure method has a return value.

Operand %1 must be an Object (Check that is has Multiplicity 0) - 2135

Cause: The operand must be an object/instance. That is, it must have multiplicity > 0.

Resolution: Correct the multiplicity. If necessary create an attribute which inherits from
the class and ensure that it has multiplicity > 0.

Operand needs to be an identifier. - 1007

Cause: The indicated operand cannot be a literal or expression – it must be a variable,
attribute, or parameter.

Resolution: Correct the statement by replacing the indicated operand with an variable,
attribute, or parameter reference.

Operand %1 needs to be an instance of class in same inheritance heirarchy as %2 -
2169

Cause: The operand specified by %1 does not belong to the inheritance tree that %2
operand belongs to.

Resolution: Ensure that operand %1 is an instance of a class in the same inheritance
hierarchy as %2.

Operand %1 needs to be of the same type as %2 - 2168

Cause: Operands specified by %1 and %2 are of different/incompatible types.

Resolution: Ensure that the operands specified by %1 and %2 are of similar types.
3826 5823-008 A–91

References
--- P --- Error Messages

Parameter %1 is incompatible with the method definition - 2144

Cause: The supplied parameter is incompatible with the type defined for that parameter
in the method.

Resolution: Ensure the type of the supplied parameter is the same as the parameter in
the method definition.

Parameter %1 of method '%2' should be type '%3' - 2125

Cause: The argument %1 passed in the call to method %2 is of the wrong type and
cannot be cast to the correct type. It should be of the type specified as %3.

Resolution: Pass the correct type in the specified parameter position.

Parameter List Error - 1014

Cause: The syntax of the parameters is incorrect.

Resolution: Refer to the LDL+ syntax documentation.

Position operand cannot have decimals - 2162

Cause: A decimal literal/attribute has been supplied for the position option of Detach
command

Resolution: Position can only be a non-decimal signed/unsigned number.

--- Q --- Error Messages

There are currently no error messages listed in this category.

--- R --- Error Messages

Restart cannot be used here - 2164

Cause: The restart command (without an extract file name as a parameter) is invalid
when used outside a Determine Actual loop. It is invalid inside a Determine Actual Extract
loop when specified with an extract file that is same as the extract file for the Determine
Actual loop.

Resolution: Use the Restart command in accordance with the above rules. Use Restart
(without an extract file name as a parameter) within the Determine Actual loop. Use
Restart outside Determine Actual Extract loop when specified with an extract file that is
same as the extract file for the Determine Actual loop.
A–92 3826 5823-008

References
Right parenthesis is missing. - 1010

Cause: A function/method call parameter list is missing a right parenthesis.

Resolution: Correct by adding a right parenthesis in the appropriate place.

Right square bracket is missing. - 1011

Cause: An array reference is missing a right square bracket ']' from the selector list.

Resolution: Correct by adding a right square bracket in the appropriate place.

Routine name is invalid. - 1003

Cause: In the OnChange command, the statistic routine name specified is not one of
those allowed from the list.

Resolution: Use one of the allowed statistic routine names or correct the spelling.

--- S --- Error Messages

Screen Field name should be an enterable screen field - 2109

Cause: The operand used on the Cursor command must be an enterable field in the
presentation/User Interface.

Resolution: Correct by ensuring that the operand has a direction of I(nput) or IO.

Source key '%1' cannot be used in the key list - 2113

Cause: The key specified is owned by the class being iterated over and is Persistent.
Persistent attributes of the class being iterated over cannot be used to supply key values.

Resolution: Use a non-persistent attribute of the class being iterated over in the key list
or any attribute of a different class which does not share inheritance with the subject
class.

Symbol is readonly - 2161

Cause: The supplied parameter has the IsConstant property set to true.

Resolution: Change the property to false or supply another parameter that has the
property set to false.

Syntax Errror - 1013

Cause: The syntax of the LDL+ command is invalid.

Resolution: Refer to the LDL+ syntax documentation.
3826 5823-008 A–93

References
--- T --- Error Messages

The AutoLookup dependency on target %1 is invalid. - 1762

Cause: The target %1 is not set to a key attribute.

Resolution: Ensure that a key attribute for the target is set to %1.

The Array attribute %1 must be fully selected - 2147

Cause: The array element is not fully specified.

Resolution: Specify all of the correct indices for the array.

The Key definition is incorrect - 2137

Cause: No key/s is specified to sort the file.

Resolution: Specify at least one key to define the sort order.

The Match comparison parameter %1 must inherit from GLB.File - 2140

Cause: Invalid first parameter being passed to the Match command.

Resolution: First parameter to the Match command needs to be inherited from GLB.File

The Match comparison parameter %1 should be using %2 - 2141

Cause: The same extract file is being used in the parameters to the Compare functions.

Resolution: The comparison parameter should be the one specified by parameter %2

The name %1 is in error (Check that arrays have indexes and functions have
parameters) - 2148

Cause: Arrays are not fully selected or functions are called without parameters.

Resolution: Verify that if arrays are being referenced they are fully selected, and
parameters are specified for a function that has non-default parameters.

The same extract file cannot be used in a Match command - 2142

Cause: The same extract file is being used in the parameters to the Compare functions.

Resolution: Use two different extract files for the comparison.

This command cannot be used in an Insertable class - 2143

Cause: Invalid usage of the command in an Insertable Report or GLG

Resolution: Remove the command from the class.
A–94 3826 5823-008

References
Too Many Match Files - 2139

Cause: Only one comparison function is allowed when using match with extract files.

Resolution: Remove additional comparison functions.

Type of the %1 is invalid. Valid type(s) are - '%2' - 2100

Cause: The specified operand is of the wrong type in that context in the current
command.

Resolution: Replace with an operand of one of the specified types.

Type of the %1 is not compatible with the return type of the method - 2104

Cause: The specified operand cannot be converted to the return type of the method.

Resolution: Replace with an attribute, variable, or expression of the correct type.

Type of the %1 is not compatible with the type of the %2 - 2103

Cause: The source operand cannot be converted to the type of the destination operand.

Resolution: Ensure that the source and destination operands are of compatible types.

--- U --- Error Messages

Under Segment/Report, only Primitives or Groups can be persistent. - 1760

Cause: When you are using Segment/Report, only Primitives or Groups must be set to
persistent.

Resolution: Ensure that IsPersistent is set to No.

Unrecognized line. - 1000

Cause: The line does not start with a recognizable command.

Resolution: Correct the offending line.

--- V --- Error Messages

Value logic can only reference 'This' - 2134

Cause: The only attribute which may be named as the left operand in a value logic/
constraint expression is 'this'.

Resolution: Replace the offending operand with 'this'.
3826 5823-008 A–95

References
--- W --- Error Messages

There are currently no error messages listed in this category.

--- X --- Error Messages

There are currently no error messages listed in this category.

--- Y --- Error Messages

There are currently no error messages listed in this category.

--- Z --- Error Messages

There are currently no error messages listed in this category.
A–96 3826 5823-008

References
Glossary

This glossary defines terminology used within Agile Business Suite which is unique to the
application. Note that it does not include terms which are associated with object oriented
concepts, or terms generally used within Visual Studio, such information should be
obtained from external OO documentation or the Visual Studio Online Help
respectively.

Terminology Changes

The table below lists the comparative terms between the current release of the Agile
Business Suite product and the previous Enterprise Application Environment product.
Where terms have not changed, they are found in the rest of this glossary, along with
new terminology.

Enterprise Application Environment Term Agile Business Suite Term

Activity Folder

Application Project

Big Buffer Ispec Ispec Stereotyped Class

Branching Branching

Breakpoint Breakpoint

Business Rules Documentation

Business segment Segment Stereotyped Class

Callable Global Logic Method

Copy from ispec Copy Ispec Stereotyped Class

Copy From Event CopyEvent Stereotyped Class

Data Dictionary Dictionary

Data Item, Setup Data Item (SD) Attribute

DEPCON Enterprise Output Manager

Developer Test Debugger

Dictionary data item Class

Edit logic Method Edit

Enterprise Application Remote Access Server Remote Access Server

Event Event Stereotyped Class

Fireup Ispec Fireup Ispec

Frame Frame Stereotyped Class

Generate Build
3826 5823-008 A–97

References
Generate Client/Generate Server Builder

Generate set Configuration

Global Data Dictionary Dictionary

Global Setup Data Block (GSD Block) Folder

Global Setup Data Item Attribute

Graph UML Diagram

Group Global Setup Data Item Group Stereotyped Class

Group Setup Data Item Group Stereotyped Class

Insertable Global Logic (GLG) Insertable Stereotyped Class

Ispec character screen, graphical screen, Report frame
layout

Presentation

Ispec Component Ispec Stereotyped Class

Ispec Ordinate IsKey

Keyword Group Stereotyped Class

LCIF Model Export File

LDL (LINC Definition Language) LDL+ (Logic Definition Language)

LINC cycle Business segment cycle

Logic, Performable GLG, Callable GLG Method

Main logic Method Main

Memo Component Ispec Stereotyped Class

Model Model

Option Property

OVI Ispec External class

Performable Global Logic Method

Pre LINC logic Prepare method

Pre Screen logic Construct method

Pre screen, or Preamble Construct method

Profile Profile

Profile Ordinate Key

Relation Dependency

Repository Model

Same.as Inherits

Enterprise Application Environment Term Agile Business Suite Term
A–98 3826 5823-008

References
A

AB Suite Application/Model

Uses Winform or Component Enabler Interfaces based on screens designed in System
Modeler Painter.

AB Suite Client Framework Application/Model

Uses a synchronized Client Framework interface, where the Client Applications are
designed using a technology of choice.

Action Line

A Field that appears on most screens in mainframe Enterprise Application and Agile
Business Suite Systems, enabling fast-track navigation to required functions. Also referred
to as the Action field.

Administration tool

The Runtime Administration Tool is a snap-in to the Microsoft Management Console. It
configures and manages the runtime environment and deployed Agile Business Suite
applications.

Administrator

Person responsible for administration of the Developer environment.

Previous term was – Administrator.

Aggregation

More specifically composition. This models the whole/part relation. Objects are often
made up of other components, each of which may be an object in its own right.

Animation

The function by which Debugger continues to execute logic without user intervention,
highlighting each LDL+ statement as it is executed

Archive

Copy files to a directory as protection against accidental loss, deletion, or damage.

Setup Data Array Attribute (with multiplicity 1)

SQL Script SQL Script Stereotyped Class

System Data Item Attribute (Builtin)

Usage - Output IsPersistent

Enterprise Application Environment Term Agile Business Suite Term
3826 5823-008 A–99

References
Asynchronous

A process whose caller continues immediately without waiting for the process to
complete.

Attribute

An object that belongs to a Class. Data items are persistent attributes of an <<Ispec>>
Class. Setup data items are transient attributes of an <<Ispec>> Class or <<Frame>>
Class (or variables in a business segment method). Global setup data items are attributes
of a <<Segment>> Class.

The Multiplicity property specifies the number of instances. Arrays using a comma
separated list of integers with the number of values specified denoting the dimension.

Previous term was - Data Item, Setup Data Item (SD), Global Setup Data Item (GSD),
Arrays.

Mapping between Agile Business Suite Attributes and Enterprise
Application Environment Usage Types

Attribute Direction

The Direction property enables the attribute to be entered or displayed on the screen.

Automatic entry capable

Automatic entries are used to pass ispec information between deployed applications. This
information passing can occur between applications on the same or on different hosts.
Transactions that initiate inter-application communication are fully recovered in the event
of a system failure (except where the two-phase commit process abandons a transaction).

AB Suite <<ispec>> Class Attribute Properties EAE Usage Equivalents

Direction Persistence

InOut No Input

InOut Yes Input-Output

In No Input, but cleared

In Yes Input-Output, but cleared

Out No Inquiry

None Yes Out

None No Setup Data Item
A–100 3826 5823-008

References
B

Background Run

For OS 2200 Systems, a background run that controls certain functions; for example
recovery, Report handling, and setting up of Common Banks. There is one Background Run
for each Runtime.

Banner

A system-generated page that prints at the start of a Report and provides control
information about that Report.

Base Year

The year upon which the DATE.CONVERT; command bases relative day numbers. Base
year is defined using the Business Segment dialog box in Developer. It may be accessed
through the System Data Item GLB.BASE. Refer to relative day number.

Also, refer to R.

Branching

A feature of Source Control that allows you to develop and save a set of revisions for an
element separate from a different set of revisions for the same element. These sets of
revisions are referred to as ‘branches’.

Branch Label

An optional, user-defined short name that can be assigned to a branch of an element in the
Version Control Bank.

Branch Search Order

A list of branch labels that Version Control can search in sequence to find an element when
a Get Latest Revision or Check Out is performed.

Branching

A feature of Developer Version Control that allows you to develop and save a set of
revisions for an Object separate from a different set of revisions for the same Object.
These sets of revisions are referred to as 'branches'.

Breakpoint

A feature of the Developer Debugger that stops logic execution in response to a certain
state of the system. There are four types of breakpoints:

Type Description

Simple (line) breakpoint Logic execution stops before a specific line of logic.

Conditional breakpoint Logic execution stops before a line of logic if certain conditions are
met.

Reference breakpoint Logic execution stops before a line of logic in which a specified Data
Item is referenced (read or written).
3826 5823-008 A–101

References
Build

Generating, compiling and optionally deploying an application.

Previous term was – Generate.

Builder

Generation is the process of generating a complete set of source files and then compiling
and linking those files to create a set of executables. Through Builder, a Developer
workstation can generate a System to a target host Runtime environment.

Builtin Attributes

These are inherited due to Stereotype specification. A Data Item that is automatically
available in System Modeler. It is used for accessing or setting parameter or control-type
data in logic

Previous term was - System Data Item.

Built-In Method

System Modeler provides several built-in methods for some classes, for the user to invoke.

Bundle

Bundles are used to control the generation of Component Enabler components and
interface applications. They are a group of Input and Input-Output Ispecs usually designed
for a specific task. You can define more than one Bundle for each system, each one suited
to the needs of a specific set of users.

Business Model

Repository containing details of Segments (Specifications) held in Developer.

C

Change Analysis

A method for tracking changes to elements which can be generated, to eliminate the need
to regenerate elements that have not changed since the last time the generate process
was run.

CHG

Object Changes (CHGs) are used to distribute new features, fixes, customer requests and
newly validated versions of support software on the ClearPath OS 2200 platform. Also,
refer to IC.

Change breakpoint Logic execution stops after a line of logic in which a specified Data
Item is updated.

Type Description
A–102 3826 5823-008

References
CL

Connection Library. For the MCP Platform CLs provide, in addition to normal library
functionality, per client state, multiple interfaces each with its own set of procedures and
data and full control over connections (linking and delinking).

Class

Definition of a type of object, including its interfaces and member attributes and methods.
Classes have been extended in Agile Business Suite to include the description of subsets
of the class’s instances (as represented by profiles and SQL scripts in EAE 3.3). Business
segments, ispecs, reports and insertable global logics become special kinds of classes in
Agile Business Suite. To emphasize this point they are sometimes referred to as ‘segment
class’, ‘ispec class’ etc., but this is synonymous with ‘segment’, ‘ispec’ etc. Functionality
attributed to classes in this document also applies to each of the specialized EAE classes.

Class diagram

Class diagrams use standard UML notation to represent the static relationships between
model entities.

Class View

A Visual Studio window which displays the fine grain structure of the Developer model,
which includes class inheritance, attributes and methods. These structures are editable by
the user.

Classifier

Where it is defined, a Type or Variable takes its definition from its Classifier. The Classifier
may be another Type or Variable, or it may be a Class (a Variable with a Class as its Classifier
is an object). A Type with a Classifier effectively acts as an alias for its Classifier. The term
“classifier” is taken from UML. The Same. As is now only a term that could be used to
describe a specific variation of the classifier notation. An attribute or variable that classifies
to another element of same kind is effectively a Same.As relationship

Previous term was – Same.As.

Client

Windows program, typically running on a workstation that works cooperatively with one or
more programs or services running on a server computer. In some cases the client
program may reside on the server computer, but uses the network interfaces to
communicate with the server program or service.

Client Listener

A service that listens for and accepts connection requests from the Administration Client
and Deployment Client.

Client/Server

A distributed architecture in which client workstations communicate with servers through
a network. For instance, a client typically provides initial processing, data gathering
functionality, and the user interface. It then communicates the data and requests to a
server for further processing.
3826 5823-008 A–103

References
CLR

Common Language Runtime. Code that you develop with a language compiler that targets
the Windows runtime is called managed code; it benefits from features such as cross-
language integration, cross-language exception handling, enhanced security, versioning
and deployment support, a simplified model for component interaction, and debugging and
profiling services. It is the IL virtual machine plus the Windows classes. Garbage Collection
is an important major feature of CLR.

Clustered Index

Microsoft SQL Server database index in which the logical or indexed order of the key
values is the same as the physical stored order of the corresponding rows that exist in a
table. The terms cluster index and clustered index are used interchangeably.

CODES file

Output control codes file used when defining printers

CODESASSN file

A CODESASSN file associates a report destination (as defined in Glb.Stn) with a model of
printer, enabling the correct printer control codes to be used when you run a report to
output device TP (as defined in Glb.Device), or when you print report output from ROC
using the output device TP.

COM and COM+

COM (Component Object Model) is Microsoft's component software architecture
developed primarily for Windows. It is the foundation upon which OLE and ActiveX are
based, and provides a means to re-use code without requiring re-compilation. In COM, a
component is a platform-specific binary file that compliant applications and other
components can utilize. Programs incorporating a component's services never have
access to its internal data structure, but instead include pointers to its standardized
interface. Thus, it is possible for components to interact with each other regardless of how
they work or what language they are written in.

COM+ is an enhanced version of COM that provides better security and improved
performance. DCOM (Distributed Component Object Model) is an extension of COM that
allows applications and components to communicate with each other over a network.

Compile

To create object files from source files.

Component

A component is a cohesive unit of the business application, which is distributed and
deployed as a unit. The outermost classes in a model are generated as components.

Component Enabler

The product with which developers can build their own GUI interfaces, or Views, to
systems. These Component Enabler applications use the Enterprise Application Remote
Access Server to communicate with systems on the host. Component Enabler allows
applications to use current Web technology and the Enterprise NT world.
A–104 3826 5823-008

References
COMS

Communications Management System. On MCP COMS provides an extremely flexible
and dynamic Message Control System. Of special interest to EAE/Agile Business Suite is
its transaction code routing and synchronized recovery for DMSII databases.

COMSTP Program

A pre-compiled program that contains the necessary logic for routing of user transactions
in an MCP-based System.

COMUS

For OS 2200-based Systems, a product used to build Runtime before installation. Refer to
SOLAR.

Conditions

Conditions determine which records are selected by a profile.

Configuration

A set of properties describing how a project or model element is built and deployed.

Previous term was – Generate Set.

Construct method

The logic used to construct an ispec screen prior to display. Technology that has moved on
from screens to windows and programmatic invocation via component interfaces. The pre
screen logic has become the _Construct method in Agile Business Suite.

Previous Term was - Pre Screen logic

Copy Event Stereotyped Class

Copy events (copy event stereotyped classes) are events that participate in the copy cycle.
They behave similarly to copyIspecs, with the additional characteristics of events.

Only attributes that have graphical presentations are able to be copied. Copied attributes
are those with their corresponding graphical object's IsCopied presentation property of set
to true.

Copy Ispec Stereotyped Classe

Copy ispecs (copy ispec stereotyped classes) are ispecs that participate in the copy cycle.

Only attributes that have graphical presentations are able to be copied. Copied attributes
are those with their corresponding graphical object's IsCopied presentation property of set
to true.

Critical Point

A user-specified recovery point within a Report. In the event of failure, recovery restores
the environment to the last successful Critical Point, then resume execution at the location
of the Critical Point.
3826 5823-008 A–105

References
D

Data Dependent Attribute

The Data Dependent Attribute defines appropriate print attributes for Enterprise Output
Manager reports. Agile Business Suite comes with a simple DDA.

Database ID

The identifier for an SQL Server database.

Debugger

A workstation testing environment for Developer. Includes a logic debugger.

Debug Mode

Option setting to determine what is built and run when a debug session is initiated.

Debug Settings

A set of breakpoint, watch, and debug options that can be saved to a file and loaded into
a Debugger session as needed.

Dependency

A relationship between two elements where one element depends on the other for
something. The term “dependency” is taken from UML. Dependencies may be created
implicitly by referring to an object in logic; or they may be created explicitly to represent an
intention to refer to an object in logic (an “abstract” dependency). Where a real
dependency is created, the abstract dependency becomes a real one.

Previous term was – Relation.

The fireup ispec is now defined using a Dependency. All dependencies consist of a client
and supplier element and the type of dependency. The fireup ispec dependency is valid
between a class of stereotype <<segment>> and a supplier that is either <<ispec>> or
<<event>>. The supplier Ispec that is displayed when the System is initiated.

Deploy

To implement a set of executables and a database on a host machine. The result of
deployment is the creation of an application on the host.

Deployment Client

A client GUI for completing the deployment function.

Deployment Folder

A Folder Model Element with Configuration Property IsDeployable set to 'yes'. Used as a
means for grouping elements to deploy within Logical Modeler.

Descriptive properties

These properties are either used for design or as a default. They do not affect the runtime
behavior of the class, but are either descriptive such as Description property or influence
the semantics of other entities such as MemberPersistence property.
A–106 3826 5823-008

References
Dictionary

A Dictionary is a form of Folder. It is however limited by the fact that it can only contain
Objects. These are mainly considered Classes, a Dictionary can be described as a Class
Dictionary. In the same way that Folders can be added to any Namespace, Dictionaries can
also be added.

Global dictionaries (defined directly under a model) can be used to share dictionary
definitions across multiple applications. Local dictionaries (added to a segment) can be
used to define data types for use only in that segment. Each dictionary may contain
primitive and non-primitive classes.

Differences Report

An XML report of the differences found when two files, objects, revisions, or two versions
of a specification are compared. This report can be viewed and printed from an Internet
browser, or manipulated as an XML file.

Direct Report

A Report that uses the Report Output Control System (ROC), and which sends output
directly to an output device and not to the ROC database. Also, refer to Report Output
Control System. Contrast with Standard Report.

DMSII

The native database server for MCP machines. DMSII is also known as Enterprise
Database Server.

Document window

The document window hosts the various designers that make up the Developer specific
interfaces. A document window is displayed for each open element. The available
designers for the System Modeler specific interfaces change according to the kind of
element that is opened, and its properties.

Documentation

Information entered as text which supports an Element.

Previous term was – Business Rules.

Dynamic Object

An object on a painted form that must be bound to an attribute for it to function.

E

Element

Collective term for the individual parts of the Business Model.
3826 5823-008 A–107

References
Enterprise Output Manager

The Unisys Enterprise Output Manager software application is a comprehensive print-
management and file distribution solution for mixed-platform networks. Coupling Unisys
Agile Business Suite with Enterprise Output Manager increases the designs possibilities
and flexibility of your Reports.

Previous term was – DEPCON.

Event

An activity performed by an organization, for example a sale, purchase, or payment.

A store of data about an activity performed. An Event consists of a screen layout and
associated logic (Pre-Screen logic, Pre-LINC logic, and Main logic). Together with
Components, Events form the fundamental building blocks of a System. Also, refer to
Ispec.

Event Stereotyped Class

A class that automatically includes the behavior and characteristics of an event. This
includes the characteristics of an ispec plus all its persistent attributes automatically
become “same as” an equivalent attribute in the event structure in the business segment.

Previous term was – Event.

Exclusive Use

When applied to a Model, prevents other clients from signing on to the model until
removed, (for example during load, extract or build).

Exporter

The Exporter utility allows you to export of an entire Model, or selected elements into an
Export File, or export all the changes that have occurred since a user specified date and
time.

Extended Language Message System (ELMS)

An OS 2200-based facility that provides translatable versions of messages used by
software.

External Class

A placeholder for something outside Developer that is referenced in an application. An
external class may represent a .Net or COM component, or it may represent an application
providing transactions (the functionality of an OVI ispec).

Previous term was – OVI Ispec

Extract File

A flat text file created or read by a Report.
A–108 3826 5823-008

References
F

File Equation

For MCP, options that can cause a task to use different files, or to use files in a different
way, than it otherwise would.

Filegroup

A discrete part of an SQL Server database. File groups in the same database can be stored
on different physical devices.

Filter Definition

Filter Definitions enable you to create and modify filters to display selected information for
the Members Page.

Fireup Ispec

The Ispec that is displayed on your terminal when you sign on to an Enterprise Application
System.

FLSS

For systems targeting OS 2200, you have the option to generate as Fast-Load Self-
Contained Subsystems. FLSS deployments contain one or more specially linked user-
defined subsystem object modules, made up of a number of Ispecs and Separately-
Compiled Global Logics, which are statically linked and contain no unresolved references.
They are generally more stable than an SCSS deployment, which relies on dynamic linking.

Folder

An activity is now defined using a Folder. A folder allows members of a namespace to be
grouped together who represent a definable A group of objects which together perform a
business function.

Previous term was – Activity, Global Setup Data Block.

Form File Utility (FFU)

The Form File Utility (FFU) allows users to graphically place fields on an electronic form and
to supply the characteristics of those fields. The output from the FFU is a .DFF file, which
is a combination of a Windows Metafile (WMF) or Windows Enhanced Metafile (EMF) and
a collection of fields. The .DFF file is then used by the Enterprise Output Manager DDA
feature to place data in the fields when composing the printed page.

Formdepth formula

A formdepth formula defines an output sequence to be sent to your output device for the
output control code specified. It is an extension of the sequence of hexadecimal values in
the usual output control code.
3826 5823-008 A–109

References
Frame Stereotyped Class

A class that implements the functionality of a frame. It may have an interface and inherits
a “Main” method that is executed on a printframe LDL command. The Main method may
be overridden. The Class functions as a report frame by providing a main method to
override and restricting properties to those applicable to reports. When an attribute of this
class is invoked, the main method is executed before printing the presentation.

Previous term was – Frame.

Framework Method

System Modeler provides several methods for some classes. These methods are
automatically called at the appropriate stage in the Developer processing cycles.
Overriding the method invokes the user logic.

G

Generalized Interface (GLI)

The GLI program (GLI.exe) accepts input formatted for GLI from stdin and sends it to the
target system. Responses are returned to the GLI program and echoed to stdout. Some
error conditions may be noted in stderr.

GLI input format uses commands and keywords in a freeform style. Although GLI input
files are much larger than fixed format NOF files, your applications may find it easier to read
and write the GLI format.

Generate Threads

A number of parallel generate tasks that can be initiated through Builder.

Group member

Attributes with public visibility and no persistence. By virtue of being public, they define
the string buffer representation of the owner attribute. Assigning a string to the owner is
actually assigning it to these members. The sequence number determines the order of
assignment.

Previous term was – Group Global Setup Data Item, Group Setup Data Item.

Group Stereotyped Class

Groups (group stereotyped classes) are a way of representing structures in your
application. They can contain only attributes as members. Member attributes can be
primitives or instances of other groups. Attributes cannot be persistent.

H

Host

Computer on which an application is running.
A–110 3826 5823-008

References
HUB

A proprietary interface that allows updating and inquiry between two runtime applications.
HUB also supports two phase commit, which ensures consistency in any distributed
update transaction.

HUB Background Run

For OS 2200 Systems, a background run that processes external Automatic Entries. There
is one Background Run for each Runtime. Also, refer to HUB.

HUB Listener

This service listens for and accepts HUB connection requests from other Enterprise
Application/Agile Business Suite user systems.

I

IC

Interim Corrections (ICs) are used to distribute new features, fixes, customer requests and
newly validated versions of support software. Also, refer to UCF.

ICP

Refer to Initial Control Program (for OS 2200-based Systems) and Ispec Control Program
(for UNIX-based Systems).

Importer

The Import utility is provided to migrate model specifications from 3.x into the new System
Modeler constructs. The Import LCIF component is for migration purposes, however the
Import utility also allows you to import an existing Developer model from another
Developer database.

Inheritance

Classes can inherit members from other classes. Classes can be inherited by normal
inheritance within the model, or using the Insert command.

Ispec Control Program (ICP)

The program that controls the generated Ispec subprograms in OS 2200-based Systems.
Contrast with COMSTP Program (for MCP-based Systems) and Ispec Control Program (for
UNIX-based Systems).

IsPersistent

Specifies whether the element is persistent.

Inner class

A class that is contained within another class. It has access to the members of its
containing class. This is a concept that is taken from Java.
3826 5823-008 A–111

References
Insertable Stereotyped Class

A class that implements the functionality of an insertable global logic. It has a Main method
and optionally has an interface. The “insert;” LDL command causes the logic to be inserted
in place.

Previous term was – Insertable Global Logic (GLG).

Integrity Management

An optional feature of System Modeler Source Control which ensures that the contents of
the Developer Repository are in synch with the contents of the Version Control Bank.

Interrogation Point

IsKey

The ordinate of an Ispec is now defined using the IsKey property of an Attribute. The key
of a class Data Item of a Component or Profile that acts as the unique identifier to
distinguish one record from another. Several attributes can define the key. The access path
to individual Component or Profile records.

Previous term was – Ispec Ordinate.

Ispec Stereotyped Class

A collective term for Components and Events. In Enterprise Application Environment, an
Ispec models an entity or activity in the real world. An Ispec also specifies the user
interface, the processing rules, and the database structure to be used to represent it in the
deployed user system.

A contraction of the term Interface Specification.

A class that automatically includes the behavior and characteristics of an ispec. This varies
according to whether the class is functioning as an input ispec (has an interface but no
persistent attributes), output ispec (no interface but has persistent attributes), or IO (has
both an interface and persistent attributes). The characteristics it inherits changes as
interfaces or persistent attributes are added or removed. These include inheriting the
various ispec processing cycles and framework methods (Construct, Prepare, Edit and
Main), and automatically adding a variable to the <<Segment>> Class for each persistent
<<Ispec>> Class, and a public method for each <<Ispec>> Class with an interface

Previous term was – Ispec.
A–112 3826 5823-008

References
Mapping between Agile business Suite <<ispec>> Class types and
Enterprise Application Environment Usage Equivalents

Mapping between Agile business Suite <<ispec>> Class types and
Enterprise Application Environment Usage Equivalents including ClearPath
MCP

AB Suite <<ispec>> Class Attribute Properties EAE Usage Equivalents

Presentation Persistence
Members

Has Keys Usage Ispec Type

Yes No No Input memo

Yes Yes One Input-Output standard

Yes Yes Multiple Input-Output Memo with
automaint profile

Yes Yes No (but has a
default profile)

Input-Output Memo with
automaint profile

Yes Yes No Input-Output Memo

None Yes One Output Standard

AB Suite <<ispec>> Class Attribute Properties EAE Usage Equivalents

Presentation Persistence
Members

Has Keys Ispec Type
MCP Config

Usage Ispec
Type

Yes No No NA Input memo

Yes Yes One standard Input-
Output

standard

Yes Yes Multiple standard Input-
Output

Memo
with
automaint
profile

Yes Yes No (but has a
default profile)

standard Input-
Output

Memo
with
automaint
profile

Yes Yes No standard Input-
Output

Memo

None Yes One standard Output Standard

Yes Yes None or more Table Input-
Output

Table

None Yes None or more Table Output Table

Yes Yes None or more Direct Input-
Output

Direct
3826 5823-008 A–113

References
J

No entries under “J”

K

Key

The profile ordinate is now defined using Profile Keys. The key defines the attributes by
which a Profile accesses individual records. A Profile can have several Profile Keys.

Previous term was – Profile Ordinate.

Keyword

A class with attributes as members that have a presentation. The usage in an Ispec is
represented as an Attribute that is derived from the class.

Kind

The Kind property of an entity determines the kinds of entities it can own. For example, a
method cannot own another method. Can change depending on property values, Class-
Attribute-Parameter

Kinds include: Attribute, Class, Class diagram, Folder, Method, Parameter, Profile, Teach.

L

Labelling

An optional feature of System Modeler Source Control that enables you to assign a short
name to a branch, a version, or group of related versions.

Version labels can be used to implement Release Management.

Language

A natural language in which text components of the system can be displayed. The default
language is usually English, but can be any language you chose. A system can have up to
14 languages concurrently installed. Users, or the software itself, can chose to display
screens, Reports, or prompts in any one of the installed languages.

LDL+ (Logic Definition Language)

An acronym, to describe the language of the logic used.

Previous term was – LINC Definition Language.

Yes Yes None or more Direct Output Direct

AB Suite <<ispec>> Class Attribute Properties EAE Usage Equivalents
A–114 3826 5823-008

References
Literal

A literal is a value used directly by a system, without requiring any named storage area. A
literal may also be used in many logic commands in place of Data Items, and to define the
characteristics of Setup Data Items. A literal must consist of at least one character and
must be enclosed in parentheses. Refer to Working with Literals for more information on
using Literals.

Lock

System Modeler has three forms of locking: An automatic soft lock that is set up whenever
you attempt to modify an Object. This lock is released when the transaction ends or you
cancel the operation. A manual lock that emulates the behavior of the host resource
locking. If Source Control is installed, a Version lock that is set when an object is checked
out of the Version Control Bank.

Logic Editor

The Logic Editor is used to create, edit, save, and compile logic for methods within
Developer.

Logical Delete

Mark a record for deletion without physically removing it from the Repository.

Logical Printer

A logical printer is a printer name specified in a Report. You can use the Printer Setup
command from the File menu to map the logical printer name to a Windows printer name.

Logical Reorganization

Transforms the data from the existing physical database schema into the format of the
newly developed logical schema in memory each time the data is accessed. File formats
are not altered. Allows a new database schema to be run against the existing old database
schema prior to a physical reorganization.

M

Method

Logic is called by name explicitly or implicitly as part of a processing cycle, and has data
passed to it by way of parameters. Performable GLGs, frames and ispec logic become
methods. Functionality attributed to methods in this document also applies to each of the
logic types, with the exception that startup and closedown in a business segment, frame
0 in a report and the existing ispec logic have predefined interfaces with no parameters.

Previous term was – Logic, Performable LG, Callable GLG.

Method Edit

A framework method for a <<Copy From>> class that contains logic that is executed
during the first processing pass for a copy from ispec.

Previous term was – Edit Logic.
3826 5823-008 A–115

References
Method Main

A framework method:for <<ispec>>, and <<event>> classes which is automatically
executed in the processing cycle, for <<SQL Script>> classes which is executed for each
loop iteration, for a <<Frame>> class, which is executed on a “print.frame” command.

Previous term was – Main Logic.

Members

Elements to which you can add other elements, and all the elements contained within the
selected element.

Merging

A feature of System Modeler and Source Control which allows you to combine two
versions of an Object.

Model

A structured description of a software system (as opposed to, say, a text file
representation.

Model Export File

A flat file of a system created by the Extract Utility for the purpose of loading a model to
another machine, or offer a convenient way to export elements from your model.

MSI (Microsoft installer) file

A deployment package consisting of a structured storage file containing the components,
web pages and database schema for the application.

MSMQ

Microsoft Message Queuing. A message-based protocol that guarantees resiliency and
delivery. Messages are stored in a central location, so if either end of the transaction is not
there when the message comes in, the message is queued until the other end is there.
This is especially suitable for distributed applications where you may have PDA-like units
that are not always connected to the system.

Multiple Check Out

The multiple check out facility of System Modeler Source Control allows a revision of an
element to be checked out of a Version Bank by more than one user at the same time. This
operation is controlled by the Reserve Elements on Checkout option.

Multiple Language Facilities

A collective term for the facilities that enable a system to be translated and used in
different languages.

Multiplicity

The Multiplicity property specifies the number of instances. Each instance allows the
assignment of a value to the Object, typically referred to as an Attribute or Variable.
A–116 3826 5823-008

References
N

Name

Long names of Objects are up to 64 characters and allow double-byte characters, such as
Kanji, to be used for an element name. They also allow you to give elements more
meaningful names.

Namespace

All elements, with the exception of the model itself, belong to an owning element. Named
Elements are identified within their owner by their name, and for this reason their owner
is called a Namespace.

NOF

Non-Formatted Input/Output. A message-oriented interface between a user system and,
usually, an external system and terminal. The interface to Graphical Interface Workbench
uses NOF.

Nonclustered Index

Microsoft SQL Server database index in which the logical order of the index does not
match the physical, stored order of the rows on disk. The data is stored in one place, the
index in another, with pointers to the storage location of the data.

O

Object Browser

The Object Browser enables you to view all the elements in your model. However it does
not enable any updates to be performed. This browser has three panes.

The Objects pane displays the container elements as a tree view.

The Members pane displays certain contained members of a container element selected
in the Objects pane.

The Description pane displays details about an element selected in either of the other
panes.

Offline input (OFF)

The Offline Input client program (OFF.exe) is used to load entire files of data into a target
application. The input data is piped into the Offline client's stdin, and application responses
are displayed to stderr. The input records must be in the correct format required by the
target application, and must be error free.

OLTP

Online Transaction Processing (OLTP) is a generic method for transferring transactions to
other systems.
3826 5823-008 A–117

References
OLTP Buffer Definition File

An OLTP Buffer Definition file holds the data format for communicating with external OLTP
Servers.

OLTP View Ispec

On the host, an OLTP View Ispec (OVI) is used to store an OLTP View Description file. This
file holds the data format for communicating with external OLTP Servers.

Overrides

Overrides are methods of a class that override either the standard methods of a class
(framework methods) or the methods of a superclass.

P

Pack

A definition of the location where part of a user system or an environment database is
stored. This may be either a tablespace or a directory path.

Painter

A facility used to define an Ispec screen layout, Report Frame layout or Teach Screen.

Parameter

A variable that forms part of a method interface, to pass data into and/or out of a method.

Persistent

Lasts longer than the current processing cycle. For example, persistent attributes in an
<<ispec>> class are stored in the database until they are deleted (this is “indefinite”
persistence), and global work lasts longer than the current transaction, and critical point
SDs are stored in the database so that report processing can be recovered.

Physical Delete

Removal of a record from a database or repository.

Physical Reorganization

Copies and transforms the physical data from the existing database into a form which
matches the new database schema.

Prepare method

The customers’ logic executed before an ispec’s automatic look ups and main logic. Its role
is to validate input in preparation for the rest of the processing. This becomes the
“_Prepare” method.

Previous term was – Pre LINC logic.
A–118 3826 5823-008

References
Presentation

Format for an interface into or out of a class. This can be a user interface (screen, form) for
an ispec, or a report frame out of a report.”

Previous term was – Ispec character screen, graphical screen, Report frame layout.

Primitive

A primitive object is described by what it needs to be able to do. Its contents (single,
double or mixed byte text, signed or unsigned numeric, or various kinds of date), are
indicated by its Type property.

Profile

Defines a set of criteria for selecting database records for a persistent class, and possibly
constraints that limit to a subset of records (a conditional profile).

Previous term was – Profile.

Project

A set of classes which would be built and deployed together. In the component world this
might become a component of a larger application.

Previous term was – Application.

Property

One of the characteristics of an element in the Developer model that can be defined in the
properties pane in System Modeler. These are generally called “options” in previous
releases of Developer.

Previous term was – Option.

Properties window

The Properties window displays the properties of a selected element and enables you to
modify those properties, unless they are read-only. It also enables you to select multiple
elements and displays the common properties.

Protocol Adapter

Protocol adapters are the services that enable established protocols such as RATL, SOAP,
NOF, and HUB to communicate with a generated system.

Q

Query

A set of user-defined search criteria for extracting specific information from a database.
Version Control permits you to define queries to interrogate the Developer Repository or a
Version Control Bank. Version Control Administrators can define queries to search the
Audit Store.
3826 5823-008 A–119

References
Query Menu

For MCP a user-maintained list of queries that can be run as needed.

R

Recovery

Process which restores database files from a backup and performs roll-forward recovery
from a current transaction log file. Failed Reports must be restarted manually, as they are
not automatically restarted by the recovery process.

Recursively

Performs an action on a selected element and all its individual children.

Relative Day Number

A date expressed as the number of days since January 1 of the base year. The relative day
number of January 1 of the base year is zero.

Release Management

A feature of System Modeler Source Control. By assigning the same label to revisions of
a number of elements, you can ‘get’ all Objects from the Version Bank with that label for
the purpose of building a release.

Remote Access Server

The Remote Access Server (RAS) resides on the target host server and provides the basis
for communication between user Views and systems. Can be used with Graphical
Interface Workbench and Component Enabler Viewer applications.

Remote Access to LINC (RATL)

The RATL protocol is a simple wrapping of a standardized and extended set of NOF
messages that provide all the functionality needed to support GUI forms.

Reorganization

Process by which the physical database for a system is updated to match the logical
definition held in the Model. Refer to Logical Reorganization and Physical Reorganization
for more information.

Report

Part of a System, generated and used to produce output or to carry out specialized batch
processing of a Database. Consists of Report Frames and Report Main method, and a
number of options that define the operations and output of the Report. The Class functions
as a report by allowing only report Properties to be defined and disallowing a Presentation.

As the final part of its processing cycle, a <<Report>> class deletes itself.
A–120 3826 5823-008

References
Report Group

A set of Reports in a System Configuration that are generated as a group. All the Reports
assigned to the group are generated by selecting the Report Group for generation.

Report Output Control (ROC)

Runtime for Windows Operating Systems uses Report Output Control (ROC) to print text
only output from reports on TCP printers, including PostScript-compatible printers. In
addition, you can print formatted output on TCP printers that use control characters in
reports.

Report Output Control (ROC) manages output for standard reports. Control information is
stored in the ROC database, while output is stored in COBOL text files. Users can view
reports using the ROC client interface through Presentation Client. Procedures for
browsing reports are given in the ROC help file.

Reserve

Locks and element to ensure integrity of the model, and to disallows two persons from
modifying the same element at the same time. Refer to Lock.

Revision

A set of changes to an element which are stored in a Version Control Bank. A revision is
assigned a unique number by Source Control. You can also assign an optional version label.

Runtime

A collective term for the software programs required to operate, control, and audit a
system and its Database.

S

Schema

Database structure.

Segment Stereotyped Class

A class that automatically includes the behavior and characteristics of a business segment.
This includes inheriting a processing cycle, built-in attributes like the glb.* ones.

Segments (segment-stereotyped classes) generally function as the top-level definition of
an application. They are sometimes referred to as a “component”, and own all the model
entities that the application consists of.

Previous term was – Business segment.

Segment Cycle

The processing cycle for processing NOF and OLTP messages in EAE 3.3; and the
business segment’s Process method in Agile Business Suite.

Previous term was – LINC Cycle.
3826 5823-008 A–121

References
Semantic properties

These properties define the class behaviour and force the inclusion of framework
members. These properties define the type and may be optional such as the
AutomaticEntryCapable property. Some examples of semantic properties are Length,
Primitive, PresentationType, and Stereotype. Once a semantic property has been specified
it cannot be modified by an inheriting object (length).

Server Library

For MCP Server libraries are simple way of sharing stateless code using a one-way linkage
mechanism (client > server).

Session Language

The session language is the language currently being used by Agile Business Suite and
defines the language that is used to display items such as values and captions.

Sleeping Report

A Report that, by the use of the SLEEP Logic command, stops executing for a
predetermined number of seconds or until reactivated by your system.

SOAP

Simple Object Access Protocol. A standard for encoding XML messages for transmission
over HTTP. It is a lightweight protocol for the exchange of information in a decentralized,
distributed environment. It is an XML-based protocol that consists of an envelope that
defines a framework for describing what is in a message and how to process it, a set of
encoding rules for expressing instances of application-defined datatypes, and a convention
for representing remote procedure calls and responses.

Solution

A collection of projects (possibly using different implementation technologies) in Visual
Studio that would be built and work together. These may all be Developer projects, or built
with other tools, or a mixture of the two.

Previous term was – Application (refer to Project).

Solution Explorer

A Visual Studio window which displays a flat view of the versionable elements for each
Developer project/model and provides Source Control operations on these elements.

Source Control

Visual Studio allows integration of a variety of version control tools with its source control
services, providing the tool supports the SCC interface used by Visual Studio. Developer
incorporate the Borland Star Team version control tool. You are not restricted to using this
particular tool for System Modeler or other Visual Studio projects that you may work with.
A–122 3826 5823-008

References
Source Control Bank

The Source Control Bank is a file storage facility that holds controlled copies of elements,
but it does not replace the Model. The Source Control Bank supports source control
services, such as locking and maintaining the history of an element, while the Model
functions as a work area where copies of the controlled elements are modified and tested
before being moved back into the Source Control Bank.

SMTest Case

An SMTest case is an XML file, which contains a series of one or more test steps. These
test steps are performed to cover a procedure or transaction, such as connection, addition,
deletion, or updating data through the application.

SMOrderedTest Case

An SMOrderedTest case is a collection test steps and other SMOrderedTests grouped
together. The SMOrderedTest acts as a container for SMTest cases. You can organize
SMTest cases into SMOrderedTest for better management of the SMTest cases. A
SMOrderedTest is also saved as an XML file.

SQL Script Stereotyped Class

A class that implements the functionality of a SQL Script. It inherits a Construct method
(called “preamble” in the existing Developer) which is often called to open the cursor in
preparation for iterating through the results of a select statement a Main method which is
executed for each iteration of the determine statement, and a Destruct method (called
“post amble” in existing Developer) that is called to release any resources used by the
script. These can be overridden using SQL for a specific SQL Script Stereotyped class

Previous term was – SQL Script.

SQL Server

A relational database management system that is optionally used as the database software
for systems based on the Windows operating system.

Standard Report

A specific type of Report that uses the Report Output Control (ROC) System, and whose
output is written to the database. Subsequent use of the output is determined by the user.
Refer to Report Output Control System. Contrast with Direct Report.

Static Object

An object on a painted form that cannot be, or is not required to be, bound to an attribute.

Stereotype

A concept taken from UML for representing a behavioral distinction. A stereotype is a
subclass of an existing element with the same attributes and relationships as that element
but with a different intent and possibly additional constraints. A tag indicating how an
element in UML is to be interpreted. Stereotypes are used to distinguish the EAE
specializations and patterns from generic model elements.
3826 5823-008 A–123

References
Subclass

A class that inherits public and protected members for another Class (its “superclass”).
Inherited public or protected members are added to those defined for the subclass.
Methods and profiles may be overridden (logic redefined) in the subclass to give it different
functionality.

Subsystem

On MCP-based runtime hosts, Ispecs are grouped into subsystems. For each subsystem,
there is a corresponding COMSTP program with the file name system/COMS_LINC_TP
and the program name the same as the corresponding subsystem.

This is not to be confused with Agile Business Suite SADD Subsystems.

Superclass

A class that has its public and protected members inherited by another class (its
“subclass”).

Synchronous

A process whose caller waits for the process to complete, behaving as though it is being
executed by the same thread.

System

The set of application programs and database generated from a Specification.

System Modeler

System Modeler in Agile Business Suite Developer models an application at the logical
level using a combination of common Visual Studio and Developer specific windows and
views. It merges the best of the mainstream object and component concepts, including
COM and UML, to provide a powerful development environment.

T

Target Host

The name of the specific host on which a generated System is deployed.

Task

MCP: A task is a process. It may be either synchronous (dependent, parent waits while
process executes) or asynchronous (independent, process executes in parallel to parent).
For dependent, the system creates references to the objects stored by the parent while
for independent the system creates copies of these critical objects when the process is
A–124 3826 5823-008

References
initiated. The most crucial difference is, that an independent process can continue to exist
after its parent has terminated. A dependent process must terminate before its parent
does.

Tasks are typically used to provide a parallel processing environment, which can benefit the
performance of an application.

Every process makes use of certain objects originally declared by another process. These
include the task variable, the procedure the process is executing, and any objects passed
as actual parameters to the process. These objects are referred to as the critical objects of
the process.

Teach Screen

A screen in a host system that displays user-written help information about an Ispec. An
Ispec may have more than one Teach screen associated with it. Text on graphical screens
has clear (that is, see-through) backgrounds so that it inherits the color of the screen
background.

Terminal Printer Spooler (TPS)

An MCP-based Enterprise Application Utility that enables users to manipulate the output
of a Report to terminal printers.

Test Result

A test result is an XML file, which is saved when you play back a test case in ATT.

Tool Tip

When the mouse hovers over a dynamic object, information about the attribute behind the
control is be displayed as a Tool Tip.

Transfer Attribute

Transfer attributes tell the Enterprise Output Manager application how, where, and when
to transfer a file.

Translations

Translations specify how captions and strings are translated into other languages.

U

Unified Modeling Language (UML)

UML is a commonly accepted graphical language, which uses a range of different kinds of
diagrams to describe systems, including software systems, but which has also been
applied to other systems like organizations.

UML diagram

Class diagrams use standard UML (Unified Modeling Language) notation to represent the
static relationships between model entities. You should consult a UML reference for
details on UML notation.
3826 5823-008 A–125

References
Universal Description, Discovery and Integration (UDDI)

UDDI is a specification for maintaining standardized directories of information about web
services, recording their capabilities, location and requirements in a universally recognized
format.

Unreserve

Removes an existing lock on a selected element and allows the element to be edited.
Refer to Reserve.

USER

The USER protocol enables users to create a custom subprogram that can be called from
logic to communicate with an external system. A sample file, USER.cpp, is supplied with
the Runtime installation.

The User Interface facility enables an application to initiate a transaction to another type of
system, and to receive a response from that system.

V

Value Logic

Logic associated with a Type that restricts the values that item may take. For example, a
numeric item may be restricted to the range 1 through 12.

Vanilla Class

A logical class element contained in the Model. This kind of class has no stereotype to
enforce any pre-defined attributes or behavior, nor does it automatically participate in the
Business Segment Cycle’.

Variable

Memory that stores data and is identified by name. An attribute is a variable that belongs
to an object; a parameter is a variable that passes data into or out of a method, or a variable
may be local to a method.

Version Control

An optional feature of System Modeler that provides source control for versionable
elements. Version Control stores each version of an element so that you can access and
use earlier versions if required. Refer to Source Control.

Version Control Bank

The file storage facility for Source Control. The optional Version Control Bank contains
‘controlled’ versions of elements but does not replace the Model database as the store for
these elements. The Version Control Bank resides within any complying Version Control
Tool.
A–126 3826 5823-008

References
Version Label

An optional, user-defined name that can be assigned to a revision of an element in a
Version Control Bank.

Visibility

The Visibility property of an entity determines its scope, which is its accessibility to other
entities, in relation to inheritance. For example, a method cannot refer to an attribute that
is not within scope.

Visibility can be Private, Protected or Public.

W

Watch

A feature of the Debugger that monitors, or ‘watches’, the state of an attribute. When logic
execution is stopped during debugging, the value of the watch item is displayed in the
Watch Window.

Web Service

A generic means of invoking an operation remotely. Web services are being standardized
by a number of bodies. They use common protocols to pass the request (including HTTP
and SMTP), XML to encode the request, WSDL to describe their interface, and UDDI to
publish their interface descriptions. Web services pass messages asynchronously. They do
not operate within a session.

WinForm

A container application used to present information to the user and to accept input from
the user during a runtime session.

WSDL

Web Service Description Language. A machine-parsable description of a Web Service, a
WSDL file is an XML file that describes the protocol used to access a Web Service on a
given host. Given a properly formed WSDL file, most Web Service frameworks are able to
generate wrapper classes so that clients can talk to Web Services without needing to
know about the underlying protocols.

X

XML

Extensible Markup Language (XML) is a flexible, universal file format for creating data for
common information formats and sharing both the format and the data on the Web,
intranets, and elsewhere. An XML file contains data in identified fields that are used by XSL
style sheets to present the data in the XML file.
3826 5823-008 A–127

References
XSL

Extensible Style sheet Language (XSL) is used for creating style sheets that describe how
data sent over the Web using XML is to be presented to a user. XSL gives developers the
tools to describe exactly which data fields in an XML file to display, and exactly how and
where to display them.

Y

No entries under “Y”

Z

No entries under “Z”
A–128 3826 5823-008

Appendix B
Related Product Information

The following publications contain information relevant to the definition and operation of a
system. These publications are reference sources for users who have completed Agile
Business Suite training courses. See your local Unisys representative for information on
available training courses.

These documents are published by Unisys Corporation and are available on the Internet at
http://www.support.unisys.com. Order hardcopy documents online through the Unisys
Book Store at http://unisysbookstore.cgxsolutions.com/Home.aspx.

In addition to these documents, you may require documentation specific to your host to
describe the operation of related software.

Unisys Agile Business Suite Installation and Configuration Guide

This document describes the installation of Agile Business Suite in standalone or
multiuser environments and the administration of its working environment, including
database administration, security and other issues.

Unisys Agile Business Suite Developer User Guide

This document provides information on using Developer System Modeler to design,
develop, build and test systems on workstations.

Unisys Agile Business Suite Programming Reference Manual

This document contains reference material for developers, such as logic commands and
System Data items used in creating systems.

Unisys Agile Business Suite Runtime for Windows® Operating System
Administration Guide

This document describes the generation and operation of systems and Reports and the
general administration of systems on the Windows host.

Unisys Agile Business Suite Runtime for ClearPath MCP Administration
Guide

This document describes the generation and operation of systems and Reports and the
general administration of systems on the ClearPath MCP host.
3826 5823-008 B–1

Related Product Information
Unisys Agile Business Suite Component Enabler User Guide

This document describes how to configure your system for a Component Enabler
application, how to configure the Component Enabler Generator and clients, and how to
generate Component Enabler applications for use on client workstations or using the
Web.

Unisys Agile Business Suite Component Enabler Class Reference
Summary

This reference card is supplied in Acrobat PDF format to provide a quick reference by task
to the common methods you would use to log on to a system using Component Enabler
and retrieve data. It also lists the common response and error codes.

Unisys Agile Business Suite Client Framework Programming Reference
Manual

This document contains reference material about the usage of AB Suite Access Layer
APIs and customization of the client applications by using various client development
tools.
B–2 3826 5823-008

Index
A

access control, 2–7, 3–1
Add Existing Item dialog box, 3–8
Add New Item dialog box, 3–7
adding

existing items, 3–7
items, 3–6
new items, 3–6

adding a form, 3–133
Advanced Import Options, 3–365
application

building, 3–218, 3–252, 3–255
deploying, 2–7, 3–266

application to start
property, 3–194, 3–198

array, 3–140, 3–162
attributes, 3–170, 3–178, 3–180
autos

Debugger window, 3–200

B

break all debug command, 3–198
breakpoints, 3–201

Debugger window, 3–200
restrictions, 3–202
working with, 3–202

build, 3–278
configuration properties, 3–278
configuring, 3–252, 3–278
error handling, 3–359
logging, 3–359
reports, A–18

Builder, 2–7
overview, 3–252
settings, 3–278

Builder architecture, 3–253
building, 3–255, 3–256

application, 3–255, 3–256
in Developer, 3–272
reports, 3–257, 3–259, 3–261
systems, 3–259

button groups, 3–150, 3–152, 3–160, 3–172

C

call stack
Debugger window, 3–200

changed elements, 3–373
Changes Since, 3–362
class to debug

property, 3–194, 3–198
Class View, 3–133
classes, 2–55, 2–58
code editor, 4–1, A–46
combo box, 3–137
command line, 3–373
command line arguments

property, 3–194, 3–198
comment pages, A–18
Component Enabler, 3–261, 3–281, 3–359
Component Enabler user interfaces, 3–261
Component user interfaces, 3–280
conditions

breakpoint, 3–201
Conditions tab, 2–24
configuration properties, 3–193, 3–278
configurations

debug, 3–193
Configuring for Playback, 4–41
Connect Mode, 4–40
Connection, 4–44
continue

debug command, 3–198
copy from, 2–58, 3–35
CopyEvent, 2–57
copyfrom, 3–140, 3–141
CopyIspec, 2–58
Creating a Build Definition, A–67
creating breakpoints, 3–202

D

database, 3–257, 3–267, 3–269, 3–270, 3–339
3826 5823-008 Index–1

Index
checking details, 3–267
manually reorganizing, 3–270
reorganizing, 3–269

database changes
while debugging, 3–203

database kind
property, 3–196

database security
during debugging, 3–209

debug mode
property, 3–198, 3–204

debug mode property, 3–190
debug session

initiating, 3–198
running, 3–198

debug session types, 3–190
Debugger, 3–190
debugging, 3–190

breaking, 3–198, 3–201
call stack, 3–200
continuing, 3–198, 3–203
database changes, 3–203
logic changes, 3–203
multiple-language environments, 3–204
reports, 3–190, 3–198
step, 3–198
stopping, 3–198, 3–201
SwitchTo, 3–204
user interface changes, 3–203
watch, 3–200

deleting breakpoints, 3–202
Dependencies tab, 2–25, 2–27, 2–41
deploying an application, 2–7
deployment, 3–218, 3–266, 3–272

manual, 3–272
package, 2–7
requirements, 3–266
runtime, 2–7

deployment folder
property, 3–194

deployment package, 3–269, 3–272
installing, 3–272
repair, 3–274
transferring, 3–272
uninstalling, 3–274

Destination File, 3–361, 3–362
Destination Model, 3–363
Destination Server, 3–363
Developer interfaces, 2–24, 2–25, 2–27, 2–28,

2–29, 2–33, 2–35
Developer items, 2–53
Developer properties, 3–13

Developer windows, 2–23
development environment

System Modeler, 2–3
disabling breakpoints, 3–202
Documentation tab, 2–27

E

editing
configuration properties, 3–278

editing breakpoints, 3–202
editing logic, 4–1, A–46, A–48
editor options command, 4–1, A–46
editor options dialog box, 4–1, A–46
elements, 3–269
enabling breakpoints, 3–202
entering logic, A–46
error handling, 3–359
examples, 3–257
exclusive use, 3–80
Existing Item, 3–370
external application

debug mode, 3–190
extract files, 3–347

F

Filter Definitions Dialog Box, 2–30, 2–32
fireup

property, 3–198
folders, 3–257

about, 3–257
form

adding objects, 3–136, 3–143
grid, 3–136
styles, 3–134

function breakpoints, 3–201

G

General, 4–42
generate and deploy sequence, 3–218
generating an application, 2–7
grid, 3–136, 3–180
grouping, 3–12
Index–2 3826 5823-008

Index
H

hit count
breakpoint, 3–201

HUB, 2–7

I

Import Options, 3–363
Incoming Item, 3–370
Inheritance tab, 2–28
initial value

property, 3–208
Insertable substitution, A–70
installation, 3–272, 3–274, 3–275, 3–325

deployment package, 3–272
repair, 3–274
uninstalling, 3–274

J

Java compiler, 3–359

K

Keys tab, 2–28, 2–41

L

labels in reports, 3–180, 3–181, 3–183
language, 2–38

caption, 2–38
derived, 2–38
property, 3–194, 3–198, 3–204
session, 2–38
value, 2–38

layout panels, 3–137, 3–143, 3–158, 3–172
LDL editor, 4–1, A–46
line breakpoints, 3–201
locale, 2–38
locals

debugger window, 3–200
locking, 3–80
log file, 3–373
Logging, 3–362
logging, 3–347, 3–359

Logging to file settings, 3–371
logic

case sensitivity, A–46
editing, 4–1, A–46, A–48
entering, A–46
locking, 4–1, A–46
semantic validation, A–54
SOK/EOK support, A–46
syntax checking, A–54
validating, A–54, A–55, A–57
validation errors

due to model changes, A–57
logic changes

while debugging, 3–203
Logic Editor

appearance, 4–1, A–46
build menu, A–54, A–55
customizing, 4–1, A–46
edit menu, A–48
errors pane, A–57
intellisense, A–47
preferences, 4–1, A–46
status information, A–47

logical reorganization
during debugging, 3–208

LookUp, 3–371

M

machine name
property, 3–196

manually
reorganizing a database, 3–270

member lists, A–47
Members tab, 2–29, 2–41
method call debug mode, 3–190
method editor, 4–1, A–46
method to debug

property, 3–194, 3–198
model changes

while debugging, 3–203
modes

debug, 3–190
modifying breakpoints, 3–202
msi, 3–266, 3–269, 3–272
multiple-language

debugging, 3–204
3826 5823-008 Index–3

Index
N

namespace, 2–53
NOF/OFF/USER/GLI, 2–7

O

object
invisible, 3–143
select, 3–143

object type, 3–137, 3–143, 3–144, 3–172
On Clash, 3–365, 3–370
options settings, 2–27, 2–29, 2–33
Oracle SID

property, 3–196
Overrides tab, 2–33

P

Painter tab, 3–133
panel, 3–158
parameter values

property, 3–194, 3–198
Partial Import, 3–363, 3–375
performance

during debugging, 3–209
persistence, 3–339
Playback, 4–41

Connection, 4–44
General, 4–42
Session, 4–43

Pretty Print, A–71
printing, 2–52
properties

attribute, 3–23
business segment, 3–64
copy, 3–35
debug session, 3–193
event, 3–38
external class, 3–40
form, 3–134
insertable, 3–47
ispec, 3–49
method, 3–52
model, 3–55
object, 3–144, 3–146, 3–170, 3–183
parameter, 3–56
profile, 3–56
report, 3–61

SQL scripts, 3–68
teach screens, 3–69
type, 3–29
variable, 3–70

Properties tab, 2–35
protocol adapters, 2–7

HUB, 2–7
NOF/OFF/USER/GLI, 2–7
RATL over MSMQ, 2–7
RATL over TCP/IP, 2–7
SOAP over HTTP, 2–7
SOAP over MSMQ, 2–7

R

RATL over MSMQ, 2–7
RATL over TCIP/IP, 2–7
rebuilding, 3–268
Record, 4–38
redeploying, 3–268
Reeldor, A–70
reeldor examples, A–74
removing breakpoints, 3–202
reorganization

database, 3–196
logical, 3–208

reorganize database
property, 3–196, 3–198

reorganizing
database, 3–269

report
frame, 3–183

report frame, 3–180, 3–181, 3–185
reports, 3–180, 3–181, 3–218, 3–257, 3–259,

3–261, 3–280
debugging, 3–190, 3–198

reservation
automatic, 3–80, 3–82
clear, 3–80, 3–81, 3–82
manual, 3–80, 3–81

reserve
element, 3–80, 3–81, 3–82

resource usage
during debugging, 3–209

restrictions
breakpoints, 3–202

ROC, 3–347
run to cursor

debug command, 3–198
runtime, 3–347
Index–4 3826 5823-008

Index
runtime deployment, 2–7

S

saving breakpoints, 3–202
scenarios, 3–257
scope

selection, A–19
scripts, 3–325
search, A–13, A–15

dialog, A–13
results, A–13, A–17

security, 3–1
database, 3–209

Select Elements, 3–361, 3–362
selecting scope, A–19
sequence property, 3–141, 3–146
Session, 4–43
settings, 3–278

component enabler, 3–281, 3–359
deployment, 3–280
external, 3–320
installation, 3–325
logging, 3–359
persistence, 3–339
runtime behavior, 3–347

simple breakpoints, 3–201
Skipped, 4–42
SOAP over HTTP, 2–7
SOAP over MSMQ, 2–7
Solution Explorer, 3–133
Source Files, 3–363
Source Model, 3–361, 3–362
Source Server, 3–361, 3–362
Specify New Owner, 3–365
SQL server instance

property, 3–196
standard cycle

debug mode, 3–190
start options properties, 3–194
step into

debug command, 3–198
step out

debug command, 3–198
step over

debug command, 3–198
stereotypes, 2–53, 2–55
stop debugging

debug command, 3–198
subscript index, 3–140, 3–162

SwitchTo
while debugging, 3–204

syntax, 3–373, 3–375
System Modeler, 2–3

T

tabs
Conditions, 2–24
Dependencies, 2–25, 2–41
Documentation, 2–27
Inheritance, 2–28
Keys, 2–41
keys, 2–28
Members, 2–29, 2–41
Overrides, 2–33
Properties, 2–35
Unresolved, 2–40

tabs in Developer, 2–23
teach screen, 3–178
test database properties, 3–196
this

debugger window, 3–200
tool tips, 3–146, 3–174
translation, 2–38
two phase commit, 3–347

U

Unit Test Project, 4–39
Unresolved tab, 2–40
user interface changes

while debugging, 3–203
user interfaces, 3–261, 3–281, 3–357
Using Build Definitions, A–69

V

validate command, A–54, A–55, A–57
validating logic, A–54

errors, A–57
value-checking, 2–40
visible, 3–143
Visual Studio Environment, 3–256
3826 5823-008 Index–5

Index
W

watch, 3–200
debugger windows, 3–200

wildcard, A–13, A–15
windows

debugger, 3–200
Winform user interfaces, 3–280, 3–357
wizards, 3–361
working directory

property, 3–194, 3–198
Index–6 3826 5823-008

Unisys

38265823-008
3826 5823-008

	Contents
	Section 1: Introduction
	About This Guide
	Audience
	Documentation Update

	Section 2: Getting Started
	Overview and Features
	Development Environment
	Application Building
	Runtime Environment

	Exploring the Agile Business Suite Elements
	Objects
	Stereotypes

	Using the Model
	Getting Around System Modeler
	Model Entities
	General System Modeler Settings

	Summary

	Section 3: Developing Applications
	Creating System Modeler Projects
	Adding Projects
	Adding System Modeler Items
	Grouping Elements
	Setting Properties
	Model Structure Validation Rules
	Element Reservation
	Generating Client Framework Projects
	Using the Client Framework Classes
	Performing Backup of AB Suite Solutions
	Restoring the AB Suite Solutions
	Converting the AB Suite Model
	Developing AB Suite Applications in Mixed Mode
	Processing XML Messages

	Introducing the Runtime Cycle
	Transaction Processing
	Runtime Limits

	Defining User Interfaces
	PresentationType Property
	Adding a Form
	Adding Graphical Objects
	Graphical Objects and Attributes
	Creating Fixed Screens
	Creating Teach Screens
	Designing User Interfaces for Client Framework Applications
	Creating Reports

	Using the Windows Communication Foundation (WCF) Gateway
	FileStoreGateway Service
	Running the WCF Gateway
	Custom Gateway

	Debugging Applications
	Accessing an Existing Runtime Database to Debug an AB Suite Application
	Debugger Configuration Properties
	Running a Debug Session
	Testing Dynamic Attributes with Component Enabler
	Using a Test Database on a Host Machine
	Restrictions
	Performance and Resource Usage
	Debugger Administration
	Debugging through EBCDIC Tool

	Building Applications
	Builder Overview
	Builder Functions
	Builder Architectural Elements
	Building Applications
	Automating the MCP Build using Host Responder
	Deploying Applications in Windows® Runtime
	Deploying an Application in MCP Runtime
	Build and Deployment Configuration Properties
	Build Settings

	Exporting and Importing Model Elements
	Export and Import Wizards
	Export Wizard
	Import Wizard
	Addressing Import/Export Issues
	Exporting and Importing from the Command Line
	Unresolved Elements
	Resolving Elements

	Migrating System Modeler Database
	Settings Page
	Overview Page
	Migration Page
	Summary Page

	Section 4: Managing Applications
	Version Management
	Viewing Specifications, Differences, and Merging
	Source Control Services in Visual Studio
	Source Control in System Modeler
	Source Control Utilities
	Setting Version Files
	Setting User Options
	Versionable Objects Control Status
	Setting up the Source Control Bank in an AB Suite Environment
	Using Source Control with TFS
	Source Control Operations
	Creating AB Suite Environment

	Release Management
	Building a Product Release by Labels

	Integrity Management
	Working with Integrity Management

	Automated Test Tool
	Recording Test Cases
	Configuring and Playing Back Test Cases
	Migrating Test Case Recordings
	References
	Transaction Types

	Appendix A. References
	Sample AB Suite Applications
	Creating a Project with a Sample AB Suite Application
	Creating a Project with a Sample AB Suite Client Framework Application

	Describing AB Suite Icons
	System Modeler
	Searching an Element
	Search Dialog Box
	Wildcards
	Regular Expressions
	Search Results List Window
	Building Comment Pages
	Using Class Diagram Editor
	Using Enterprise Output Manager Reports

	Logic Editor
	Entering Logic
	Editing Logic
	Validating Logic
	Logic Validation Errors

	Microsoft Build Engine
	Building Applications Using Command Line
	Building Applications by Using TFS

	ReElDor Utility
	Minimize Insertable Substitution Strings
	Pretty Print
	Change Insert Attribute to Class
	Examples for using ReElDor Utility

	Access Layer API—Logging Information
	Error Messages
	--- A --- Error Messages
	--- B --- Error Messages
	--- C --- Error Messages
	--- D --- Error Messages
	--- E --- Error Messages
	--- F --- Error Messages
	--- G --- Error Messages
	--- H --- Error Messages
	--- I --- Error Messages
	--- J --- Error Messages
	--- K --- Error Messages
	--- L --- Error Messages
	--- M --- Error Messages
	--- N --- Error Messages
	--- O --- Error Messages
	--- P --- Error Messages
	--- Q --- Error Messages
	--- R --- Error Messages
	--- S --- Error Messages
	--- T --- Error Messages
	--- U --- Error Messages
	--- V --- Error Messages
	--- W --- Error Messages
	--- X --- Error Messages
	--- Y --- Error Messages
	--- Z --- Error Messages

	Glossary
	Terminology Changes

	Appendix B. Related Product Information
	Index

