
unisys

NO WARRANTIES OF ANY NATURE ARE EXTENDED BY THIS DOCUMENT. Any product or related information
described herein is only furnished pursuant and subject to the terms and conditions of a duly executed agreement to
purchase or lease equipment or to license software. The only warranties made by Unisys, if any, with respect to the
products described in this document are set forth in such agreement. Unisys cannot accept any financial or other
responsibility that may be the result of your use of the information in this document or software material, including
direct, special, or consequential damages.

You should be very careful to ensure that the use of this information and/or software material complies with the
laws, rules, and regulations of the jurisdictions with respect to which it is used.

The information contained herein is subject to change without notice. Revisions may be issued to advise of such
changes and/or additions.

Notice to U.S. Government End Users: This software and any accompanying documentation are commercial items
which have been developed entirely at private expense. They are delivered and licensed as commercial computer
software and commercial computer software documentation within the meaning of the applicable acquisition
regulations. Use, reproduction, or disclosure by the Government is subject to the terms of Unisys’ standard
commercial license for the products, and where applicable, the restricted/limited rights provisions of the contract
data rights clauses.

Unisys and other Unisys product and service names mentioned herein, as well as their respective logos, are
trademarks or registered trademarks of Unisys Corporation.
All other trademarks referenced herein are the property of their respective owners.

3

How to Use DataReader in Windows Runtime

SUMMARY

This document contains information on how to configure Agile Business Suite (AB

Suite™) Windows Runtime to use the MSSQL feature DataReader when reading

from the database via LDL commands such as Determine, Lookup and ForEach. Note

that in the remainder of this document wherever “Determine commands” is referred

to, the same information applies to Lookup read loops (for example, Lookup Every)

and ForEach commands.

DataReader is a very efficient technique for reading records from an MSSQL Server

database. For example, it is more efficient than the standard technique used by AB

Suite Windows Runtime – Server-side Cursors. However, it has some limitations

which mean it cannot be used in some cases. And it has some behavioral

characteristics which mean that extended use of DataReader should be done

carefully.

This document describes the way in which you can configure a runtime system to use

DataReader selectively i.e. for all or part of your system (for example, in defined

ispecs and reports only).

Note that the current implementation for how to define which parts of your system

will use DataReader is an interim implementation only. This is provided now so that

customers can experiment with the use of DataReader and get the benefits from it

now. In the future, the ability to define how DataReader is used by different parts of

your system will be done in a different and probably more integrated way.

DataReader versus Cursors

The default technique used by AB Suite Windows Runtime (and EAE) to read records

from the database is Server-side Cursors. With Cursors, the database will

essentially return one record at a time. If a Determine command is executed to read

say 100 records, then the database will be accessed 100 times, returning one record

on each iteration of the Determine loop.

DataReader works differently. When a Determine loop is entered a separate thread

is started (internally within SQL Server) to retrieve records into an internal memory

cache. This record retrieval can be done very efficiently with many records being

retrieved in blocks. Then, as the Determine code requests the next record during

each loop iteration, the record is returned from the memory cache (rather than the

physical database). The overall effect is that many records can be retrieved with

much less physical database IO than with Cursors, and the Determine code will

execute much faster.

How to Use DataReader in Windows Runtime

4

It should be clear that DataReader will provide a measurable performance benefit for

Determine commands that read multiple records – the more records read the greater

the benefit. It follows that DataReader will provide little or no performance benefit if

only a few records are read. In fact, there are some situations where DataReader will

perform worse than Cursors, due to the overhead of retrieving multiple records into

the memory cache that ultimately are not needed (for example, because the code

execution breaks out of the Determine loop).

DataReader Limitations

DataReader is not valid for use with a read loop in which a DB Commit is done. This

means that DataReader cannot be used for Determine commands where a Sleep

command occurs anywhere within the loop. This includes situations where a method

invoked from within the loop contains a Sleep command.

This is handled automatically by the AB Suite software. It will automatically work out

that a specific Determine command contains a Sleep. Therefore, for that Determine

command, code will be generated to only use Cursors (i.e. DataReader will not be

used).

So it is perfectly safe to enable DataReader for parts of the system where you know

that Sleep commands are used. The software will automatically work out internally

which commands can use DataReader and which cannot. For example, you may have

a report that contains say five Determine commands and one of these contains a

Sleep. When executed with DataReader enabled, this report will run with DataReader

for four of the Determine commands and Cursors for the one Determine that

contains a Sleep.

DataReader Code Generation

During the Builder phase, code can be generated for most Determine commands to

allow them to be capable of using both Cursors and DataReader at runtime.

By default, only very simple Determine commands are generated to be DataReader-

capable. This will be done for Determine loops that do not contain any nested

database commands (other Determines, Store(), Flags, etc), Sleep commands, or

any method calls.

The generation of DataReader-capable code for many other Determine commands

can be enabled by setting a configuration property. This property is available on the

Segment object and is called ‘DataReader Capable’. It is set to ‘True’ by default.

How to Use DataReader in Windows Runtime

5

This generates code to take advantage of the DataReader feature in SQL Server

called “Multiple Active Result Sets” (MARS). This is done for all Determine commands

except those that include a Sleep command anywhere within the loop.

This configuration property is available in all AB Suite versions from 5.0. Prior to

version 5.0 this DataReader code generation behavior is controlled via a Builder

Registry setting called “GenerateCodeForMARS”. The following is the definition of this

Registry setting:

32-bit Operating System:

[HKEY_LOCAL_MACHINE\SOFTWARE\Unisys\System Modeler\Features\Builder]
"GenerateCodeForMARS"=dword:00000000

64-bit Operating System:

[HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Unisys\System Modeler\Features\Builder]
"GenerateCodeForMARS"=dword:00000000

The value of this DWORD setting does not matter - it just has to be present.

You can verify that this registry setting has been defined correctly and is active via

the Build log from any build operation. The following message will be displayed near

the top of the build log when this registry setting has been detected. This indicates

that all Determine commands (other than those that contain Sleep commands) will

be built to be DataReader-capable. If the registry setting has been defined

incorrectly (perhaps with the wrong name or in the wrong location in the registry)

and is not detected, then this message will not appear at all in the build log.

How to Use DataReader in Windows Runtime

6

DataReader Behaviour

It is important to understand that DataReader can cause some Determine command

behaviour differences compared to Cursors.

First, it is necessary to understand how Cursors works. A fundamental characteristic

of Cursors record retrieval is that it reads one record at a time, with the next record

being retrieved from the database at the beginning of each iteration of a Determine

loop. If the Profile or Table being read is updated during the read loop such that the

content or set of records yet to be returned changes then these changes will be

visible to the later iterations. For example, if a new record is stored in the table such

that it is included on the Profile being read, then this record will be returned by later

iterations of the read loop.

With DataReader this will not work the same. At the beginning of a Determine

command, a separate thread will be started to read the complete result set of

records into an intermediate memory cache. This result set within the memory cache

will not be updated by any changes to the actual records that happens during the

read loop. This means that the Determine will continue to return records from the

result set in the memory cache even though the physical records in the database

may now be different. If this situation exists, then you should use settings that will

disable the use of DataReader for this part of the code (see below).

Note that this behaviour is actually similar to how EAE works with Oracle (on

Windows and Unix). An Oracle feature called “Read Consistency” is used which states

that the data at the start of a command will be the same for the length of the

command regardless of whether it actually changes during the life of the command.

Therefore, users migrating from EAE with Oracle will find that DataReader has similar

behaviour.

DataReader Runtime Settings

Apart from the DataReader Capable property that is used to build DataReader-

capable code, it is possible to enable or disable DataReader at runtime for the

system as a whole or for individual ispecs/reports.

A system-wide option is available in the Runtime AdminTool to enable/disable

DataReader for the whole system. This option is set by default to enable DataReader.

How to Use DataReader in Windows Runtime

7

Right-click the database node and select All Tasks/Configure Database

Parameters and then select the Data Accessor Properties tab.

How to Use DataReader in Windows Runtime

8

If this option is set (as it is by default) then all Determine commands that have been

built as DataReader-capable will use DataReader at runtime. If this property is reset,

then all Determine commands will use Cursors.

DBConfig.xml File

An XML configuration file called DBConfig.xml can be used to enable/disable

DataReader for individual ispecs/reports. This XML file needs to be created within the

AB Suite Data\Public folder (for example, C:\AB Suite 2.0\Data\Public). This file is

not automatically created or generated, but will need to be manually created and the

contents defined with a text editor. It will need to contain parent nodes to represent

the database and the system within the database. The system node can contain

attributes to enable/disable DataReader for the online system (all ispecs) and for all

reports. Within the system node you can include child nodes to represent individual

ispecs/reports. A DataReader setting at the individual ispec/report level will override

the system-level setting.

An example of the DBConfig.xml file is shown below:

<?xml version="1.0" encoding="utf-8" ?>

<Configuration>

 <database name="SAMPLEDB">

 <system name="Sample" DataReaderOnline="false" DataReaderReports="false">

 <ispecs>

 <ispec name="CUST" datareader="true" />

 <ispec name="SALE" datareader="false" />

 <ispec name="INGDS" datareader="true" />

 <ispec name="SINQ" datareader="false" />

 </ispecs>

 <reports>

 <report name="CONSOLIDAT" datareader="false" />

 <report name="CUSTLIST" datareader="true" />

 <report name="PRODSTATS" datareader="true" />

 </reports>

 </system>

 </database>

</Configuration>

In the <system> node the attribute DataReaderOnline is used to set a default

DataReader setting for the online system i.e. all ispecs. The attribute

DataReaderReports is used to set a default DataReader setting for all reports.

If you set the System.log logging level to “Information” (or “Debug”) then you will

get logged messages like the following showing that the DBConfig.xml file has been

found, and that its contents are valid and have been successfully read. If you have

created a DBConfig.xml file with DataReader settings, then it is important that you

check the System.log after starting the system to verify that it is being read and

interpreted correctly. Any XML syntax errors will be reported in the System.log and

the system will continue running with default DataReader settings.

How to Use DataReader in Windows Runtime

9

DataReader properties being read from C:\AB Suite 2.0\Data\public\DBConfig.xml

DataReaderOnline is set to False

DataReaderReports is set to True

Add to DataReaderMap: CUST True

Add to DataReaderMap: SALE False

Finer control of DataReader

The previous section describes how you can control the use of DataReader at the

whole ispec or report level. However, there might be situations where you have a

report or ispec that does many Determine commands, most of which work best with

DataReader, but there is one Determine command that does not work well with

DataReader. Perhaps this Determine block of code includes logic to update the

records being read and the result set changes during the course of the Determine,

and therefore this command should not use DataReader.

The simple option is to turn DataReader off for the whole report using the

DBConfig.xml file. However, it is possible to getting finer control of DataReader and

effectively turn DataReader off for a single command. Here is how this can be done.

In the section DataReader Limitations above, we described how DataReader is

internally disabled if the logic within the Determine block includes a Sleep command.

Well, we can use this to good effect by including a ‘dummy’ Sleep command in the

logic – that is a Sleep command included in a condition that is never true. The

presence of the Sleep command in the logic will result in DataReader being disabled

for that command, but because it is never executed it will not affect the behavior of

the report.

A recommended way of doing this is as follows:

Create a segment method like this.

Then call this method from inside any Determine command to effectively switch OFF

DataReader. In the example below the first Determine will use DataReader and the

second will not, because of the presence of a Sleep command. Note that the Sleep

command does not need to be executed – it just needs to be present (anywhere

within the block of code or within any method called from within the block – even

nested deeply).

How to Use DataReader in Windows Runtime

10

This will only affect the Determine commands that directly contain the Sleep. All

other Determine commands in the same section of code (even nested commands)

will be unaffected and will continue to use DataReader.

Examples of using DBConfig.xml

These examples assume that the DataReader Capable property has been defined

and the system built to include DataReader-capable code for most Determine

commands.

Example 1 - You want to use DataReader in all read loops across your entire

system (ispecs and reports).

You would have no DBConfig.xml file, or no entries for the system.

DataReader will be enabled for all Determine commands across the system

apart from those that contain a Sleep command.

Example 2 - You want to use DataReader in reports only.

The reason for this is that in general, reports will get more benefit from

DataReader than ispecs. This is because reports often contain read loops that

read through many records. Ispecs on the other hand are generally written to

have quick response times, and typically read just a few records, so in

general will not get as much benefit as reports.

You could include the following DBConfig.xml contents for this:

<Configuration>

 <database name="SAMPLEDB">

 <system name="Sample" DataReaderOnline="false" DataReaderReports="true">

 </system>

 </database>

</Configuration>

How to Use DataReader in Windows Runtime

11

Example 3 - You want to use DataReader in all reports and also in a selected

number of ispecs that read a lot of records and get a good benefit from

DataReader.

You may have tested you system with DataReader on and off, and found that

whereas most ispecs get no measurable benefit from DataReader, some

selected ispecs that read a lot of records do get a significant benefit.

You could include the following DBConfig.xml contents for this:

<Configuration>

 <database name="SAMPLEDB">

 <system name="Sample" DataReaderOnline="false" DataReaderReports="true">

 <ispecs>

 <ispec name="ABISP" datareader="true" />

 <ispec name="IspecX" datareader="true" />

 <ispec name="CustomerInq" datareader="true" />

 <ispec name="SINQ" datareader="true" />

 </ispecs>

 </system>

 </database>

</Configuration>

Example 4 - You want to use DataReader in most reports but some reports

show worse performance with DataReader.

You may have tested all reports with DataReader on and off, and found that

whereas most reports get a significant benefit from DataReader, some reports

actually show worse performance. You would want to disable DataReader for

just these reports.

You could include the following DBConfig.xml contents for this:

<Configuration>

 <database name="SAMPLEDB">

 <system name="Sample" DataReaderOnline="false" DataReaderReports="true">

 <reports>

 <report name="CONSOLIDAT" datareader="false" />

 <report name="CUSTLIST" datareader="false" />

 </reports>

 </system>

 </database>

</Configuration>

Example 5 - You want to use DataReader in most reports but some reports

show incorrect behaviour with DataReader.

The incorrect behaviour may be because the report contains a read loop in

which records in the table being read are updated and added (see section

“DataReader Behaviour” above). With DataReader, the subsequent read

iterations do not see the updated records. Whereas with Cursors, the updated

How to Use DataReader in Windows Runtime

12

records are read correctly. In this case you will want to disable DataReader

for these reports.

You could include the following DBConfig.xml contents for this:

<Configuration>

 <database name="SAMPLEDB">

 <system name="Sample" DataReaderOnline="false" DataReaderReports="true">

 <reports>

 <report name="CONSOLIDAT" datareader="false" />

 <report name="CUSTLIST" datareader="false" />

 <report name="VXREP5" datareader="false" />

 <report name="ZLISTREP" datareader="false" />

 </reports>

 </system>

 </database>

</Configuration>

http://www.unisys.com/

